首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为阐明联合应用阿苯达唑(ABZ)和伊维菌素(IVM)在胃肠道线虫感染鄂尔多斯细毛羊体内的药动学互作关系,以感染胃肠道线虫的鄂尔多斯细毛羊为研究对象,比较研究了单独或联合应用阿苯达唑和伊维菌素后的药物动力学特征。通过粪便虫卵检查法,选取感染胃肠道线虫的鄂尔多斯细毛羊15只,随机分成3组,每组5只。第1组口服给予阿苯达唑(15mg/kg),第2组皮下注射伊维菌素(0.2mg/kg),第3组皮下注射伊维菌素(0.2mg/kg)的同时口服阿苯达唑(15mg/kg)。于给药后不同时间,由颈静脉采集血样,分离血浆,并用高效液相色谱法测定各时间点血浆阿苯达唑、阿苯达唑亚砜、阿苯达唑砜和伊维菌素浓度,并用PK Solution 2.0药物动力学软件计算出各药动学参数。结果表明,联合用药组绵羊血浆伊维菌素峰浓度(Cmax)、药时曲线下面积(AUC)和平均滞留时间(MRT)分别为44.80ng/mL±6.12ng/mL、5 007.46ng.h/mL±1 301.42ng.h/mL和85.47h±5.03h,均显著(P<0.05)小于单独用药组的对应参数值67.62ng/mL±9.06ng/mL、7 125.08ng.h/mL±908.52ng.h/mL和113.39h±9.00h。口服阿苯达唑组绵羊血浆中仅检测到了阿苯达唑砜和阿苯达唑亚砜,而未检测到阿苯达唑母药。联合用药后,除阿苯达唑砜的达峰时间(T max)显著推迟外,阿苯达唑砜和阿苯达唑亚砜的其他各参数之间均无显著性差异。因此,联合应用IVM和ABZ可影响它们在胃肠道线虫感染鄂尔多斯细毛羊体内的药动学特征,且对伊维菌素药动学特征的影响尤为明显,在临床联合用药过程中应予以重视。  相似文献   

2.
Different pharmacological approaches have been used in an attempt to increase the systemic availability of anthelmintic drugs. The comparative effect of the itraconazole (ITZ)-mediated modulation of P-glycoprotein (P-gp) activity on the in vivo kinetic behaviour of ivermectin (IVM) administered by the intravenous (i.v.) and intraruminal (i.r.) routes to sheep was assessed in the current work. Corriedale sheep received IVM (50 microg/kg) by the i.v. route either alone (group A) or co-administered with the P-gp modulator ITZ (100 mg orally three times every 12 h) (group B). Animals in groups C and D were intraruminally treated with IVM (50 microg/kg) alone or co-administered with ITZ (100 mg orally three times every 12 h) respectively. Jugular blood and gastrointestinal tissue samples (animals treated by the i.r. route) were collected. The samples were analysed by HPLC using fluorescence detection. The plasma disposition of IVM given intravenously was unaffected by the presence of ITZ. However, after the i.r. treatment the co-administration with ITZ resulted in markedly higher IVM plasma concentration profiles compared to the control group. Likewise, the presence of ITZ enhanced the IVM concentration profiles measured in the gastrointestinal mucosal tissues. An ITZ-induced reduction on the P-gp efflux activity at the intestinal lining may have accounted for the greater absorption and enhanced systemic availability observed for IVM in the intraruminally treated animals.  相似文献   

3.
Macrocyclic lactones are characterized by their long persistence in animals because of their extensive distribution into fat. This study examined the influence of body condition on the disposition of ivermectin (IVM) and moxidectin (MXD) in blood and fat following subcutaneous (s.c.) drug administration. 'Fat' and 'thin' lines of pigs were established using two different diets. All animals were then injected with either MXD or IVM at 300 microg/kg and blood samples were taken at regular intervals until slaughter. Two IVM-treated animals from each diet group were slaughtered at either 3 days or 3 weeks posttreatment. Two MXD-treated animals from each diet group were slaughtered at 3 days, 3, 6 or 9 weeks after treatment. Samples of backfat were taken from all animals at slaughter. Fluorescence HPLC was used to determine the concentrations of MXD or IVM in the plasma and fat samples. The plasma IVM concentration peaked more rapidly in the thin IVM treated pigs compared with the fat pigs. The concentration of IVM in backfat was significantly lower in the thin animals slaughtered 3 weeks after treatment. The MXD plasma concentration peaked within the first hour in both the thin and fat groups, but from 12 h posttreatment there was a higher MXD concentration in the plasma of the fat pigs resulting in MXD being detectable in these pigs for 28 days compared with only 17 days in the thin pigs. Despite this difference in plasma persistence no differences were seen in the MXD concentration of backfat between fat and thin animals. Body condition influenced the kinetic disposition of IVM and MXD following s.c. drug administration with both drugs being less persistent in thin compared with fat animals.  相似文献   

