首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 921 毫秒
1.
晋西黄土区退耕还林20年后典型林地的持水能力   总被引:4,自引:1,他引:4  
为探究晋西黄土区退耕20年后典型林地间持水能力的差异,选取山西省吉县蔡家川流域退耕20年的次生林和油松人工林、刺槐人工林、油松×刺槐人工混交林4种典型林分为研究对象,同时以耕地作为对照,通过外业调查和室内测定,比较分析了该地区退耕林分间林地(枯落物层和土壤层)的最大持水量和有效持水量。结果表明:1)次生林枯落物层的最大持水量和有效持水量为201.20和154.32 t/hm2,分别是人工林的1.35~2.14倍和1.33~2.06倍,人工林之间表现为油松×刺槐人工混交林刺槐人工林油松人工林;2)退耕林地土壤层的最大和有效持水量分别介于5 102~5 563 t/hm2和1 007~1 251 t/hm2之间,均显著高于耕地的4 695和812 t/hm2;典型退耕林地间土壤有效持水量表现为次生林油松×刺槐人工混交林油松人工林刺槐人工林,最大持水量为次生林油松×刺槐人工混交林刺槐人工林油松人工林;3)与退耕引起土壤非毛管孔隙度增加相一致,林地的最大持水量和有效持水量较耕地分别增加了10.7%~22.8%和32.9%~73.1%,表明退耕对林地持水能力的影响在有效持水量方面更突出;4)退耕林分间林地持水能力表现为次生林油松×刺槐人工混交林刺槐人工林油松人工林。林地最大持水量和有效持水量显著高于耕地,这主要源于土壤性质改善引起的土壤层持水能力增强,同时枯落物层的持水功能也发挥了一定作用。总之,退耕20年后林地持水能力显著增强,不同林分间次生林持水能力较好,表明次生林宜作为该地区退耕后植被恢复的主要参考。   相似文献   

2.
江西大岗山毛竹林碳贮量及其分配特征   总被引:4,自引:0,他引:4  
采用收获法研究了江西大岗山毛竹林生态系统的碳贮量及其分布特征。结果表明:毛竹各器官碳密度波动在0.463 0~0.491 7 g/g,其大小顺序为竹枝竹秆蔸根竹蔸竹叶。随着毛竹年龄的增长,碳密度无明显的变化规律。在毛竹林植被层中,碳密度依次为:竹枝竹秆竹鞭蔸根鞭根竹蔸竹叶林下植被枯落物。毛竹林生态系统土壤层碳密度以0~20 cm层最高,且各层次之间碳密度差异极显著。毛竹林生态系统碳贮量为243.22 t/hm2,其中土壤层碳贮量占84.03%,植被层占15.97%。毛竹林生态系统年固碳量为12.15 t/(hm2·a)。其中植被层年固碳量为11.36 t/(hm2·a),土壤层年固碳量为0.79 t/(hm2·a)。   相似文献   

3.
锐齿槲栎(Quercus aliena Bl.var.acuteserrata Maxim.ex Wenz.)(RCHL)和栓皮栎(Quercus variabilis Bl.)(SPL)是鄂西地区天然栎类林主要建群种,比较不同林龄2种林分碳密度分布特征,对于评估栎类林森林碳汇功能具有重要意义。基于野外调查,采用联合国政府间气候变化专门委员会(IPCC)推荐的森林碳储量估算方法,研究了锐齿槲栎林和栓皮栎林乔木层、灌木层、枯落物层和土壤层的碳密度特征。结果表明,鄂西地区锐齿槲栎林和栓皮栎林碳密度为183.68、150.61 t·hm-2,且两者间碳密度分配格局存在明显差异,2种林分乔木层、灌木层、枯落物层和土壤层碳密度占总碳密度的百分比分别为53.17%、1.34%、0.64%、44.85%和35.27%、0.76%、1.50%、62.47%。锐齿槲栎林生态系统碳密度高于栓皮栎林,前者以乔木层的比例最大,后者以土壤层为主;锐齿槲栎林活体植被层比栓皮栎林具有更大的固碳能力,而栓皮栎林能产生更多的枯落物,随着林分的发育,土壤层碳密度在生态系统碳密度中所占比例逐渐减小。影响乔木层碳密度差异的因素主要为海拔和林分密度,影响土壤层碳密度的主要因素是纬度;鄂西地区栎类林以幼龄林居多,具有较大的碳汇潜力。  相似文献   

