首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steers were made hyperthyroid or hypothyroid to study the effects of physiological alterations in thyroid hormone status on plasma growth hormone (GH) profiles, plasma insulin-like growth factor-I (IGF-I) concentrations, and relative abundance of IGF-I mRNA in skeletal muscle and liver. Eighteen yearling crossbred steers (360 to 420 kg) were randomly allotted to hyperthyroid (subcutaneous injection 0.6 μg/kg BW L-thyroxine for 10 d), hypothyroid (oral thiouracil; 0.25% diet plus 12.5 g capsule/d for 17 d), or control (subcutaneous injection 0.9% NaCl) treatment groups. Blood samples were taken for measurement of GH, IGF-I, thyroxine (T4) and triiodothyronine (T3) by RIA. Samples of liver and skeletal muscle were taken by biopsy for measurement of IGF-I mRNA by solution hybridization. Steers receiving thiouracil had 57 and 53% (P<.05) lower T4 and T3, respectively, than control steers (84.1 and 1.7 ng/ml). The hyperthyroid steers had 228 and 65% greater (P<.05) T4 and T3 than control steers. Neither increased nor decreased thyroid status had any significant effects on plasma GH profiles, liver IGF-I mRNA, or plasma concentration of IGF-I. There was no effect of thyroid hormone alteration on skeletal muscle IGF-I mRNA concentrations. The results of this study suggest that short-term changes in thyroid status of cattle had no major impact on the GH-IGF-I axis or skeletal muscle IGF-I mRNA.  相似文献   

2.
The aim of the experiment was to determine the acute and chronic effects of the β-agonist, cimaterol, on plasma hormone and metabolite concentrations in steers. Twelve Friesian steers (liveweight = 488 ± 3 kg) were randomly assigned to receive either 0 (control; n=6) or .09 mg cimaterol/kg body weight/day (treated; n=6). Steers were fed grass silage ad libitum. Cimaterol, dissolved in 140 ml of acidified distilled water (pH 4.2), was administered orally at 1400 hr each d. After 13 d of treatment with cimaterol or vehicle (days 1 to 13), all animals were treated with vehicle for a further 7 d (days 14 to 20). On days 1, 13 and 20, blood samples were collected at 20 min-intervals for 4 hr before and 8 hr after cimaterol or vehicle dosing. All samples were assayed for growth hormone (GH) and insulin, while samples taken at −4, −2, 0, +2, +4, +6 and +8 hr relative to dosing were assayed for thyroxine (T4), triiodothyronine (T3), cortisol, urea, glucose and non-esterified fatty acids (NEFA). Samples taken at −3 and +3 hr relative to dosing were assayed for IGF-I only. On day 1, cimaterol acutely reduced (P<.05) GH and urea concentrations (7.6 vs 2.9 ± 1.4 ng/ml; and 6.0 vs 4.9 ± 0.45 mmol/l, respectively; mean control vs mean treated ± pooled standard error of difference), and increased (P<.05) NEFA, glucose and insulin concentrations (160 vs 276 ± 22 μmol/l, 4.1 vs 6.2 ± 0.15 mmol/l and 29.9 vs 179.7 ± 13.9 μU/ml, respectively). Plasma IGF-I, T3, T4 and cortisol concentrations were not altered by treatment. On day 13, cimaterol increased (P<.05) GH and NEFA concentrations (7.7 vs 14.5 ± 1.4 ng/ml and 202 vs 310 ± 22 mEq/l, respectively) and reduced (P<.05) plasma IGF-I concentrations (1296 vs 776 ± 227 ng/ml). Seven-d withdrawal of cimaterol (day 20) returned hormone and metabolite concentrations to control values. It is concluded that : 1) cimaterol acutely increased insulin, glucose and NEFA and decreased GH and urea concentrations, 2) cimaterol chronically increased GH and NEFA and decreased IGF-I concentrations, and 3) there was no residual effect of cimaterol following a 7-d withdrawal period.  相似文献   

