首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To test a novel inhaler for administering isoflurane (ISO) anesthesia to piglets during castration and other surgical procedures of short duration. STUDY DESIGN: Prospective, randomized study. Animals Fifty-seven male piglets aged 6-10 days, body weight 1.1-3.5 kg. METHODS: An inhaler was developed which consisted of a mask, center body with open-close valve, vaporization chamber with wick and injection port, and a rebreathing bag. Liquid ISO required for induction of anesthesia and surgery was calculated, based on a desired alveolar ISO concentration of 1.82%. Dose was calculated using a square root of time model and metabolic size (B.W. 0.75). For practical use the calculated dose was expressed in relation to scale weight (kg). Isoflurane was delivered into the liquid injection port, followed by oxygen to fill the rebreathing bag and initiate vaporization. After the mask was fitted over the piglet's nose, the sliding open-close valve was opened to allow respiratory flow to move gases in and out of the inhaler and rebreathing bag. Fifty-seven male piglets received anesthesia prior to castration. Morbidity and mortality were assessed relative to unanesthetized litter mates. Induction, recovery and total anesthetic times were measured. End-tidal CO2 was measured immediately after mask removal by capnography. Costs of equipment and anesthetic agent were calculated. RESULTS: Mean induction time was rapid, 47.5 +/-8.7 seconds, generally with minimal or no struggling. Surgery usually lasted less than 30 seconds and was always completed prior to the 120 seconds allotted for induction and surgery. Anesthesia was adequate and recovery time was 122 +/- 44 seconds. Total time from start to standing was 260 +/- 51 seconds. The end-tidal CO2 was 5.2 +/- 1.1 kPa (39.4 +/- 8.4 mmHg). No morbidity or mortality was associated with either group. Inhaler construction costs were below $100, and liquid ISO cost ranged between $0.02 and $0.03 per piglet. CONCLUSION AND CLINICAL RELEVANCE: Isoflurane delivered in a novel inhaler has the potential to provide economical, safe, rapid anesthetic induction and safe, smooth recovery in piglets.  相似文献   

2.
OBJECTIVE: To determine the effects of nitrous oxide (N2O) on the speed and quality of mask induction with sevoflurane or isoflurane in dogs. ANIMALS: 7 healthy Beagles. PROCEDURE: Anesthesia was induced with sevoflurane or isoflurane delivered in 100% oxygen or in a 2:1 mixture of N2O and oxygen via a face mask. Each dog received all treatments with at least 1 week between treatments. Initial vaporizer settings were 0.8% for sevoflurane and 0.5% for isoflurane (0.4 times the minimum alveolar concentration [MAC]). Vaporizer settings were increased by 0.4 MAC at 15-second intervals until settings were 4.8% for sevoflurane and 3.0% for isoflurane (2.4 MAC). Times to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and cardiopulmonary variables were measured. RESULTS: Administration of sevoflurane resulted in a more rapid induction, compared with isoflurane. However, N2O had no effect on induction time for either agent. Heart rate, mean arterial blood pressure, cardiac output, and respiratory rate significantly increased and tidal volume significantly decreased from baseline values immediately after onset of induction in all groups. Again, concomitant administration of N2O had no effect on cardiopulmonary variables. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of N2O did not improve the rate or quality of mask induction with sevoflurane or isoflurane. The benefits provided by N2O attributable to concentrating and second gas effects appear minimal in healthy dogs when low solubility inhalation agents such as isoflurane and sevoflurane are used for mask induction.  相似文献   

