首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于主成分BP人工神经网络的参考作物腾发量预测   总被引:1,自引:0,他引:1  
影响参考作物腾发量的气象因素众多,且相关程度较高。基于主成分分析原理,将影响ET0的7个主要气象因素以及旬序数进行特征提取,形成3个综合影响因子,既可保证气象信息的完整性,又可避免气象信息的交叉重叠。以江苏省无锡市某区作物腾发量预测为例,经主成分分析并简化的参考作物腾发量BP神经网络模型具有结构简单、收敛快、精度高的特点,可用于ET0预测。  相似文献   

2.
基于主成分分析的参考作物腾发量预测研究   总被引:1,自引:0,他引:1  
为准确估算作物需水量,提高水分利用效率,采用RBF神经网络预测参考作物腾发量,由于参考作物蒸发蒸腾量的影响因子很多,且各影响因子间的相关性很大,运用主成分分析的原理,将影响参考作物蒸发蒸腾量的因子降低维数.以山西省某灌区的参考作物腾发量为例,运用DPS软件找出了3个综合因子来代表众多因子并作为RBF人工神经网络的输入,运用Matlab7.0进行编程,对参考作物腾发量进行预测.结果发现其预测结果与用Pen-man-Monteith公式算得的值具有很高的一致性,与BP神经网络相比,RBF神经网络具有学习速度快等优点,将此方法用于参考作物腾发量的预测可以收到理想的效果.  相似文献   

3.
采用黄金分割原理优化算法确定BP神经网络的隐含层节点数,进而确定BP神经网络的结构,并针对BP神经网络容易陷入局部极小值和全局搜索能力弱的缺点,引人遗传算法(GA)优化网络权值,建立GA-BP网络模型,预测作物参考腾发量ET0.以北京地区的相关资料为基础,选用6种输入因子组合方案,对该模型进行验证,结果表明该网络模型具有较好的预测能力;同时,对6种方案比较分析表明,方案4最优,该方案只需选用4项输入因子(日序数、平均气温、风速和日照时数),就能以较高的精度预测作物参考腾发量.  相似文献   

4.
在分析影响大棚作物腾发量的气象因子的基础上,以气象因子为输入向量,以大棚作物腾发量为输出向量,构建了气象资料不足情况下计算大棚作物腾发量的BP神经网络模型。利用鄂州节水灌溉实验基地逐日气象资料对所建模型进行反复训练和预测,并把预测结果与用传统的Penman Monteith公式计算而得的同期作物ET值相比较。BP神经网络模型的预测值与公式计算的ET值的相关系数为0.986。研究结果表明:构建的模型计算精度较高,方法简便可行,能满足实际生产需要。  相似文献   

5.
在分析影响大棚作物蒸发蒸腾量的气象因子的基础上, 以气象因子输入向量, 以大棚作物腾发量为输出向量, 构建了气象资料不足情况下计算大棚作物腾发量的BP 神经网络模型BP ET。利用鄂州节水灌溉实验基地逐日气象资料对所建模型进行反复训练和预测, 并把预测结果与传统的Penman-Monteith 公式计算而得的同期作物ET 值相比较。其中, BP ET 的预测值与ET值的相关系数为0.986。研究结果表明, 本文构建的模型计算精度较高, 方法简便可行, 能满足实际生产需要。  相似文献   

6.
参考作物腾发量(Eto)是估算作物腾发量的关键参数,其准确预测对提高作物需水预报精度具有十分重要的意义.Elman神经网络是BP网络的改进结构,具有适应时变性的特点;最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种优化算法,它基于结构风险最小化准则,可兼顾模型的经验风险和推广能力.将两种方法应用于参考作物腾发量预测中,并以铁岭市为例,对比分析LS-SVM模型与Elman模型的预测值.结果表明:LS-SVM模型学习速度快,具有比Elman模型更高的模拟性能和预测精度,更适合参考作物腾发量的预测.  相似文献   

7.
气象数据缺测对BP-ET_0模型预测精度的敏感性分析   总被引:1,自引:0,他引:1  
以柳圆口灌区2002~2005年的气象数据为基本资料,采用参考作物腾发量预测的前馈网络模型(BP-ET0),研究了参考作物腾发量对气象因子的敏感性。研究结果表明:在参考作物腾发量预测的6个气象因子中,相对湿度对BP-ET0预测效果影响最大,缺少它时预测合格率只有64.93%,其次是实际风速和日照时数,缺少它们时预测合格率分别为73.15%和76.98%,最高气温、最低气温和平均气温对预测效果影响较小,缺少它们时预测合格率均在80%以上。  相似文献   

8.
基于Elman和BP神经网络的逐月参   总被引:2,自引:0,他引:2  
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,它的准确预测对提高作物需水预报精度具有十分重要的意义。由于参考作物腾发量随时间变化具有一定的动态特性,将动态的Elman神经网络引用于参考作物腾发量预测中,并以铁岭市为例,对比分析了Elman模型与BP模型的预测结果。分析表明:Elman模型不仅能反应系统的动态特性,还具有比BP模型更高的预测精度、逼近性和稳定性。  相似文献   