4.
AIMS: To determine the plasma disposition and concentrations of ivermectin (IVM) in eggs produced by laying hens following S/C, oral and I/V administration.

METHODS: Twenty-four laying hens, aged 37 weeks and weighing 1.73 (SD 0.12) kg were allocated to three groups of eight birds. The injectable formulation of IVM was administered either orally, S/C, or I/V, at a dose of 0.2?mg/kg liveweight, following dilution (1:5, v/v) with propylene glycol. Heparinised blood samples were collected at various times between 0.25 hours and 20 days after drug administration. Eggs produced by hens were also collected daily throughout the study period. Samples of plasma and homogenised egg were analysed using HPLC.

RESULTS: Maximum concentrations of IVM in plasma and mean residence time of IVM were lower after oral (10.2 (SD 7.2) ng/mL and 0.38 (SD 0.14) days, respectively) than after S/C (82.9 (SD 12.4) ng/mL and 1.05 (SD 0.24) days, respectively) administration (p<0.01). The time to maximum concentration and elimination half-life were shorter following oral (0.14 (SD 0.04) and 0.23 (SD 0.11) days, respectively) than S/C (0.25 (SD 0.00) and 1.45 (SD 0.45) days, respectively) administration (p<0.01). IVM was first detected in eggs 2 days after treatment in all groups and was detected until 8 days after oral and I/V administration, and until 15 days after S/C administration. Peak concentrations of IVM were 15.7, 23.3 and 1.9?µg/kg, observed 2, 5 and 4 days after I/V, S/C and oral administration, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE: The low plasma bioavailability of IVM observed after oral administration in laying hens could result in lower efficacy or subtherapeutic plasma concentrations, which may promote the development of parasitic drug resistance. Due to high IVM residues in eggs compared to the maximum residue limits for other food-producing animal species, a withdrawal period should be necessary for eggs after IVM treatment in laying hens.  相似文献   

5.
A study was undertaken in order to compare plasma disposition kinetic parameters of doramectin (DRM) and ivermectin (IVM) in horses after oral administration. Ten crossbreed adult horses, clinically healthy, weighing 380-470 kg body weight (bw) were selected for study. Faecal examinations were performed to determine faecal parasite egg counts. Horses were allocated to two groups of five animals to provide an even distribution considering the variables sex, body weight and faecal egg count. Group I, were treated with an oral paste formulation of IVM at 0.2 mg/kg b/w and Group II, were treated with an oral dose of 0.2 mg/kg bw of DRM prepared as paste from the injectable formulation for oral administration. Blood samples were collected by jugular puncture between 0 h and 75 days post-treatment. Plasma was separated and later solid phase extraction and derivatization samples were analysed by high performance liquid chromatography (HPLC); a computerised kinetic analysis was carried out. Data were compared using the Mann-Whitney U-test.The mean plasma concentrations of DRM and IVM after oral administration in horses were detected until 30 and 20 days, respectively. Both drugs showed similar patterns of absorption and no significant differences were found for peak concentration, the time to peak concentration, or for absorptive half-life. The terminal elimination half-life was significantly (P<0.05) longer in the DRM treated group than for the IVM treated group. The differences observed in the elimination half-life explain the longer mean residence time and high values of area under the concentration time curve for the group treated with DRM, which are 30% higher than those of the IVM group. Considering its pharmacokinetics, tolerance and anthelmintic efficacy, the oral administration of DRM, could be an alternative to IVM for the control of parasitic diseases of horses.  相似文献   