4.
不同林龄刺槐人工林碳储量及分配规律   总被引:2,自引:0,他引:2  
为研究林龄对刺槐林生态系统碳储量的影响,在样地调查与实测生物量的基础上,对河南省洛宁县灌木林人工改造的8、15和22年生刺槐人工林进行了研究,测定了刺槐林及同区域灌木林不同层次的的碳含量(乔木层、灌草层、枯落物层和土壤层(0~50 cm)),结合生物量及土壤数据分析其生态系统的碳储量和层次分布特征。结果表明,刺槐各器官碳含量在42.60%~50.92%之间,大小顺序为:树干树皮树枝根桩树叶粗根小根大根中根细根;各林分的灌草层、枯落物层碳含量无显著差异;土壤层碳含量均表现为随土壤深度增加而降低,而随着种植年限的增加而增加;灌木林及8、15和22年生刺槐人工林生态系统碳储量分别为78.96、99.78、110.85和132.75 t·hm-2,对比灌木林,8、15和22年生刺槐林碳储量年均增长量分别为2.60、2.13和2.44 t·hm-2·a-1;乔木层及土壤层是刺槐人工林生态系统碳储量的主要来源,两者占生态系统碳储量85.14%~96.63%。随种植年限增加刺槐林土壤层碳储量所占比重下降而乔木层碳储量比重逐渐上升,灌草层、枯落物层碳储量无明显变化规律。  相似文献   

5.
【目的】通过对帽儿山不同红松人工林凋落物的分析测定,研究不同红松人工林凋落物含量、组成以及凋落物碳密度的动态规律和特点,为其区域尺度上森林碳储量的估测和碳汇林业的开展提供科学和理论依据。【方法】运用凋落物筐收集法对帽儿山地区红松人工纯林、白桦—红松人工混交林和蒙古栎—红松人工混交林的凋落物进行研究。【结果】不同林型凋落物组成不同,凋落物含量和凋落物碳密度随着林龄的增长也逐渐增加,3种林型42年林龄凋落物含量和碳密度均明显大于20年;不同林型的人工林凋落物碳密度差异显著,20年人工林凋落物碳密度表现为:白桦—红松林[0.751 t/(hm2·a)]蒙古栎—红松林[0.721 t/(hm2·a)]红松纯林[0.688 t/(hm2·a)](P0.05);42年生人工林凋落物碳密度依次为:蒙古栎—红松林[2.995 t/(hm2·a)]白桦—红松林[2.779 t/(hm2·a)]红松纯林[2.007 t/(hm2·a)](P0.05)。【结论】不同林型的红松人工林凋落物碳密度差异显著,混交林明显大于纯林;林分凋落物碳密度随着林龄的增长而增加。  相似文献   

6.
通过调查11~62a不同龄级青海云杉的主要生长指标,对其植被碳密度和碳储量进行估算,并分析其与胸径、树高和林龄等的相关关系,以评估青海省大通县青海云杉林的碳汇功能。结果表明:青海云杉林碳密度为22.06~166.56t.hm-2,平均65.68t.hm-2,其中活体碳密度占85.4%,枯落物碳密度占14.6%。植被活体碳密度与胸径和树高呈显著正相关,随林龄的增大先增大后减小,在林龄49a时达到最大,为151.20t.hm-2。枯落物碳密度与活体碳密度变化规律基本一致,而枯死率则相反,林龄49a的云杉林枯落物碳密度最大,为15.36t.hm-2,枯死率最小,为10%。  相似文献   

7.
[目的]进行琼中地区3种森林类型(桉树人工林、橡胶林、天然次生林)林下枯落物现存量及持水量特征研究。[方法]以研究区内3种主要森林类型林下枯落物作为调查研究对象,进行林下枯落物采集及现存量计算和枯落物持水量及吸水速率的测定。[结果]结果表明,林下枯落物现存量大小为天然次生林(7.70t/hm^2)〉橡胶林(3.25t/hm^2)〉桉树人工林(2.39t/hm^2)。未分解层最大持水率为桉树人工林(226.8%)〉天然次生林(220.6%)〉橡胶林(183.5%);半分解层最大持水率顺序为桉树人工林(221.4%),橡胶林(160.8%)和天然次生林(144.8%)。[结论]天然次生林枯落物层与人工林相比具有更为重要的水文生态意义。  相似文献   