3.
OBJECTIVES: To compare isoflurane (ISO) and sevoflurane (SEVO) short-term anesthesia in piglets during castration. STUDY DESIGN: Prospective, randomized study. ANIMALS: A total of 114 male piglets aged 6-10 days, body weight 1.3-5.0 kg. METHODS: Piglets were randomly selected from multiple litters and randomly assigned to being anesthetized with ISO or SEVO prior to castration. To calculate appropriate doses for induction and maintenance of anesthesia, a square root of time model was used, with calculations based on metabolic size and attainment of 1.3x minimum alveolar concentration. The equipotent target alveolar concentration of ISO was 1.82% and for SEVO 4.03%. After doses were calculated, a table listing piglet weights and agent requirements was produced. Anesthetics were delivered via liquid anesthetic injection into a previously developed rebreathing inhaler that was filled with oxygen prior to use. Piglets were anesthetized, castrated and allowed to recover prior to return to the sow. Times for induction, recovery and total time to standing were recorded, and end-tidal carbon dioxide (Pe'CO2) tensions were measured by capnography immediately after mask removal. Each response variable was analyzed in sas using the Proc Mixed procedure, with piglet weight and days of age as covariates. Castration problems and mortality were assessed relative to unanesthetized littermates. RESULTS: There were no statistically significant differences in age, weight or total anesthetic time between the anesthetics. Induction time was shorter, recovery time longer, and Pe'CO2 lower with ISO. No morbidity or mortality was associated with either group. CONCLUSION AND CLINICAL RELEVANCE: Isoflurane and SEVO, delivered in a novel inhaler, provided economical, safe, rapid anesthetic induction and maintenance. Optimal conditions were provided for castration and recoveries were brief and smooth. Statistically significant differences in times would be of minor clinical importance. The cost of anesthesia was much less with ISO than with SEVO.  相似文献   

4.
OBJECTIVE: To examine the effect of 64% nitrous oxide (N2O) on halothane (HAL), isoflurane (ISO) or sevoflurane (SEV) requirements in dogs undergoing ovariohysterectomy. STUDY DESIGN: Prospective, randomized, clinical trial. ANIMALS: Ninety, healthy dogs of (mean +/- SD) body weight 21.2 +/- 10.0 kg and age 17.8 +/- 22.8 months. MATERIALS AND METHODS: After premedication with acepromazine, hydromorphone and glycopyrrolate, anesthesia was induced with thiopental administered to effect. Dogs received one of six inhalant protocols (n = 15 group): HAL; HAL/N2O; ISO; ISO/N2O; SEV; or SEV/N2O. End-tidal CO2 was maintained at 40 +/- 2 mmHg with intermittent positive pressure ventilation (IPPV). Body temperature, heart rate, indirect systemic arterial blood pressures, inspired and end-tidal CO2, volatile agent, N2O and O2 were recorded every 5 minutes. The vaporizer setting was decreased in 0.25-0.5% decrements to elicit a palpebral reflex, and this level maintained. Statistical analysis included two-way anova for repeated measures with Bonferroni's correction factor and statistical significance assumed when p < 0.05. Percentage reduction in end-tidal volatile agent was calculated at 60 minutes after starting study. RESULTS: End-tidal HAL, ISO and SEV decreased when N2O was administered. Percentage reduction: HAL (12.4%); ISO (37.1%) and SEV (21.4%). Diastolic, mean and systolic blood pressures increased in ISO/N2O compared with ISO. Heart rate increased in ISO/N2O and SEV/N2O compared with ISO and SEV, respectively. Systolic, mean and diastolic blood pressures increased in SEV compared with HAL and ISO. Systolic, mean, diastolic blood pressures and heart rate increased in SEV/N2O and ISO/N2O compared with HAL/N2O. CONCLUSIONS: N2O reduces HAL, ISO and SEV requirements in dogs undergoing ovariohysterectomy. Cardiovascular stimulation occurred when N2O was used with ISO, less so with SEV and not with HAL  相似文献   