6.
Ceftiofur, a third generation cephalosporin, demonstrates in vitro efficacy against microorganisms isolated from septicemic neonatal foals. This pharmacokinetic study evaluated the intravenous and subcutaneous administration of ceftiofur sodium (5 mg/kg body weight; n = 6 per group) and subcutaneous administration of ceftiofur crystalline free acid (6.6 mg/kg body weight; n = 6) in healthy foals. Plasma ceftiofur- and desfuroylceftiofur-related metabolite concentrations were measured using high performance liquid chromatography following drug administration. Mean (±SD) noncompartmental pharmacokinetic parameters for i.v. and s.c. ceftiofur sodium were: AUC(0→∝) (86.4 ± 8.5 and 91 ± 22 h·μg/mL for i.v. and s.c., respectively), terminal elimination half-life (5.82 ± 1.00 and 5.55 ± 0.81 h for i.v. and s.c., respectively), C(max(obs)) (13 ± 1.9 μg/mL s.c.), T(max(obs)) (0.75 ± 0.4 h for s.c.). Mean (± SD) noncompartmental pharmacokinetic parameters for s.c. ceftiofur crystalline free acid were: AUC(0→∝) (139.53 ± 22.63 h·μg/mL), terminal elimination half-life (39.7 ± 14.7), C(max(obs)) (2.52 ± 0.35 μg/mL) and t(max(obs)) (11.33 ± 1.63 h). No adverse effects attributed to drug administration were observed in any foal. Ceftiofur- and desfuroylceftiofur-related metabolites reached sufficient plasma concentrations to effectively treat common bacterial pathogens isolated from septicemic foals.  相似文献   

7.
OBJECTIVE: To determine pharmacokinetic variables and pharmacologic effects of the S(-) isomer of bupivacaine (S[-]-BPV) in dogs. ANIMALS: 6 adult male Beagles. PROCEDURE: Dogs received S(-)-BPV (1 mg/kg of body weight) i.v., and 15 days later, the same dogs received 1.8 mg/kg epidurally. Pharmacokinetic variables and pharmacologic effects were determined for each route of administration. RESULTS: After i.v. administration, plasma concentration versus time curves were adjusted, using biexponential equations that indicated a rapid distribution phase followed by a slower elimination phase, with a mean +/- SD half-life of 33.5 +/- 17.0 minutes. Mean plasma clearance was 21.0 +/- 10.7 ml/min/kg, and mean volume of distribution at steady state was 0.8 +/- 0.2 L/kg. After i.v. administration, mean peak plasma concentration was 2.6 +/- 0.7 micrograms/ml; after epidural administration, it was 0.9 +/- 0.5 microgram/ml at approximately 3 minutes. Half-life after epidural administration was 5 times longer than that observed after i.v. administration. Motor block began immediately after the end of epidural administration and lasted for 3 to 4 hours. Changes in systolic blood pressure and heart rate after epidural administration were slight but occurred at the same time that plasma concentration peaked. After i.v. administration, motor block or variations in physiologic variables studied were not observed. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, the pharmacologic behavior of S(-)-BPV was similar to that of the bupivacaine racemate, but motor block attributable to S(-)-BPV lasted longer than that attributable to the racemate, with lower plasma concentrations observed at equivalent sample collection times.  相似文献   

8.
This study evaluates the comparative serum disposition kinetics of injectable formulations of doramectin (DRM), ivermectin (IVM) and moxidectin (MXD) in Australian Merino sheep. Thirty-six, 2-year-old sheep were allocated by weight into six groups of six animals. Animals in each group received 200 microg/kg of DRM, MXD, IVM or a combination of two of these drugs by subcutaneous (s.c.) injection. Blood was collected at designated intervals (between 1 h and 40 days after treatment) and the serum analysed by high performance liquid chromatography (HPLC) using fluorescence detection. The results indicated that MXD administration produced a significantly higher maximum serum concentration and a more rapid absorption as compared with DRM and IVM. MXD and DRM had a significantly larger area under the concentration vs. time curve (AUC) than IVM, suggesting a more persistent effect for the former two products in sheep. The AUC for DRM was significantly higher when administered alone as compared with that observed when given in combination with MXD or IVM, suggesting preferential elimination of DRM compared with IVM and MXD from concurrent s.c. administration.  相似文献   