8.
该研究通过对海南西部不同林龄橡胶人工林土壤剖面进行有机碳含量实测,估算土壤有机碳储量,结果表明4种不同林龄橡胶人工林生态系统土壤有机碳含量为6.20~14.36g/kg;橡胶人工林土壤有机碳碳含量随土壤层的增深而逐渐减少,除33a胶林0~60cm各层土壤有机碳含量差异显著外,其他同一林龄橡胶人工林不同土壤层间差异不显著,不同林龄橡胶人工林在同一土壤层间有机碳含量差异显著,土壤有机碳集中于0~30cm土壤层;5、10、19和33a橡胶人工林生态系统土壤有机碳储量分别为76.85、74.48、81.74和85.31t/hm2。气候条件、土壤质地、凋落物量累积与分解、林龄大小和胶林经营管理是影响橡胶人工林土壤有机碳蓄积的主导因子。  相似文献   

9.
基于相容性生物量模型的樟子松林碳密度与碳储量研究   总被引:3,自引:3,他引:3  
基于不同林龄樟子松人工林生物量调查数据,建立了樟子松林生物量相容性模型,探讨了不同林龄樟子松人工林中乔木层、林下植被层、死地被物层碳密度和碳储量的变化规律。结果表明:樟子松人工林各器官碳密度值的排序为:树叶树枝树干树根;各器官碳密度均随着林龄的增大而增加,27、30、32、36、40和44年生樟子松各器官的平均碳密度分别为449.5、460.2、470.8、485.1、489.2和513.6 g/kg,林下植被与死地被物的碳密度随林龄的变化规律不明显。27~44年期间樟子松人工林群落碳储量都随林龄的增大而增加,从27年生的37.14 t/hm2增加到44年生的168.46 t/hm2,其顺序为:乔木层死地被物层林下植被层,分别占群落总碳储量的90.97%、1.13%和7.90%,乔木层碳储量占主导地位。不同林龄樟子松乔木层、林下植被层和死地被物层年固碳量分别为2.043、0.025 和0.182 t/hm2。研究认为,樟子松人工林群落碳密度及碳储量随林龄的增加变化显著,碳汇作用明显。   相似文献   

10.
该研究通过对海南西部不同林龄橡胶人工林土壤剖面进行有机碳含量实测,估算土壤有机碳储量,结果表明4种不同林龄橡胶人工林生态系统土壤有机碳含量为6.20~14.36 g/kg;橡胶人工林土壤有机碳碳含量随土壤层的增深而逐渐减少,除33 a胶林0~60cm各层土壤有机碳含量差异显著外,其他同一林龄橡胶人工林不同土壤层间差异不显著,不同林龄橡胶人工林在同一土壤层间有机碳含量差异显著,土壤有机碳集中于0~30 cm土壤层;5、10、19和33 a橡胶人工林生态系统土壤有机碳储量分别为76.85、74.48、81.74和85.31 t/hm2。气候条件、土壤质地、凋落物量累积与分解、林龄大小和胶林经营管理是影响橡胶人工林土壤有机碳蓄积的主导因子。  相似文献   

11.
木兰林管局白桦次生林生物量与碳储量研究   总被引:3,自引:0,他引:3  
以木兰林管局16~54年生白桦天然次生林为研究材料,通过对12块标准地的生物量与碳密度进行研究,建立了白桦次生林幂函数形式的生物量转换模型,并利用模型进行计算。结果表明:白桦次生林林木层平均碳密度为37.3263t/hm2,土壤层为144.3060t/hm2,地被层为5.4435t/hm2,林分平均碳密度为187.0760t/hm2;木兰林管局白桦次生林生物现存总量为137.58687万t,碳储量为296.18239万t。  相似文献   

12.
蒋林  林宁  莫德祥  卓宇 《安徽农业科学》2012,(18):9728-9730,9861
[目的]对南亚热带低山区柳杉人工林碳汇进行研究。[方法]研究广西国营六万林场低山区的31年生柳杉人工林生态系统碳素含量、碳储量及其空间分配特征。[结果](1)柳杉人工林不同器官平均碳素含量变化在498.5~530.3 g/kg,其含量排列为:叶子枯枝树干根蔸枝条细根干皮中根粗根;碳素含量随土壤深度的增加而逐渐减少。(2)低山区柳杉人工林的生态系统碳储量为393.651 t/hm2,其中植被层碳储量占生态系统碳储量的29.22%,而0~100 cm土壤层占70.78%。31年生柳杉人工林年净固碳量估算为3.709 t/(hm2.a),其中乔木层的年净固碳量为3.537 t/(hm2.a)。(3)0~20 cm土壤表层碳储量为132.418 t/hm2,比植被层的碳储量还高。[结论]加强低山区的植被保护,减少表层土壤的水土流失,可有效保持南亚热带低山区土壤对碳的长期吸存和维持。  相似文献   