5.
Surgical castration is performed on most male piglets in the United States. However, castration is painful and analgesics have been considered to relieve pain. Inhalant gases with analgesic properties allow for a fast induction, have short-term and reversible effects, and are a needle-free option. Nitrous oxide (N(2)O; "laughing gas") has been widely used in human surgery and dental offices as an analgesic, sedative, and anxiolytic drug, yet N(2)O has not been thoroughly investigated for use in farm animals. We hypothesized that the analgesic effect of N(2)O could reduce the pain experienced by piglets during or immediately after castration. Twenty-four male piglets, from 12 litters, were castrated at 3 d of age. One piglet received N(2)O and a littermate received air as a control. After 150 s of exposure to the gas, castration was performed while the piglet remained exposed to the gas. Agitation scores and total vocalization length were recorded during castration. Behavioral observations were continued for 3 d postcastration by using a 5-min scan-sampling method for 4 h the first morning and for 2-h periods in the morning and afternoon of each day thereafter. Body weight gain was measured on the day before castration, at 3 d postcastration, and at weaning. Data were analyzed using a mixed model in SAS (Cary, NC). Nitrous oxide successfully induced anesthesia in all N(2)O piglets, as validated by a skin pinch test and the loss of the palpebral reflex. Total vocalization length was shorter in piglets receiving N(2)O during the induction phase (P = 0.003) but was not different during castration itself because piglets receiving N(2)O awoke and vocalized as much as control piglets (P = 0.87). Agitation scores during the whole procedure were reduced in piglets receiving N(2)O in both frequency (P = 0.005) and intensity (P = 0.026). For 2 h after castration, piglets receiving N(2)O displayed less huddling behavior than did control piglets (P = 0.01). Over the 3 d, piglets receiving N(2)O performed more tail wagging (P = 0.02) and tended to show fewer sleep spasms (P = 0.06) than did control piglets. Piglets given N(2)O tended to have a reduced growth rate compared with control piglets at 3 d postcastration and at weaning (P = 0.05 and P = 0.06, respectively). Nitrous oxide was effective in inducing anesthesia in neonatal piglets during handling. Nonetheless, its analgesic effects appeared insufficient in preventing castration-induced pain.  相似文献   

6.
An economical anaesthetic technique of short duration that can be administered to piglets in the field is desirable for humanitarian reasons, for castration, tail docking or other brief procedures. Using the principles of anaesthetic uptake and distribution, an inhaler was developed to vaporize and administer isoflurane to piglets. The inhaler design consisted of a mask, vaporization chamber and a rebreathing bag. A stopcock provided access for injection of liquid isoflurane onto a wick contained in the vaporization chamber. Inspiratory and expiratory flow of air over the wick enhanced anaesthetic vaporization. The amount of liquid isoflurane required for induction and 2–3 minutes of surgical anaesthesia was calculated using the square root of time model proposed by Lowe & Ernst (1981) for liquid injection, closed circuit anaesthesia in people. Calculations were based on an assumed MAC of 1.4% and the achievement of a target alveolar concentration of 1.3 MAC to provide a surgical plane of anaesthesia. The appropriate isoflurane concentrations in the mask, inhaler, rebreathing bag and the piglet's FRC and tissues were calculated. Original calculations were based on metabolic size (BW0.75) and then converted to weight (kg). Based on the piglet's scale weight, the total microliters of liquid isoflurane required were formulated into a table for field use. Isoflurane was injected into the inhaler stopcock followed by oxygen to fill the rebreathing bag and initiate vaporization. After the mask was placed over the piglet's nose a slide switch was activated to allow gases to move in and out of the inhaler and rebreathing bag. Fifty‐seven male piglets weighing (mean ± SD 3.0 ± 0.7 kg) and aged 7.7 ± 1.0 days were randomly selected to receive anaesthesia prior to castration. Remaining littermates served as controls for assessing morbidity or mortality. The time to induction, recovery and total anaesthetic time were measured. The Pe ′CO2 was measured at the piglet's nostril immediately after the mask was removed at the end of the surgical procedure. Data were analysed in SAS using the Proc Mixed procedure. Inductions were rapid, 47 ± 9 seconds, generally with minimal or no resistance. The duration of surgery was 1–2 minutes. Anaesthesia was adequate and recovery was rapid, 122 ± 44 seconds. Total time from start to standing was 260 ± 51 seconds. The Pe ′CO2 was 5.2 ± 1.1 kPa (39.4 ± 8.4 mm Hg). There was no morbidity or mortality associated with either group of piglets. After piglets were standing and mobile, they were returned to the sow and other littermates, where they immediately started nursing and were indistinguishable from littermates except by determination of ear notch number. This technique provides safe, rapid anaesthesia and recovery that is appropriate for use by veterinarians for brief field procedures.  相似文献   