9.
Ceftiofur sodium, a broad-spectrum cephalosporin, is active against gram-positive and gram-negative pathogens of veterinary importance. This study was designed to compare the bioequivalence of the sodium salt in cattle after a single intramuscular (i.m.) or subcutaneous dose (s.c.) of 2.2 mg ceftiofur equivalents/kg body weight. The criteria used to evaluate bioequivalence were (1) the area under the curve from time of injection to the limit of quantitation (LOQ) of the assay (AUC0-LOQ), and (2) time concentrations remained above 0.2 microg/mL (t>0.2). Twelve crossbred beef cattle were enrolled in a three-period, two-treatment crossover trial, with a minimum 2-week washout period between doses of 2.2 mg ceftiofur equivalents/kg. Blood samples were collected serially for up to 72 h post-injection. Plasma samples were then analyzed using a validated assay that measures ceftiofur, and all desfuroylceftiofur-related metabolites, by high-performance liquid chromatography (HPLC) as the stable derivative, desfuroylceftiofur acetamide. A maximum plasma concentration (Cmax) of 13.9+/-3.55 microg/mL was observed from 0. 67-2.0 h after i.m. administration, whereas a Cmax of 13.6+/-3.85 microg/mL was observed from 0.67-3.0 h after s.c. administration. The AUC0-LOQ was 108+/-35.0 microg. h/mL after i.m. dosing, compared with 105+/-29.8 microg. h/mL after s.c. dosing. The pre-established criterion for equivalence of the AUC0-LOQ for the i.m. and s.c. routes of administration was satisfied. The t>0.2 was 49.2+/-8.55 h after i.m. administration, compared with 47.0+/-9.40 h after s.c. administration. The pre-established criterion for equivalence of the t>0.2 for i.m. and s.c. administration was satisfied. The equivalence of AUC0-LOQ and t>0.2 for i.m. and s.c. administration of 2.2 mg ceftiofur equivalents (CE)/kg doses of ceftiofur sodium suggest similar therapeutic efficacy and systemic safety for the two routes of administration.  相似文献   

10.
A study was undertaken in order to evaluate and compare plasma disposition kinetic parameters of moxidectin and ivermectin after oral administration of their commercially available preparations in horses. Ten clinically healthy adult horses, weighing 390-446 kg body weight (b.w.), were allocated to two experimental groups of five horses. Group I was treated with an oral gel formulation of moxidectin (MXD) at the manufacturers recommended therapeutic dose of 0.4 mg/kg bw. Group II was treated with an oral paste formulation of ivermectin (IVM) at the manufacturers recommended dose of 0.2 mg/kg b.w. Blood samples were collected by jugular puncture at different times between 0.5 h and 75 days post-treatment. After plasma extraction and derivatization, samples were analysed by HPLC with fluorescence detection. Computerized kinetic analysis was carried out. The parent molecules were detected in plasma between 30 min and either 30 (IVM) or 75 (MXD) days post-treatment. Both drugs showed similar patterns of absorption and no significant difference was found for the time corresponding to peak plasma concentrations or for absorption half-life. Peak plasma concentrations (Cmax) of 70.3+/-10.7 ng/mL (mean +/- SD) were obtained for MXD and 44.0+/-23.1 ng/mL for IVM. Moreover, the values for area under concentration-time curve (AUC) were 363.6+/-66.0 ng x d/mL for the MXD treated group, and 132.7+/-47.3 ng x d/mL for the IVM treated group. The mean plasma residence times (MRT) were 18.4+/-4.4 and 4.8+/-0.6 days for MXD and IVM treated groups, respectively. The results showed a more prolonged residence of MXD in horses as demonstrated by a four-fold longer MRT than for IVM. The longer residence and the higher concentrations found for MXD in comparison to IVM could possibly explain a more prolonged anthelmintic effect. It is concluded that in horses the commercial preparation of MXD presents a pharmacokinetic profile which differs significantly from that found for a commercial preparation of IVM. To some extent these results likely reflect differences in formulation and doses.  相似文献   