3.
The effects of propylthiouracil (PTU)-induced thyroid hormone imbalance on GH, TSH and IGF-I status in cattle were examined. In the first study, four crossbred steers (avg wt 350 kg) were fed a diet dressed with PTU (0, 1, 2 or 4 mg/kg/d BW) in a Latin square design with four 35-d periods. On day 29 in each period, steers were challenged with an intrajugular bolus of thyrotropin releasing hormone (TRH, 1.0 μg/kg). Blood samples were obtained to assess the change in plasma GH and TSH as affected by PTU. Plasma IGF-I was measured from blood samples obtained before and after (every 6 hr for 24 hr) intramuscular injection of bovine GH (0.1 mg/kg, day 31). Doses of 1 and 2 mg/kg PTU increased plasma T4 (P<.01). At 4 mg/kg, PTU depressed T4 concentrations to 30% of control (P<.01). Plasma T3 linearly decreased with increasing doses of PTU (P<.01). Plasma TSH increased when PTU was fed at 4 mg/kg (P<.05) while the TSH response to TRH declined with increasing PTU (P<.02). Neither basal nor TRH-stimulated plasma concentration of GH was affected by PTU; the IGF-I response to GH tended to increase at the 1 and 2 mg/kg PTU (P<.01). In a second study 24 crossbred steers were fed PTU (1.5 mg/kg) for 119 d in a 2 × 2 factorial design with implantation of the steroid growth effector, Synovex-S (200 mg progesterone + 20 mg estradiol), as the other main effect. Basal plasma GH and IGF-I were not affected by PTU treatment. Synovex increased plasma concentration (P<.01) of IGF-I without an effect on plasma GH. The data suggest that mild changes in thyroid status associated with PTU affects regulation of T3, T4 and TSH more than GH or IGF-I in steers.  相似文献   

4.
Plasma concentrations of growth hormone (GH), thyroid stimulating hormone (TSH), insulin (IN), thyroxine (T4), and triiodothyronine (T3) in addition to metabolic parameters [N balance (NB), urinary 3-methylhistidine (TMH), urinary creatinine (CR), and urinary hydroxyproline (HP)] were measured in 4-mo-old Holstein steers divided equally among groups infected with Sarcocystis (I), noninfected ad libitum fed (C), and noninfected pair fed to I (PF) (7 steers per treatment). Effects of infection on these parameters beyond those attributable to altered dietary intake were determined using orthogonal contrasts (effect of intake, C vs I + PF; effect of infection, PF vs I). NB was higher in C than I and PF (P<.05) and lower in I than PF (P<.02). Hydroxyproline and CR were influenced by intake (P<.05) and HP excretion was reduced in association with infection (P<.05). Reduced intake was associated with lowered mean basal plasma concentrations of GH, IN, T3 and T4 (P<.05). Infection further reduced (P<.001) plasma T3 concentration.

Triiodothyronine and T4 responses following an intravenous bolus of thyrotropin releasing hormone (TRH) were measured. The magnitude of the responses in I and PF were lower than those observed in C (P<.05). Plasma T3 responses were further reduced in association with infection (P<.05). Insulin responses to intravenous arginine infusion (ARG) were also low in association with reduced intake. Growth hormone responses to TRH or ARG were affected by the level of feed intake only. These data suggest that hormonal perturbations associated with the insult of infection further compromise metabolism and the direction of nutrient partitioning that would ordinarily be associated with developmental growth in young steers beyond those responses anticipated from solely the reduction of feed intake.  相似文献   


5.
Fifteen Angus bulls and 15 Angus steers 9 months of age and 275 kg of body weight were bled at 20-min intervals over a 6-hr period and serum GH and IGF-I concentrations were measured by RIA. There were no differences between bulls and steers in the mean GH concentration, pulse frequency and amplitude when analyzed by the computer program PULSAR. Mean IGF-I concentration was not different between the two sex phenotypes, nor was there a significant correlation between the integrated IGF-I and GH concentrations. Subsequently, five bulls and five steers were selected from the 30 animals, full-fed a diet for growth in individual pens for 3 months and bled at 15-min intervals over a 24-hr period. Bulls tended to show a greater weight gain and feed conversion efficiency (P<.10) than steers during the 3-month period. Serum GH concentrations had a pulsatile pattern in all animals with no apparent diurnal rhythm during the 24-hr bleeding. Although mean GH concentration was not different between the two sex phenotypes, bulls tended to have lower baseline levels (P<.10) and greater peak amplitudes than steers. Serum IGF-I concentrations fluctuated within a two-fold concentration range, with no obvious pulsatility similar to that of GH. Mean IGF-I concentrations of each of the 10 animals were correlated with mean peak GH amplitudes (r = .79), but not with mean GH. These results suggest that gonadal hormone(s) modulates the GH secretory pattern and increases IGF-I secretion which may be related to the greater growth rate of bulls compared with steers.  相似文献   