7.
The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.  相似文献   

8.
The aim of the present study was to compare the safety of two low flow (LF) regimes [fresh gas flow (FGF) 20 ml/kg/min (group 2) and 14 ml/kg/min (group 3)] with the high flow (HF) technique (FGF 50 ml/kg/min; group 1) of isoflurane anaesthesia. Data were gathered from ninety dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs had an anaesthetic induction with 0,6 mg/kg I-methadone (maximum 25 mg) and 1 mg/kg diazepam (maximum 25 mg) i.v. Anaesthesia was maintained with isoflurane in a mixture of 50% O2 and 50% N2O as carrier gases, with controlled ventilation. The Monitoring included electrocardiogramm, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane). The consumption of isoflurane and carrier gases as well as the recovery times were evaluated for the three groups. The inspired oxygen concentrations always ranged above the minimum value of 30 Vol.-% during low flow anaesthesia. The arterial oxygen saturation ranged between 92-98%, the end tidal concentration of CO2 between 35 and 45 mmHg. Heart rate and arterial blood pressure were within normal limits. Recovery time was significantly shorter after LF than after HF anaesthesia. The highest decrease in body temperature occurred in the HF group 1 because of a significantly lower anaesthetic gas temperature. Despite this, LF anaesthesia resulted in a reduced consumption of carrier gases and volatiles. In conclusion, low flow anaesthesia with isoflurane is a safe technique and offers substantial economic advantages over high flow techniques and is moreover better tolerated by the patients.  相似文献   

9.
Objective To compare isoflurane and sevoflurane in lambs undergoing prolonged anaesthesia for spinal surgery. Study design Prospective randomised clinical study. Animals Eighteen Scottish blackface lambs 3–6 weeks of age and weighing 10–17 kg. Methods After intramuscular medetomidine, anaesthesia was induced and maintained with either isoflurane (group I) or sevoflurane (group S) delivered in oxygen. Meloxicam, morphine, a constant rate infusion of ketamine and atracurium were given intravenously (IV) during surgery. Lungs were ventilated to maintain normocapnia. with peak inspiratory pressures of 20–25 cmH2O. Ephedrine or dextran 40% was administered when mean arterial pressure (MAP) was <55 mmHg. Intrathecal morphine, and IV meloxicam and edrophonium were injected before recovery. Time to loss of palpebral reflex (TLPR) upon induction, cardiorespiratory variables, time at first swallowing and other movement, tracheal extubation, vocalisation, spontaneous head lifting (>1 minute), reunion with the ewe, and the number of MAP treatments were recorded. Statistical analysis utilised anova , Mann–Whitney, t‐test or Pearson’s correlation test as relevant. p < 0.05 was considered significant. Results End‐tidal carbon dioxide (mean ± SD) was significantly lower in group S (5.5 ± 0.6 kPa) than in group I (5.8 ± 0.5 kPa) while MAP (70 ± 11 mmHg) and diastolic arterial blood pressure (60 ± 11 mmHg) were higher in group S than in group I (65 ± 12 and 54 ± 11 mmHg, respectively). No differences were found with TLPR and MAP treatments. Time (median, range) from end of anaesthesia to ewe‐lamb reunion was briefer (p = 0.018) in group S (48, 20–63 minutes). Conclusion Isoflurane and sevoflurane are both suitable for maintaining general anaesthesia in lambs although sevoflurane, as used in this study, allows a more rapid reunion with the ewe. Clinical relevance The principal advantage of sevoflurane over isoflurane during prolonged anaesthesia in lambs is a more rapid recovery.  相似文献   

10.
Summary

A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 × MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously.