11.
The vehicle in which endectocide compounds are formulated plays a relevant role in their absorption kinetics and resultant systemic availability. The pharmaceutical bioequivalence and comparative plasma disposition kinetics of ivermectin (IVM), following the subcutaneous administration of two injectable formulations to pigs and cattle were investigated using parallel experimental designs. Sixteen parasite-free male Duroc Jersey-Yorkshire crossbred pigs (90-110 kg) (Expt 1) and 16 parasite-free male Holstein calves (100-120 kg) (Expt 2) were divided into two groups and treated subcutaneously at either 300 (pigs) or 200 (calves) microg/kg with two different propylene glycol/glycerol formal (60: 40) based IVM formulations; in both experiments pigs or calves in Group A received the test (IVM-TEST) formulation and those in Group B were treated with the reference formulation (IVM-CONTROL). Heparinized blood samples were taken from 0 h up to either 20 (pigs) or 30 (calves) days post-treatment and plasma was extracted, derivatized and analysed by high performance liquid chromatography (HPLC) using fluorescence detection. Early detection of IVM (12 h) with a peak plasma concentration (C(max)) between 33 and 39 ng/mL was observed in pigs. The drug was detected in plasma up to 20 days post-administration of either formulation, resulting in elimination half-lives between 3.47 and 3.80 days. There were no differences between the IVM-TEST and IVM-CONTROL formulations in the kinetic parameters (except t(max)) obtained in pigs. IVM was detected in plasma between 12 h and 30 days post-administration of both formulations under investigation in cattle. The plasma disposition kinetics of IVM in calves was similar following treatment with both formulations. C(max) values (between 40.5 and 46.4 ng/mL) were achieved at 2 days post-administration of both formulations. None of the estimated kinetic parameters were statistically different between drug formulations. The injectable IVM formulations investigated were bioequivalent after their subcutaneous administration to both pigs and calves at recommended dose rates.  相似文献   

12.
Plasma concentration time curves following intravenous (i.v.) administration of 1.5 mg/kg of ranitidine, 0.2 mg/kg, 0.4 mg/kg and 0.8 mg/kg of omeprazole, respectively, were analysed in six llamas. Plasma profiles after i.v. administration of both drugs showed plasma concentrations declining in a biexponential manner with a rapid distribution phase. Pharmacokinetics parameters after ranitidine administration to six llamas showed a mean elimination half-life of 1.53 +/- 0.26 h. The mean volume of distribution (Vdss) in llamas was 1.77 +/- 0.31 L/kg, and mean body clearance in llamas was 0.778 +/- 0.109 L/kg/h. Ranitidine produced only a small transitory (<1 h) decline in acid production when administered i.v. at a dose of 1.5 mg/kg. Omeprazole showed dose-dependent nonlinear pharmacokinetics. The mean half-life of 0.2 mg/kg i.v. omeprazole was shorter than that of 0.4 and 0.8 mg/kg i.v. omeprazole, i.e. 0.61, 0.72 and 1.07 h, respectively. The area under the curve (AUC) and mean residence time (MRT) increased with increasing dose, while clearance decreased as dose increased. The decline in acid production following 0.2 mg/kg i.v. omeprazole was highly variable and did not produce a clinically useful suppression of third compartment acid production. In contrast, both 0.4 mg/kg and 0.8 mg/kg omeprazole i.v. administration significantly reduced third compartment acid production. The reduction in acid production following 0.8 mg/kg omeprazole was not significantly greater than the reduction observed following 0.4 mg/kg dosage. Misoprostol (10 microg/kg) was administered i.v. in an absolute alcohol solution. Two animals collapsed following drug administration. While the side-effects could have been produced by either misoprostol or the alcohol vehicle, the clinical changes were more consistent with an adverse drug reaction. Unfortunately, the limitation of UV detection did not provide the sensitivity needed to quantify the amount of misoprostol in llama plasma, and the pharmacokinetics could not be evaluated.  相似文献   