6.
The effects of nutrition on plasma concentrations of insulin-like growth factor-I (IGF-I) were characterized in steers under basal conditions and following single i.m. injection of bovine growth hormone (bGH, .1 mg/kg BW). Nutritional effects on IGF-I were studied in three trials. In all trials steers were individually fed and penned Angus or Hereford x Angus (280 kg). In the first trial, two diets (LPLE1: 8% CP and 1.96 Mcal ME/kg, 4.5 kg.hd-1.d-1; MPHE1: 11% CP, 2.67 Mcal ME/kg, 6.5 kg.hd-1.d-1) were fed (n = 5/diet). Plasma IGF-I concentrations averaged 74 (LPLE1) and 152 (MPHE1) ng/ml (P less than .02). Following bGH injection, IGF-I increased to peak concentrations between 12 and 24 h (averaging 105 and 208 ng/ml at peak for LPLE and MPLE, respectively, P less than .01). In the second trial, steers were fed diets composed of 8, 11 or 14% CP and 1.96 or 2.67 Mcal ME/kg dry matter (6.35 kg.hd-1.d-1 in a factorial arrangement for 84 d, n = 4/diet). Within the low ME diet groups, plasma IGF-I was similar in steers fed 11 and 14% CP but greater at these two CP levels than in steers fed 8% CP (P less than .05). Within the high ME diet groups, plasma IGF-I increased linearly with CP (P less than .01). In the third trial, steers were fed diets to result in a negative N status. Insulin-like growth factor-I was lower (P less than .02) during feed restriction than when steers were full-fed. The IGF-I response to bGH was diminished or absent in underfed steers (P less than .01). These data are interpreted to suggest that diet composition and intake affect plasma concentrations of IGF-I in steers. In cattle, CP may be the primary nutritional determinant of basal IGF-I, but the IGF-I response to CP may be affected by the available ME. Undernutrition can attenuate the IGF-I response to GH and uncouple the regulation of IGF-I normally ascribed to GH.  相似文献   

7.
Adenohypophyseal concentrations of LHRH receptors, pituitary content of LH and FSH, and plasma concentrations of LH were determined in thirty Hereford, Angus or Hereford-Angus heifers that were randomly assigned by breed and weight to five periods including day 3 of the estrous cycle (CY), pregnant day 120 (P120), 200 (P200), 275 (P275), or day 2 postpartum (PP). Jugular blood samples were collected at 10-min intervals for 8 hr from all cows. Within 2 hr after completion of blood sampling, animals were slaughtered and the pituitary gland frozen at −196 C. LH pulse frequency/8 hr was reduced (P<.05) during gestation (.5, .2, and 1.5 ± .5/8 hr, for P120, P200, and P275, respectively) and PP (.5 ± .5/8 hr) compared to CY (7.8 ± .5/8 hr). Frequency of LH pulses/8 hr was not different (P>.1) among P120, P200 or PP periods but was different (P<.05) between P200 and P275. There were no differences in LH pulse height (P>.1) among periods; however, pulse amplitude was greatest (P<.05) at P120 (1.3 ± .2 ng/ml) and lowest between P200 and PP (.6 to .8 ± .2 ng/ml). Baseline concentrations of plasma LH did not differ (P>.1) among P and PP periods (.3 ± .1 ng/ml), but were lower (P<.05) than in CY animals (.7 ± .1 ng/ml). Concentration of adenohypophyseal LHRH receptors was approximately two-fold greater (P<.05) at P120 (25.85 ± 2.2 fmol/mg) than at all other periods (9.5 to 14.9 ± 2.2 fmol/mg). Pituitary content of LH was greatest at P120 (1.56 ± .11 ug/mg) and lowest (P<.05) at P275 and PP (0.46 to 0.52 ± .11 ug/mg). Pituitary content of FSH was greatest (P<.05) in P (12.7 to 17.0 ± 1.4 ug/mg) and PP (18.3 ± 1.4 ug/mg) vs CY (5.0 ± 1.4 ug/mg) cows and increased from P120 to PP (P<.05). Results indicate that physiological changes occurring during gestation may have an effect on subsequent function of the adenohypophysis in beef cows.  相似文献   