9.
基于公共天气预报的参考作物腾发量预报   总被引:1,自引:0,他引:1  
针对Penman Monteith公式的应用局限性,以公共天气预报可测因子及历史气象数据计算ET0为基准,对广州站2017-01-01-2019-03-31预报气象信息风力状况进行量化后,以2017,2018年气象预报信息为输入因子、ET0为输出因子,分别建立基于回归型支持向量机(SVR)预报模型与BP神经网络预报模型,选择性能较优预报模型对2019年ET0进行预报,并与计算值进行对比分析.结果表明:回归型支持向量机参考作物腾发量预报模型测试集确定性系数为0.896、均方误差为0.206,BP神经网络参考作物腾发量预报模型测试集确定性系数为0.851、均方误差为0.305,SVR参考作物腾发量预报模型均方误差及决定系数要明显优于BP神经网络;基于SVR模型的预报值与PM公式计算值相关系数为0.761,没有明显差异,表现出显著的相关性以及整体吻合度,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

10.
参考作物腾发量(ET0)是估算作物腾发量的关键参数,其准确预测对提高作物需水预报精度具有十分重要的意义。Elman神经网络是BP网络的改进结构,具有适应时变性的特点;最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种优化算法,它基于结构风险最小化准则,可兼顾模型的经验风险和推广能力。将两种方法应用于参考作物腾发量预测中,并以铁岭市为例,对比分析LS-SVM模型与Elman模型的预测值。结果表明:LS-SVM模型学习速度快,具有比Elman模型更高的模拟性能和预测精度,更适合参考作物腾发量的预测。  相似文献   

11.
ET_0的主因子和主成分神经网络模型比较   总被引:1,自引:0,他引:1  
为了简化BP神经网络预测ET0的模型,将气象因子包括最高、最低和日平均温度、日照时数、相对湿度和风速进行主成分分析和偏相关分析,提取主成分和主因子,分别建立了基于主成分和主因子的三层BP神经网络模型,并对两种模型的训练和预测结果进行比较。选取湟水流域的乐都气象站2003年到2006年5月逐日的气象资料,采用Matlab神经网络工具箱进行模型训练与预测。结果表明主成分神经网络训练和预测模型的精度都优于主因子神经网络模型。主要是由于两种模型选取输入层的因子不同造成的。  相似文献   

12.
蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合训练神经网络模型。多元线性回归模型只将最高温和相对湿度作为输入值,但是模拟结果不令人满意。MLP模型采用的数据集包括最高和最低温度、风速和相对湿度,在训练和验证中都取得了比较好的结果。MLP模型可以用来模拟周开放式蒸发皿蒸发量,估算缺失数据,并可以作为替代模型以验证蒸发量测定值。降雨量数据并不能改善模型性能。   相似文献   

13.
Daily pan evaporation modeling using linear genetic programming technique   总被引:3,自引:1,他引:2  
This paper investigates the ability of linear genetic programming (LGP), which is an extension to genetic programming (GP) technique, in daily pan evaporation modeling. The daily climatic data, air temperature, solar radiation, wind speed, pressure and humidity of three automated weather stations, Fresno, Los Angeles and San Diego in California, are used as inputs to the LGP to estimate pan evaporation. The LGP estimates are compared with those of the Gene-expression programming (GEP), which is another branch of GP, multilayer perceptrons (MLP), radial basis neural networks (RBNN), generalized regression neural networks (GRNN) and Stephens–Stewart (SS) models. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R 2) statistics. Based on the comparisons, it was found that the LGP technique could be employed successfully in modeling evaporation process from the available climatic data.  相似文献   

14.
构建日光温室环境预测模型,准确预测温室环境变化有助于精准调控作物生长环境,促进果蔬生长。而温室小气候环境数据多参数并存、耦合关系复杂,且具有时序性和非线性,难以建立准确的预测模型。针对以上问题,提出一种基于麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)温室环境预测模型,实现了温室环境数据的精准预测。实验结果表明,采用SSA自动进行参数选优的方式,解决了LSTM模型参数手动选择的难题,大幅缩短模型训练时间,且最优的网络参数能够发挥模型的最佳性能。对日光温室内空气温湿度、土壤温湿度、CO2浓度和光照强度6种环境参数进行预测,SSA-LSTM平均拟合指数高达97.6%,相比BP、门控循环单元(GRU)、LSTM,其预测拟合指数分别提升8.1、4.1、4.3个百分点,预测精度明显提升。  相似文献   