13.
A series of in vivo, ex vivo and in vitro studies were conducted to determine the pharmacokinetic and pharmacodynamic properties of cefovecin, a new injectable cephalosporin, in dogs. Absolute bioavailability was determined in a two-phase cross-over study in dogs receiving 8 mg/kg bodyweight (b.w.) of cefovecin by either subcutaneous (s.c.) or intravenous (i.v.) route. After s.c. administration, cefovecin was fully bioavailable (100%), the mean maximum plasma concentration (Cmax) was 121 microg/mL and the mean apparent elimination half-life (t1/2) was 133 h. Clearance was measured to be 0.76 mL/h/kg after i.v. dosing. The concentration of cefovecin in urine measured 14 days after s.c. administration was 2.9 microg/mL. Plasma protein binding was determined by equilibrium dialysis; over concentrations ranging from 10 to 100 microg/mL (i.e. up to the approximate Cmax following an 8 mg/kg dose), protein binding of 98.7% to 96.0% was observed, however, binding was lower at higher concentrations. Total and free concentrations of cefovecin were determined in plasma, transudate and exudate collected from dogs previously implanted subcutaneously with tissue cages. Mean peak concentrations of free cefovecin were almost three times higher in transudate than in plasma and remained above 0.25 microg/mL for 19 days. The ex vivo antibacterial killing activity (vs. Staphylococcus intermedius, MIC 0.25 microg/mL) was measured in serum, transudate and exudate collected from dogs which had received 8 mg/kg b.w. of cefovecin subcutaneously. Transudate exhibited higher antimicrobial killing activity than serum. Activity in serum and exudate exhibited a mean reduction in bacterial counts of S. intermedius of at least three log units up to 72 h postadministration. Bactericidal activity (>3 log10 reduction of bacterial counts) was observed in transudate up to 12 days postadministration. The slow elimination and long lasting ex vivo antibacterial killing activity following administration of cefovecin are desirable pharmacokinetic and pharmacodynamic attributes for an antimicrobial drug with 14-day dosing intervals.  相似文献   

14.
Mixtures of drugs from different chemical families have been proposed as a valid strategy to delay the development of anthelmintic resistance. The current work summarizes the outcome of the evaluation of the plasma disposition kinetics of albendazole (ABZ) and ivermectin (IVM) administered either alone or co-administered to lambs infected with gastrointestinal (GI) nematodes resistant to both anthelmintic molecules. Thirty six (36) Corriedale lambs naturally infected with multiple resistant GI nematodes were allocated into six treatment groups: (a) ABZ intravenous (ABZ(IV)); (b) IVM(IV); (c) ABZ(IV) + IVM(IV); (d) ABZ intraruminal (IR); (e) IVM subcutaneous (SC) and (f) ABZ(IR) + IVM(SC). Plasma samples were collected over 15 days post-treatment and analysed by HPLC. The estimated pharmacokinetic (PK) parameters were statistically compared using parametric and non-parametric statistical tests. The presence of IVM did not affect the plasma disposition kinetics of ABZ and its metabolites after the i.v. administration. However, the ABZ sulphoxide (ABZSO) area under the concentration vs. time curve (AUC) was significantly lower (P < 0.01) after the intraruminal (i.r.) administration of ABZ alone compared to that obtained for the combined treatment with IVM [subcutaneous (s.c.) injection]. The IVM plasma AUC obtained after its i.v. co-administration with ABZ was 88% higher (P < 0.05) compared to the treatment with IVM alone. Any marked difference on IVM PK parameters was observed between the treatments ABZ + IVM and IVM alone injected subcutaneously. The data obtained here indicate that the co-administration of ABZ and IVM does not induce an adverse kinetic interaction. This type of pharmacology-based evaluation of drug interactions is becoming highly relevant as drug combinations are now widely used as an alternative to control resistant helminth parasites in livestock.  相似文献   

15.
The pharmacokinetics of the novel cephalosporin cefovecin were investigated in a series of in vivo, ex vivo and in vitro studies following administration to adult cats at 8 mg/kg bodyweight. Bioavailability and pharmacokinetic parameters were determined in a cross-over study after intravenous (i.v.) and subcutaneous (s.c.) injections. [14C]cefovecin was used to evaluate excretion for 21 days after s.c. administration. Protein binding was determined in vitro in feline plasma and ex vivo in transudate from cats surgically implanted with tissue chambers. After s.c. administration, cefovecin was characterized by rapid absorption with mean peak plasma concentrations of 141+/-12 microg/mL being achieved within 2 h of s.c. injection with full bioavailability (99%). The mean elimination half-life was 166+/-18 h. After i.v. administration, volume of distribution was 0.09+/-0.01 L/kg and mean plasma clearance was 0.35+/-0.04 mL/h/kg. Approximately 50% of the administered radiolabelled dose was eliminated over the 21-day postdose period via urinary excretion and up to approximately 25% in faeces. In vitro and ex vivo plasma protein binding ranged from 99.8% to 99.5% over the plasma concentration range 10-100 microg/mL. Ex vivo protein binding in transudate was as low as 90.7%. From 8 h postdose, concentrations of unbound (free) cefovecin in transudate were consistently higher than in plasma, with mean unbound cefovecin concentrations being maintained above 0.06 microg/mL (MIC90 of Pasteurella multocida) in transudate for at least 14 days postdose. The slow elimination and long-lasting free concentrations in extracellular fluid are desirable pharmacokinetic attributes for an antimicrobial with a 14-day dosing interval.  相似文献   