8.
Feed restriction often increases serum somatotropin (ST) and decreases insulin-like growth factor-I (IGF-I) in ruminants; however, the mechanisms responsible for this change in ST and IGF-I are not well defined. We investigated the effects of feed restriction on serum ST, IGF-I, IGF binding proteins (IGFBP), insulin and nonesterified fatty acids (NEFA) in cyclic Angus and Charolais heifers (n=15) previously immunized against growth hormone releasing factor (GRFi) or human serum albumin (HSAi). Cows were fed a concentrate diet ad libitum (AL) or were restricted to 2 kg cotton seed hulls (R) for 4 d. Each heifer received each dietary treatment in a single reversal design. As anticipated, GRFi decreased ST, IGF-I and insulin (P<.05). In addition, GRFi decreased serum IGFBP-3 (P<.01), but increased IGFBP-2 (P<.01). Feed restriction resulted in an increase in serum ST in HSAi, but not in GRFi heifers. Regardless of immunization treatment, feed restriction decreased serum IGF-I and insulin, and increased NEFA (P<.01). In conclusion, the increase in serum ST levels observed during feed restriction was blocked by active immunization against GRF. However, feed restriction resulted in decreased serum IGF-I in GRFi heifers in spite of initial low levels of IGF-I (due to GRFi). Although GRFi decreased levels of IGFBP-3 and increased levels of IGFBP-2, feed restriction for 4 d did not alter serum IGFBP.  相似文献   

9.
Serum concentrations of IGF-I in postpartum beef cows   总被引:1,自引:0,他引:1  
Four experiments assessed changes in serum IGF-I under various physiologic conditions in postpartum cows. In Exp. 1, anestrous suckled cows (n = 25) were infused for 6 d with either saline or glucose at two different infusion rates. In Exp. 2, anestrous cows (n = 29) received either a saline (weaned and suckled controls) or 3 g/d phlorizin (weaned phlorizin) infusion for 3 d. Calves from the weaned groups were removed from 15 h before and throughout infusions. In Exp. 3, cycling suckled cows (n = 20) received prostaglandin F2 alpha (PGF2 alpha) when the 5-d saline or phlorizin infusion began. In Exp. 4, suckled cows (n = 20) had ad libitum access to feed or received 50% of control feed consumption from 30 to 40 d postpartum. Increasing glucose availability (Exp. 1) increased (P less than .05) serum IGF-I by 30 to 35%. IGF-I remained stable after weaning (Exp. 2) in phlorizin-infused cows (128.8 +/- 12.7 ng/ml), but increased (P less than .05) by 3 d after calf removal in weaned control cows (152.2 +/- 7.5 ng/ml). IGF-I also remained stable in phlorizin-infused cows following PGF2 alpha injection (Exp. 3), but increased in control cows by 2 d after PGF2 alpha (156.8 +/- 18.3 on d 2 vs. 133.7 +/- 9.8 ng/ml pre-injection; P less than .05) and remained elevated (P less than .05) during the periovulatory period. In cows receiving restricted feed intake (Exp. 4), IGF-I decreased by approximately 50% within 4 d of feed restriction (71.3 +/- 9.4 vs 137.4 +/- 16.6 ng/ml; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aim was to evaluate the effect of different rates of weight gain during the backgrounding on animal performance and carcass and meat characteristics of steers finished in feedlots. Thirty-six Angus steers, 12 ± 2 months of age, were backgrounded during 91 days on Aruana grass pasture (Panicum maximum cv. Aruana) managed under different stocking rates to achieve three different weight gains: HIGH ADG (average daily gain)—no feed restriction (ADG = 0.846 kg); MEDIUM ADG—moderate feed restriction (ADG = 0.456 kg); and LOW ADG—high feed restriction (ADG = 0.154 kg). To ensure the difference in ADG, we offered 0.7% live weight of concentrate feed in the HIGH treatment and a better forage supply in the MEDIUM treatment. After the backgrounding, the animals were finished in feedlot. There was no effect of the previous performance on the animals' performance in the feedlot. The LOW presented higher weight (218.9 vs. 207.9 kg) and hot (54.0% vs. 51.3%) and cold (53.5% vs. 50.5%) carcass yield than the MEDIUM, besides presenting meat with less cooking losses (15.0% vs. 18.2%), marbling (7 vs. 4.0 points), palatability (7.1 vs. 6.3 points), juiciness (7.2 vs. 6.4 points), tenderness (7.1 vs. 6.3 points), and lower shear force (5.78 vs. 8.75 kg) than HIGH. LOW ADG steers stay longer in the finishing phase but presented in general better quality carcass and meat than those with MEDIUM or HIGH during the backgrounding.  相似文献   

11.
The control of growth is a complex mechanism regulated by several metabolic hormones including growth hormone (GH) and thyroid hormones. In avian species, as well as in mammals, GH secretion is regulated by hypothalamic hypophysiotropic hormones. Since thyrotropin-releasing hormone (TRH) and growth hormone-releasing factor (GRF) are potent GH secretagogues in poultry, we were interested in determining the influence of daily intravenous administration of either peptide or both simultaneously on circulating GH and IGF-I concentrations and whether an improvement in growth rate or efficiency would be obtained.