13.
选取贵州黔东南地区3 种典型林分为研究对象,通过外业调查和室内测定,研究常绿阔叶次生林、马尾松和 柏木人工林的碳储量差异及在乔木层、林下层和土壤层的分布规律。结果表明:1)常绿阔叶次生林、马尾松和柏木 人工林乔木层碳储量分别为42.31、30.82 和8.34 Mg/ hm2 ,林下层碳储量表现为常绿阔叶次生林显著大于柏木人 工林和马尾松人工林,常绿阔叶次生林土壤层有机碳密度为112.60 Mg/ hm2 ,分别是马尾松和柏木人工林的1.8 和 4.8 倍。2)林分碳储量分布均表现为土壤层(0 ~30 cm) 乔木层 林下层,土壤碳储量占林分总碳储量的66% 以 上,乔木层碳储量占林分碳储量的26%以上。3)较少受到干扰的植被常绿阔叶次生林碳储量为155.87 Mg/ hm2 , 显著高于马尾松和柏木人工林,表明研究区植被恢复有较高的固碳潜力。研究区植被恢复应以马尾松人工林为 主,适当辅以乡土常绿阔叶树种,将有利于当地森林碳汇效益的增加。   相似文献   

14.
从林分垂直结构的角度入手,对黑龙江省东部山区的6种天然次生乔木林的乔木层郁闭度、蓄积量、灌木层和草本层的生物量、枯落物层和土壤层的持水能力进行调查、测定和分析。结果表明:郁闭度适当时,林内植被生长状况越好,其林分持水能力就越大,枯落物最大持水量变化幅度在46.59~86.28t/hm2,有效持水量在24.87~55.29t/hm2;土壤层的最大持水量变化幅度为3108.1~4061.8t/hm2,有效持水量变化幅度为2893.7~3736.2t/hm2。灌木层和草本层的生物量越大,持水能力大的种类越多,对枯落物的储量的增加作用就大,使枯落物的持水能力也有所增加。不同林分结构不同郁闭度影响了林下植被的种类及数量,从而影响林下植被层的持水能力。  相似文献   

15.
不同管理模式对毛竹林碳贮量的影响   总被引:5,自引:0,他引:5  
该研究旨在比较不同管理模式对毛竹林碳贮量的影响和1年生毛竹碳积累的动态变化.结果表明,1年生毛竹碳积累量在10月份前随时间推移呈直线增加,此后碳积累量的增加趋缓;集约经营和粗放经营毛竹林中1年生毛竹碳积累量在6个月内分别为10.11和5.61 t/hm2,且碳积累主要集中在竹秆,占总碳贮量的71.6%~78.0%;集约经营和粗放经营毛竹林下凋落物的碳贮量分别为1.173和 2.156 t/(hm2·a);集约经营毛竹林年固碳量为12.750 t/(hm2·a),是粗放经营毛竹林的1.56倍;与杉木人工林、热带山地雨林和马尾松林相比,毛竹林具有更大的固定CO2的能力.因此,毛竹是森林植被中固碳效果最好的林木之一.   相似文献   

16.
通过在湖北全省内的12种森林类型中设置212块样地,采用标准木全株收获法测定林下灌木层生物量和碳密度,评估不同森林类型和不同地区间林下灌木层生物量和碳密度现状。结果表明,湖北省不同森林类型灌木层碳密度介于0.44~8.35 t·hm-2之间,平均碳密度为2.80 t·hm-2,最大的为天然阔叶中龄林,最小的为人工针阔混交林。从森林起源上比较,天然林灌木层生物量和碳密度明显高于人工林;从森林类型上比较,阔叶林>针叶林>针阔混交林;而从龄组上比较,灌木层碳密度随着林龄的增加而不断增加。不同地区间天然林灌木层碳密度除神农架林区与其他地区间均存在显著差异外,其他地区间无差异。因此灌木层生物量和碳密度只与森林起源、森林类型和林龄具有密切联系,与地区间的分布相关性不大。  相似文献   