16.
Analytical determination and pharmacokinetics of robenacoxib in the dog   总被引:3,自引:3,他引:0  
An analytical method was developed and validated for the measurement of the novel analgesic and anti-inflammatory drug robenacoxib in blood and plasma of dogs and cats. To prevent nonreproducible carry-over effects, an initial solid phase extraction procedure was followed by high pressure liquid chromatography analysis for samples with concentrations in the range 500 to 20 000 ng/mL. To improve accuracy, samples of concentration 3 to 100 ng/mL were analyzed by liquid chromatography-mass spectrometry. Applying these methods, blood concentration-time profiles and pharmacokinetic variables of robenacoxib in dogs were determined in a four-phase cross-over study, which compared different routes of administration of the drug, including intravenous (i.v.) injection, oral application with and without feed, and subcutaneous (s.c.) application. After i.v. administration the mean clearance from blood was 0.81 L/kg/h, the volume of distribution was 0.77 L/kg for the elimination phase and 0.24 L/kg for steady-state, and the terminal half-life in blood was 0.63 h. Maximum blood concentrations were obtained in less than 1 h following oral or s.c. application. Absolute bioavailability was 88% after s.c. injection, 84% after oral administration to fasted dogs, but was reduced to 62% when applied orally to fed dogs. In canine and feline plasma the degree of binding of robenacoxib to plasma protein in vitro was greater than 98%. The blood:plasma concentration ratio was 0.44:1 in the dog and 0.65:1 in the cat. In conclusion analytical methods for the quantification of robenacoxib in blood and plasma in the dog and cat were developed and validated. In dogs, robenacoxib has good bioavailability after oral (84%) and subcutaneous (88%) administration.  相似文献   

17.
The purpose of this study was to determine the pharmacokinetics and absolute bioavailability of cisapride after intravenous (i.v.) and intragastric (i.g.) administration in healthy, adult horses. Five animals received single doses of 0.1 mg/kg, 0.2 mg/kg and 0.4 mg/kg cisapride by the i.g. route in an open, randomized fashion on different occasions separated by a washout period of at least 48 h. Four of these horses were also given a single i.v. dose of 0.1 mg/kg cisapride. Jugular venous blood was collected periodically up to 24 h after dosing. Plasma cisapride concentrations were measured by high-performance liquid chromatography.
  There was considerable inter individual variability in pharmacokinetic parameters. The mean (SD) values for systemic clearance ( Cl ) and steady-state volume of distribution ( V ss) were 494 (43.6) mL/h/kg and 1471 (578) mL/kg, respectively. Although the rate of cisapride absorption was quite rapid, only about half the i.g. dose was absorbed systemically. The average terminal half-life ( t ½) calculated over three i.g. doses was 2.06 h and that for i.v. administration was 2.12 h. The pharmacokinetics of cisapride from 0.1 mg/kg to 0.4 mg/kg were independent of the i.g. dose.  相似文献   