Male broiler chicks were injected once daily for a period of 21 days with either GRF (10 μg/kg), TRH (1 μg/kg) or both GRF and TRH (10 and 1 μg/kg respectively) between four and seven weeks of age. On the last day of the experiment, following intravenous injection of TRH, GRF or a combination of GRF and TRH, plasma GH levels were significantly (P<.05) increased to a similar extent in control chicks and in those which had received daily peptide injections for the previous 21 days. Circulating GH levels between 10 and 90 min post-injection were significantly (P<.05) greater and more than additive than GH levels in chicks injected with both GRF and TRH when compared to those injected with either peptide alone. Mean plasma T3 concentrations during that same time period were significantly elevated (P<.05) above saline-injected control chick levels in birds treated with TRH or GRF and TRH respectively, regardless of whether the chicks had received peptide injections for the previous 21 days. There was no evidence of pituitary refractoriness to chronic administration of either TRH or GRF injection in terms of growth or thyroid hormone secretion.

Despite the large elevation in GH concentration each day, growth rate, feed efficiency and circulating IGF-I concentrations were not enhanced. Thus the quantity or secretory pattern of GH secretion induced by TRH or GRF administration was not sufficient to increase plasma IGF-I concentration or growth.  相似文献   


12.
Effects of daily injections of pituitary-derived bovine somatotropin (bST) for 6 wk were evaluated in 10 growing heifers and compared to 9 placebo-treated control animals. Bovine somatotropin was injected at 50 micrograms/kg BW each day. Body weight and growth, plasma concentrations of insulin-like growth factor I (IGF-I) and somatotropin (ST) were assessed. To measure plasma concentrations of IGF-I, we validated a RIA in which bovine plasma samples were extracted with acid-ethanol, a method that resulted in greater than 90% recovery of IGF-I. Average daily gain was similar during the first 4 wk of the experiment in both control and bST-treated groups; however, at the end of the experimental period (wk 4 and 6) ADG was greater (P less than .05) in bST-treated heifers (1.24 +/- .21 kg/d vs .75 +/- .25 kg/d). Plasma IGF-I from wk 2 to wk 6 were increased in bST-treated animals (452 +/- 97 ng/ml at wk 2; 683 +/- 106 ng/ml at wk 6) compared with controls (293 +/- 62 ng/ml at wk 2 (P less than .01) and 293 +/- 115 ng/ml at wk 6 (P less than .001). Moreover, ADG over the 6-wk experimental period was correlated with mean IGF-I concentrations determined over the same period (r = .55; P less than .01). As expected, mean plasma ST concentrations were increased in bST-injected animals from wk 1 to 6. Gel chromatographic profiles of bovine plasma exhibit a 150,000 molecular weight ST-dependent binding protein-IGF-I complex and a 30,000 molecular weight non-ST-dependent complex. This study validates a method for measuring IGF-I in cattle, and shows a positive relationship among IGF-I and ADG after ST treatment. No correlation, however, was found between plasma ST and growth performance.  相似文献   

13.
Sixty-eight Angus-based steers (224 +/- 7.6 kg of BW) were used to evaluate the effects of a prolonged dietary vitamin A restriction on marbling and immunocompetency. Steers were allotted randomly to 1 of 2 treatments: LOW (no supplemental vitamin A) and HIGH (diet supplemented with 2,200 IU of vitamin A/kg of DM). Diets contained 60% high-moisture corn, 20% roasted soybeans, 10% corn silage, and 10% of a protein supplement. Steers were penned and fed individually. For the first 141 d, steers were program-fed to achieve a gain of 1.1 kg/d. The last 75 d of the experiment, steers were offered feed for ad libitum intake. At slaughter, serum and liver samples were taken to determine their retinol content. To evaluate immunocompetency, 10 steers per treatment were selected randomly on d 141 and received an ovalbumen vaccine, and 21 d later, the steers were revaccinated. On d 182, blood samples were taken from the vaccinated steers to determine serum antibody titers by ELISA. Steers were slaughtered after 216 d on feed. Carcass characteristics were determined, and LM samples were taken for composition analysis. Subcutaneous fat samples were taken for fatty acid composition analysis. Performance (ADG, DMI, and G:F) was not affected by vitamin A restriction (all P > 0.10). Hot carcass weight, 12th-rib fat, and yield grade did not differ between LOW and HIGH steers (all P > 0.10). Marbling score (LOW = 574 vs. HIGH = 568, P = 0.79) and i.m. fat (LOW = 5.0 vs. HIGH = 4.7% ether-extractable fat, P = 0.57) were not increased by vitamin A restriction. Serum (LOW = 18.7 vs. HIGH = 35.7 mug/dL, P < 0.01) and liver (LOW = 6.3 vs. HIGH = 38.1 mug/g, P < 0.01) retinol levels were lower in LOW steers compared with HIGH steers at slaughter. Response to ovalbumin vaccination was not affected by vitamin A restriction (LOW = 13.1 vs. HIGH = 12.8 log(2) titers, P = 0.60). Slight changes in the fatty acid profile of s.c. fat of the steers were detected. A greater proportion of MUFA (LOW = 41.7 vs. HIGH = 39.9%, P = 0.03) and fewer SFA (LOW = 47.1 vs. 48.7, P = 0.03) were observed in vitamin A-restricted steers. This suggests that vitamin A restriction may affect the activity of desaturase enzyme (desaturase activity index, LOW = 46.9 vs. HIGH = 44.9, P = 0.01). Feeding a low vitamin A diet for 216 d to Angus-based steers did not affect performance, marbling score, or animal health and immunocompetency. Slight changes in the fatty acid profile of s.c. fat were observed, suggesting that vitamin A restriction may have affected desaturase enzyme activity.  相似文献   