17.
赣南马尾松天然林不同生长阶段碳密度分布特征   总被引:1,自引:2,他引:1  
目的通过对赣南马尾松天然林碳密度的分析, 为其区域尺度上森林碳储量的准确估算以及开展碳汇林业的科学经营提供参考依据。方法基于标准地调查与碳含量的测定, 采用单因素方差分析和LSD多重比较法, 分析不同林龄、层次及不同组分碳密度的分布特征。结果(1) 林分总碳密度为129.00 t/hm2, 表现为成熟林(185.41 t/hm2)>近熟林(140.54 t/hm2)>中龄林(114.21 t/hm2)>幼龄林(75.83 t/hm2); 各层碳密度为土壤层(80.02 t/hm2)>乔木层(43.81 t/hm2)>林下植被层(4.60 t/hm2)>凋落物层(0.57 t/hm2), 分别占总碳密度的62.03%、33.96%、3.57%和0.44%;每层碳密度的分配规律表现为:乔木层为树干>树枝>树根>树叶, 林下植被为草本层>灌木层, 凋落物为半分解层>未分解层, 土壤各层单位厚度的碳密度随土层深度的增加而逐渐降低。(2)随林龄的增大, 各层碳密度的变化规律不尽相同。其中, 乔木层、土壤层的碳密度均呈增加趋势, 且均以成熟林最大, 成熟林的林木各组分碳密度均显著高于其他龄组(P < 0.05), 而土壤层碳密度在不同龄组间均存在显著差异(P < 0.05);林下植被层碳密度随林龄变化表现出先减后增趋势, 但以幼龄林最大。不同龄组间的灌木层、草本层及其各组分碳密度均有显著差异(P < 0.05), 其中灌木层碳密度以近熟林最大, 草本层碳密度以成熟林最大; 凋落物层碳密度随林龄增大表现为先增后减的趋势, 近熟林未分解层碳密度显著高于其他龄组(P < 0.05), 而半分解层碳密度各龄组间差异不显著(P>0.05)。结论土壤层和乔木层是马尾松天然林整个生态系统碳密度的主体; 随着林龄的增大, 乔木层及其各组分和土壤层的碳密度均呈增加趋势, 而林下植被层、凋落物层及其各组分碳密度的变化并未表现出相同规律。   相似文献   

18.
四川长宁竹林凋落物的蓄水功能研究   总被引:9,自引:0,他引:9  
采用野外实地调查和室内实验相结合的方法,研究了长宁县不同类型竹林的凋落物及其蓄水能力.研究结果表明:①凋落物的现存量平均为(6.99±3.20)t/hm2,其中未分解层为 (2.71±1.63)t/hm2,占总量的39%,分解层平均值为(4.28±2.60)t/hm2,占总量的61%;②分解层和未分解层的自然持水量存在明显差别,而最大持水量和持水率没有明显区别;③凋落物的最大持水率为181%,最大持水量为(14.08±6.56)t/hm2,和其他森林相比,明显偏低;④人工栽植竹林凋落物的现存量和分解程度低于次生林;⑤结合前人研究成果,凋落物的现存量和最大持水量间存在极显著相关(r=0.94,n=186,p0.000 1),符合幂函数方程.综上所述,竹林凋落物的现存量和蓄水能力均较低,人工经营竹林时清除枝叶可能会影响竹林的生态效益.   相似文献   

19.
中国西南地区森林生物量及生产力研究综述   总被引:2,自引:0,他引:2  
吴鹏  丁访军  陈骏 《湖北农业科学》2012,51(8):1513-1518,1527
在参考前人大量的研究结果基础上,按不同林分类型和林分起源对中国西南地区(云南省、贵州省、四川省、重庆市)的森林生物量和净生产力进行了总结概述.结果显示,西南地区的森林生物量为162.15 t/hm2;若按不同的林分类型来划分,则阔叶林的森林生物量(178.08 t/hm2)大于针叶阔叶混交林( 164.63 t/hm2)和针叶林(145.18 t/hm2)的;若按不同的林分起源进行划分,则天然林的森林生物量(210.58 t/hm2)大于人工林(110.65 t/hm2)的.西南地区的森林净生产力为11.98 t/(hm2·a),若按不同的林分类型来划分,则阔叶林的森林净生产力12.75 t/(hm2·a)大于针叶林的12.13 t/(hm2·a)和针叶阔叶混交林的9.61 t/(hm2·a);若按不同的林分起源进行划分,则天然林的森林净生产力13.38t/(hm2·a)大于人工林的10.56 t/(hm2·a).同时对研究中发现的一些问题及以后的研究方向进行了讨论与展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号