18.
Ivermectin (IVM) is an antiparasitic drug, widely used in domestic animals. In mammals, IVM act as a GABA agonist. This neurotransmitter has an important role in the regulation of sexual behavior. Thus, this study sought to investigate the effects of various medically relevant doses IVM on the sexual behavior of male rats. In particular, we also wished to examine if previous sexual experience modulated responses to IVM. In the first experiment, the sexual behavior of inexperienced male rats was analyzed after they received 0.2, 0.6, 1.0 or 2.0 mg/kg IVM, 15 min prior to behavioral testing. In the second experiment, the effects of four previous sexual experiences on IVM treated rats (1.0 or 2.0 mg/kg, 15 min prior to the 5th session) were assessed. The standard therapeutic dose (0.2 mg/kg) did not impair the sexual behavior of inexperienced male rats. At a more concentrated dose (0.6 mg/kg), which is still within the therapeutic range, the appetitive phase of sexual behavior of inexperienced male rats was impaired. Likewise, 1.0 mg/kg impaired the appetitive phase. Previous sexual experience blocked almost entirely this sexual impairment, suggesting that previous sexual experience exerts a positive effect in attenuating the sexual impairment produced by IVM treatment. Therefore, the standard therapeutic dose of IVM can be used without producing side effects on sexual behavior. Use of more concentrated therapeutic doses is not recommended during reproductive periods, unless the animals have had previous sexual experience.  相似文献   

19.
A study was undertaken in order to evaluate and compare ivermectin's (IVM) plasma disposition kinetic parameters after oral or intramuscular (IM) administration in horses. Ten clinically healthy adult horses, weighing 380-496 kg body weight (BW), were allocated to two experimental groups of five horses. Group I, was treated with an oral paste formulation of IVM at the manufacturer's recommended dose of 0.2 mg/kg BW. Group II, was treated IM with an injectable 1% formulation of IVM at a dose of 0.2 mg/kg BW. Blood samples were collected by jugular puncture at different times between 0.5 h and 75 days post-treatment. After plasma extraction and derivatization, samples were analysed by high-performance liquid chromatography with fluorescence detection. A computerized kinetic analysis was performed, and data were compared using the Wilcoxon signed rank test. The parent molecule was detected in plasma between 30 min and either 20 (oral) or 40 (IM) days post-treatment. Significant differences were found for the time corresponding to peak plasma concentrations (tmax) and for absorption half-life. Peak plasma concentrations (Cmax) of 51.3 +/- 16.1 ng/ml (mean +/- SD) were obtained after oral administration and of 31.4 +/- 6.0 ng/ml for the IM route. The values for area under concentration-time curve were 137.1 +/- 35.9 ng day/ml for the group treated orally, and 303.2 +/- 4.3 ng day/ml for the IM treated group. The mean plasma residence times were 4.2 +/- 0.4 and 8.9 +/- 0.7 days for oral and IM-treated groups, respectively. The results of this study show that the route of administration considerably affects the disposition of IVM. A significant difference in bioavailabilty and half-life of elimination of IVM was observed after IM administration compared with oral administration. A close relationship between pharmacokinetic profiles and the clinical efficacy of IVM was established.  相似文献   

20.
Ballent, M., Lifschitz, A., Virkel, G., Mate, L., & Lanusse, C. Pretreatment with the inducers rifampicin and phenobarbital alters ivermectin gastrointestinal disposition. J. vet. Pharmacol. Therap. 33 , 252–259. The goal of the study was to evaluate the effects of rifampicin (RFP) and phenobarbital (PBT) on the plasma and gastrointestinal disposition kinetics of ivermectin (IVM) subcutaneously administered to Wistar rats. Fifty seven rats were used. Animals in Group I were the noninduced (control) group. Those in Groups II and III received a treatment with RFP (160 mg/day) and PBT (35 mg/day), respectively, both given orally during eight consecutive days as induction regimen. The IVM pharmacokinetic study was started 24 h after the RFP and PBT last administration. Animals received IVM (200 μg/kg) by subcutaneous injection. Rats were sacrificed between 6 h and 3 days after IVM administration. Blood and samples of liver tissue, intestinal wall and luminal content of jejunum were collected from each animal. IVM concentrations were measured by high performance liquid chromatography. IVM disposition kinetics in plasma and tissues was significantly modified by the PBT treatment, but not by RFP. Despite the enhanced CYP3A activity observed after the pretreatment with RPF and PBT, there were no marked changes on the percentages of IVM metabolites recovered from the bloodstream in induced and noninduced animals. An enhanced P‐glycoprotein‐mediated intestinal transport activity in pretreated animals (particularly in PBT pretreated rats) may explain the drastic changes observed on IVM disposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号