14.
The influence of age, sex and castration on plasma concentrations of insulin-like growth factor-I (IGF-I) and other metabolic hormones related to growth was studied in cattle. Plasma was sampled from bulls, steers, heifers, and ovariectomized heifers at 20-min intervals for 12 hr at 5, 8, 12, and 15 mo of age. Plasma samples from each animal taken during each 12-hr period were composited for analysis of IGF-I, testosterone, total estrogens, thyroxine, triiodothyronine, insulin, and glucose. The mean plasma IGF-I concentration in all cattle increased from 61.6 to 158.6 ng/ml as the animals aged (p less than .01). Over all ages, bulls had greater concentrations of IGF-I than steers, heifers, or ovariectomized heifers (P less than .01). Bulls also had higher concentrations of testosterone (P less than .01) and total estrogens (P less than .01). Triiodothyronine concentration was greater in ovariectomized heifers than in bulls (P less than .01) or steers (P less than .05). Females had higher concentrations of thyroxine than males (P less than .01). Concentrations of triiodothyronine in the cattle were greater (P less than .01) during the winter and early spring as compared with the summer. Concentrations of insulin and glucose were not influenced by sex or castration; however, insulin increased in all cattle with age (P less than .01). The mean increase in IGF-I concentration with age within each of the four groups was associated with an increase in concentration of plasma insulin but the differences due to sex were not related to differences in insulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two experiments (Exp) were conducted to examine in vitro the release of gonadotropin releasing hormone (GnRH) from the hypothalamus after treatment with naloxone (NAL) or morphine (MOR). In Exp 1, hypothalamic-preoptic area (HYP-POA) collected from 3 market weight gilts at sacrifice and sagitally halved were perifused for 90 min prior to a 10 min pulse of morphine (MOR; 4.5 × 10−6 M) followed by NAL (3.1 × 10−5 M) during the last 5 min of MOR (MOR + NAL; N=3). The other half of the explants (n=3) were exposed to NAL for 5 min. Fragments were exposed to KCl (60 mM) at 175 min to assess residual GnRH releasability. In Exp 2, nine gilts were ovariectomized and received either oil vehicle im (V; n=3); 10 μg estradiol-17β/kg BW im 42 hr before sacrifice (E; n=3); .85 mg progesterone/kg BW im twice daily for 6 d prior to sacrifice (P4; n=3). Blood was collected to assess pituitary sensitivity to GnRH (.2 μg/kg BW) on the day prior to sacrifice. On the day of sacrifice HYP-POA explants were collected and treated as described in Exp 1 except tissue received only NAL. In Exp 1, NAL increased (P<.05) GnRH release. This response to NAL was attenuated (P<.05) by coadministration of MOR. Cumulative GnRH release after NAL was greater (P<.05) than after MOR + NAL. All tissues responded similarly to KCl with an increase (P<.05) in GnRH release. In Exp 2, pretreatment luteinizing hormone (LH) concentrations were lower (P<.05) in E gilts compared to V and P4 animals with P4 being lower (P<.05) than V gilts. LH response to GnRH was lower (P<.05) in E pigs than in V and P4 animals, while the responses was similar between V and P4 gilts. NAL increased GnRH release in all explants, whereas, KCl increased GnRH release in 6 of 9 explants. These results indicate that endogenous opioid peptides may modulate in vitro GnRH release from the hypothalamus in the gilt.  相似文献   