There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign‐test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater.

The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head‐lift and righting‐reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

11.
A comparison was made of the time to and quality of induction of anaesthesia when sevoflurane (n=14) or isoflurane (n=14) was delivered by mask in premedicated healthy adult cats presented for elective surgery. Times to induction and intubation were significantly shorter with sevoflurane (210 +/- 57 seconds and 236 +/- 60 seconds, respectively) than with isoflurane (264 +/- 75 seconds and 292 +/- 73 seconds). The quality of induction was similar for both agents. Two cats in each group developed opisthotonus of less than 45 seconds' duration. Both sevoflurane and isoflurane produced mask induction of anaesthesia of a similar quality in this species. Sevoflurane provided more rapid induction of anaesthesia and establishment of a controlled airway than isoflurane.  相似文献   

12.
The objective of this study was a comparison of the volatile anaesthetics isoflurane and sevoflurane in terms of their clinical effects in gerbils (Meriones unguiculatus) (n=12 each). Induction of anaesthesia was performed in a body chamber with an anaesthetic concentration of 4.0 Vol.% at an oxygen flow of 500 ml/min for isoflurane and 8.0 Vol.% at an oxygen flow of 1000 ml/min for sevoflurane, respectively. Anaesthesia was maintained via nose cone with an anaesthetic concentration of 2.8 to 3.2 Vol.% at an oxygen flow of 200 ml/min for isoflurane and 5.0 to 5.2 Vol.% at an oxygen flow of 400 ml/min for sevoflurane. Those anaesthetic concentrations ensured reflex status conform with surgical tolerance. In spite of its higher blood-gas coefficient induction time was slightly faster for isoflurane. Recovery time was significantly longer in the isoflurane group than it was in the sevoflurane group. Both inhalants caused respiratory depression. Respiratory rate was lower in sevoflurane animals compared to isoflurane. The animals were positioned on a heating pad immediately after induction, thus a decrease of the body temperature could be prevented. Both inhalants can be recommended for usage in gerbils. Sevoflurane showed no clinical benefit compared to isoflurane.  相似文献   

13.
Objective To determine the minimum alveolar concentration (MAC) of isoflurane in cattle.
Study design Prospective study.
Animals Sixteen healthy adult female Holstein-Friesian cattle weighing 612 ± 17 kg (× ± SEM) and aged 5.7 ± 0.9 years old.
Methods The unsedated cattle were restrained in right lateral recumbency using a rope harness technique. Anaesthesia was induced with isoflurane (ISO) in oxygen via a face mask connected to a large-animal, semiclosed anaesthetic circle system. Each cow was intubated with a cuffed orotracheal tube (25 mm ID). Inspired and end-tidal ISO were monitored using a calibrated infra red analyser with a methane filter. The MAC of ISO that prevented gross purposeful movement in response to a tail and dewclaw clamp was determined. The time from the start of ISO administration to intubation, the time interval between discontinuance of ISO and the time the animal regained sternal recumbency, were recorded. Time to standing and quality of recovery were also recorded.
Results The time from the start of ISO administration to tracheal intubation was 18.68 ± 2.77 minutes. The MAC of ISO in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). Time to sternal recumbency after 90 ± 16 minutes of anaesthesia from intubation was 4.60 ± 0.58 minutes and time to standing was 6.70 ± 1.02 minutes. All cattle were extubated when they regained sternal recumbency.
Conclusion The MAC of isoflurane in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). ISO provided a smooth induction to, and rapid recovery from, anaesthesia.
Clinical relevance Knowledge of the MAC of ISO in cattle will facilitate its appropriate clinical use.  相似文献   