15.
作物需水量自适应神经网络模糊系统的设计研究   总被引:3,自引:2,他引:3  
通过自适应神经网络对大量实验数据(太阳辐射、空气湿度)的学习,得到学习后的作物需水量模糊系统的隶属度函数和模糊规则,所建立的Sugeno型模糊推理系统通过与自适应技术的结合,使建立的模糊模型很好地匹配了输入数据。该模糊模型能很好地解决需水量多影响因素之间的不确定性和非线性,模型的预测精度较高,对精确灌溉和节水农业不仅有一定的理论意义,更具有巨大的实用价值。  相似文献   

16.
In small volcanic islands the local scale climate is influenced by the regional scale climate and by the orography and orientation of air masses movement over the islands. A model was developed in a GIS environment to generate local scale climate variables from those observed at the synoptic scale, from coastal weather stations. An advective submodel, based on the Foehn effect and assuming the conservation of mass and energy, computes local scale air temperature, relative humidity, clouds occurrence and precipitation. A radiative submodel, using information generated by the advective submodel, computes local scale global radiation. A rotational terrain model allows that computations be performed according to the direction of wind. Because the model works within a GIS, results concern the spatial distribution of all climatic variables on the island territory. Results of the validation of temperature, relative humidity, global radiation and rainfall are presented. For agro-meteorological purposes, an application of generated data to perform the sequential water balance is also analysed by comparing results from computations using simulated and observed data at a control weather station located at medium altitude. Results support assumptions utilised in the model and the further use of generated local climate fields for water management and environmental studies in small island environments.  相似文献   

17.
徐小力  刘秋爽  见浪護 《农业机械学报》2012,43(Z1):305-310,299
针对光伏充气膜温室自跟踪发电系统提出了一种加入天气预报信息的自适应变异粒子群神经网络的发电量预测算法.首先结合历史发电量数据和气象数据分析了影响光伏充气膜温室自跟踪发电系统发电量的主要因素,建立了加入天气预报的神经网络预测模型,并针对传统神经网络预测模型中基于梯度下降的BP算法收敛慢、易陷入局部最优、训练难收敛等问题,通过自适应变异粒子群算法改进了神经网络.该算法通过将变异环节引入粒子群优化算法,进行隔代进化找到局部最优解.实验结果表明所采用的自适应变异粒子群的神经网络预测算法的全局收敛性能得到了显著提高,能有效避免粒子群优化算法中的早熟收敛问题.  相似文献   

18.
Kohonen网络故障诊断方法及试验   总被引:4,自引:0,他引:4  
根据Kohonen神经网络诊断的工作原理、诊断特征,提出了渔船轴系模拟试验台的系统结构和振动监测方法,并通过自行开发的数据采集系统和诊断软件,对故障特征矢量进行识别和诊断。模拟试验证明了Kohonen网络对轴系故障诊断的有效性和准确性。  相似文献   

19.
人工神经网络在预报土壤墒情中的应用   总被引:3,自引:0,他引:3  
依据从2005年1~12月所采集的365组试验数据,建立了一个能够反映土壤墒情变化与气候因素之间关系的人工神经网络模型.模型共分输入层、隐含层和输出层3层.输入层的输入变量包括数据采集当天的10 cm、20 cm和40 cm深度的土壤含水量以及当天的日照时数,空气湿度,平均气温和降雨量.输出层的输出变量包括1天后的10 cm、20 cm和40 cm深度的土壤含水量.模型的学习因子为0.1,动量因子为0.05.模型经过25 000次训练后收敛,收敛误差为8×10 -4 ,这说明该模型能够很好的反映出输出量与输入量的关系,并能够准确预报出土壤水分信息.  相似文献   

20.
作物蒸腾量是指导作物灌溉关键参数之一,实时获取作物蒸腾量,实现按需灌溉是节约用水的有效途径。然而,温室内小气候效应显著,作物蒸腾与环境因子间关系较为复杂,且各环境因子之间相互关联并呈非线性变化。本文以番茄作为研究对象,使用称量法测量作物实时蒸腾量,通过布设传感器实时获取温室小气候数据,包括空气温度(Air temperature, AT)、相对湿度(Relative humidity, RH)、光照强度(Light intensity, LI)作为模型的小气候环境输入,冠层相对叶面积指数(Relative leaf area index,RLAI)作为模型的作物生长输入,在此基础上,提出了基于长短期记忆网络(Long short term memory, LSTM)的番茄蒸腾量预测模型。利用该模型对番茄蒸腾量进行预测,并与非线性自回归(Nonlinear autoregressive with exogeneous inputs, NARX)神经网络、Elman神经网络、循环神经网络(Recurrent neural network, RNN)模型进行了对比。试验结果表明,LSTM预测模型决定系数(Determination coefficient, R2)与平均绝对误差(Mean absolute error, MAE)分别为0.9925和4.53g,与NARX神经网络、Elman神经网络、RNN方法进行对比,其决定系数分别提高了8.97%、1.18%和0.82%,其平均绝对误差分别降低了8.16、6.23、0.52g。本研究所提的预测模型具有较高的预测精度及泛化性能,研究成果可为温室作物需水规律及需水量研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号