16.
Twelve crossbred gilts, 169 ± 3 days of age and 72.8 ± 3.4 kg body weight, were hypophysial stalk-transected (HST)1 or sham hypophysial stalk-transected (S-HST). Gilts were ovariectomized 6 days later and assigned to four treatments of 3 gilts each in a 2 × 2 factorial arrangement. One-half of the HST and S-HST gilts received 5 mg estradiolbenzoate (EB) or corn oil vehicle im at 0800 hr daily for 5 days beginning 64 ± 3 days after HST or S-HST. Blood was collected by jugular vein cannula at 0830 and 0900 hr the day after the last injection of EB or oil. Immediately after the 0900 hr sample, 200 μg thyrotropin releasing hormone (TRH) were injected (iv). Mean basal serum prolactin (PRL) concentration was similar for HST (10.3 ± 1.0 ng/ml) and S-HST (12.3 ± 1.7 ng/ml) gilts, however mean basal serum PRL concentration was greater (P<.05) for EB-treated gilts (13.7 ± 1.3 ng/ml) than for oil-treated gilts (8.8 ± .5 ng/ml). Mean serum PRL concentration of all gilts increased within 10 min and returned to approximately 20 ng/ml by 150 min after TRH. Maximum serum PRL concentrations at 10 min after TRH were greater (P<.01) for S-HST (255.9 ± 29.6 ng/ml) than HST gilts (83.4 ± 18.8 ng/ml), but were not different for EB (198.0 ± 50.6 ng/ml) and oil-treated gilts (141.4 ± 36.3 ng/ml). Area under the serum PRL response curve after TRH was greater (P<.005) for S-HST than HST gilts and for EB than oil-treated gilts (P<.05). These results do not eliminate the possible influence of estrogen on PRL secretion at the hypothalamus, but do indicate that estrogen directly stimulated the anterior pituitary gland to secrete PRL.  相似文献   

17.
The monodeiodination of thyroxine (T4) to triiodothyronine (T3) was studied in vitro using liver, kidney, and muscle obtained from two-year old Angus and Hereford steers. Tissues were homogenized in .1 M phosphate buffer-.25 M sucrose - 5 mM EDTA, pH 7.5, and centrifuged at 2000 × g for 30 min. Supernatants were incubated with T4 (1.3 μM) at 37 C and T3 generated was measured by radioimmunoassay of an ethanol extract of the incubation mixture. The T4 to T3 conversion in Angus liver homogenate was dependent upon pH, temperature, duration of incubation (5–120 min), homogenate (.025–.20 g-eq tissue/ml), and substrate concentration (.32–6.43 μM T4). The apparent Km and Vmax of the conversion were .64 μM T4 and 1.87 ng T3 generated/hr/mg protein, respectively. Mean T4 to T3 conversion in Angus liver and kidney was 1.37 and .22 ng T3/hr/mg protein. The presence of 2 mM dithiothreitol (DTT), a sulfhydryl protective agent, significantly increased T3 generation in liver and kidney (5.12 and 4.58 ng/hr/mg protein) and also revealed activity in muscle (05 ng/hr/mg protein). In liver and kidney from Hereford steers conversion activity was 2.89 and .48 in absence and 10.91 and 5.38 ng T3/hr/mg protein in presence of DTT, respectively. These results demonstrate the presence of a very active enzymatic system responsible for the peripheral 5′-monodeiodination of T4 to T3 in cattle.  相似文献   

18.
Sixteen Yorkshire pigs (49 ± 2 kg BW at 17 weeks) were immunized against somatostatin (SRIF; 4 males, 4 females) or its conjugated protein, bovine serum albumin (BSA; controls; 4 males, 4 females). Immunizations were done at 10, 12 and 14 weeks of age. Jugular vein cannulae were surgically inserted at 17 weeks of age. Five d later, half of each sex from the control and SRIF-immunized groups were stressed. The other half were subjected to the same stress 48 hr later. On both days, remaining animals were used as unstressed controls. The stress consisted of 5 min of snare restraint. Blood samples were collected from all pigs on both days at −20, −15, −10, −5, 0 (beginning of stress), 2, 6, 10, 15, 20, 30, 40, 60, 90, 120, 150, 180 and 240 min. Samples were radioimmunoassayed for cortisol, growth hormone (GH), prolactin (Prl), insulin, triiodothyronine (T3), thyroxine (T4) and insulin-like growth factor I (IGF-I). Mean antibody titers against SRIF (1:150 dilution) at 15 weeks were 0.49 ± .09% and 54.5 ± 4.9% for control and SRIF immunized pigs, respectively. Gender and immunization against SRIF had no effect on any of the variables measured (P>0.05), except for T3 levels which were greater in females than in males (P<0.05). The stress by time of sampling interaction was significant (P<0.01) for all hormones measured. Cortisol values almost tripled within 15 min of stress, reaching concentrations above 100 ng/mL. Maximal increases were seen at 2 min for T4 (14%), at 6 min for T3 (36%), at 15 min for Prl (46%) and at 10 min for insulin (141%). An increase of 129% in GH concentration was present at 20 min in stressed pigs; however, an increase of 97% was also seen at 120 min in control pigs. Concentrations of IGF-I decreased (21%) by 60 min in the stressed pigs and remained depressed for up to 150 min. Stress associated with snare restraint, therefore, induces major changes in the concentrations of a series of hormones in growing pigs. On the other hand, immunization against SRIF did not alter any of the hormonal profiles measured. Since snare restraint is widely used to handle pigs during jugular puncture, any study of hormonal secretion in this species should be carried out under carefully controlled conditions in terms of blood sampling technique.  相似文献   

19.
The purpose of the present study was to determine experimental conditions to stimulate secretion of thyroid hormones (T3 and T4) with thyrotropin-releasing hormone (TRH) injections in suckling piglets during the first weeks of postnatal life. Three consecutive experiments were conducted. Four 10–20 d old piglets were i.m. injected with 0, 20, 100, 500 μg (experiment 1) or 0, 4, 20, 100 μg TRH/kg BW (experiment 2) according to a 4 × 4 latin square design involving different litters in each experiment. Blood samples were taken −15, −1, 15, 30, 45, 60, 90, 120 180 and 300 min after TRH injection in experiment 1, and −.25, −.08, .25, .5, 1, 2, 4, 6, 8, 12, 24, 30, 36, 48, 60 and 72 hr after TRH injection in experiment 2. T3 and T4 levels were significantly (P<.01) increased as soon as 30 and 45 min after TRH injection, respectively. Maximal levels of T3 and T4 were obtained 2 and 4 hr after the injection of 100 μg TRH. T3 and T4 returned to basal levels within 6 and 8 hr post injection, respectively. Plasma pGH levels were significantly (P<.001) increased 15 min after TRH injection in piglets injected with 500 μg. In experiment 3, 100 μg TRH/kg BW were injected i.m. either daily or every other day from .0 to 23 days of age. Results showed that T4 response to TRH did not decrease after repeated injections. These results indicate that daily i.m. injections of 100 μg TRH/kg BW can be used to increase thyroid hormone levels for at least 13 d in the young suckling piglet.  相似文献   

20.
Eastern gamagrass (Tripsacum dactyloides [L.] L.) has attracted attention as a forage crop, but information on its use is lacking. This 2-yr study compared diet quality, ingestive mastication, and ADG by steers grazing eastern gamagrass (GG), flaccidgrass (Pennisetum flaccidum Griseb.), and Tifton 44 bermudagrass (Cynodon dactylon [L.] Pers.). The design was a randomized complete block with two agronomic replicates. The diet selected by steers from GG in May did not differ from the diet selected by steers from flaccidgrass (FG) for IVDMD (77.3%), NDF (44.0%), CP (19.5%), and mean and median particle sizes of the ingesta (1.8 and 1.4 mm). In July, GG diets had three percentage units less IVDMD (P less than .05), 8.4 percentage units more NDF (P less than .05), and 4.5 percentage units less CP (P = .07) than the mean of FG and bermudagrass (BG). The canopy (July) of GG had the greatest proportion of its DM as leaf (59 vs 26% for FG and 22% for BG) and the least proportion as stem (25 vs 40% for FG and 59% for BG). Mean particle size (millimeters) of masticates differed (P = .05) among forages with GG greatest (2.2), followed by FG (1.6), and BG particles were smallest (1.2). Proportion of large (greater than or equal to 2.8 mm), medium (less than 2.8 greater than or equal to .5 mm), and small (less than .5 mm) particles of the masticate DM, and their IVDMD and NDF concentration, interacted with species (P less than .05). Gamagrass masticate had the greatest proportion (28%) of large particles and BG the greatest proportion (23%) of small particles. The least IVDMD occurred for large particles of BG (62.5%) and small particles of GG (63.8%). Digesta kinetics did not differ among species. Characteristics of GG yielded steer ADG of .82 vs .67 kg for FG and .30 kg for BG (P = .05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号