14.
Induction and recovery from inhalation anesthesia of Dumeril's monitors (Varanus dumerili) using isoflurane, sevoflurane, and nitrous oxide (N2O) were characterized using a randomized crossover design. Mean times to induction for isoflurane in 100% oxygen (O2), sevoflurane in 100% O2, sevoflurane in 21% O2:79% nitrogen (N2; room air), and sevoflurane in 66% N2O:34% O2 were 13.00 +/- 4.55, 11.20 +/- 3.77, 10.40 +/- 2.50, and 9.40 +/- 2.80 min, respectively, at 26 degrees C (n = 10). Mask induction with sevoflurane was significantly faster than with isoflurane. There was no significant difference between the induction time for sevoflurane in O2 or in room air, but sevoflurane combined with N2O resulted in significantly faster inductions than were obtained with sevoflurane in 100% O2. All treatments resulted in a significantly higher respiratory rate than in undisturbed animals. There were no significant differences in respiratory rate among lizards receiving O2, isoflurane in 100% O2, sevoflurane in room air, and sevoflurane combined with N2O, but animals receiving sevoflurane in O2 had a lower respiratory rate than those receiving pure O2. The sequence of complete muscle relaxation during induction was consistent and not significantly different among the four treatments: front limbs lost tone first, followed by the neck and the hind limbs; then the righting reflex was lost and finally tail tone. There were no significant differences in recovery times between isoflurane and sevoflurane or between sevoflurane in 100% O2 and sevoflurane combined with N2O. Similar recovery times were observed in animals recovering in 100 and 21% O2.  相似文献   

15.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

16.
OBJECTIVE: To compare the sedative, anaesthetic-sparing and arterial blood-gas effects of two medetomidine (MED) doses used as pre-anaesthetic medication in sheep undergoing experimental orthopaedic surgery. STUDY DESIGN: Randomized, prospective, controlled experimental trial. ANIMALS: Twenty-four adult, non-pregnant, female sheep of various breeds, weighing 53.9 +/- 7.3 kg (mean +/- SD). METHODS: All animals underwent experimental tibial osteotomy. Group 0 (n = 8) received 0.9% NaCl, group L (low dose) (n = 8) received 5 microg kg(-1) MED and group H (high dose) (n = 8) received 10 microg kg(-1) MED by intramuscular (IM) injection 30 minutes before induction of anaesthesia with intravenous (IV) propofol 1% and maintenance with isoflurane delivered in oxygen. The propofol doses required for induction and endtidal isoflurane concentrations (F(E')ISO) required to maintain anaesthesia were recorded. Heart and respiratory rates and rectal temperature were determined before and 30 minutes after administration of the test substance. The degree of sedation before induction of anaesthesia was assessed using a numerical rating scale. Arterial blood pressure, heart rate, respiratory rate, FE'ISO, end-tidal CO2 (FE'CO2) and inspired O2 (FIO2) concentration were recorded every 10 minutes during anaesthesia. Arterial blood gas values were determined 10 minutes after induction of anaesthesia and every 30 minutes thereafter. Changes over time and differences between groups were examined by analysis of variance (anova) for repeated measures followed by Bonferroni-adjusted t-tests for effects over time. RESULTS: Both MED doses produced mild sedation. The dose of propofol for induction of anaesthesia decreased in a dose-dependent manner: mean (+/-SE) values for group 0 were 4.7 (+/-0.4) mg kg(-1), for group L, 3.2 (+/-0.4) mg kg(-1) and for group H, 2.3 (+/-0.3) mg kg(-1)). The mean (+/-SE) FE'ISO required to maintain anaesthesia was 30% lower in both MED groups [group L: 0.96 (+/-0.07) %; group H: 1.06 (+/-0.09) %] compared with control group values [(1.54 +/- 0.17) %]. Heart rates were constantly higher in the control group with a tendency towards lower arterial blood pressures when compared with the MED groups. Respiratory rates and PaCO2 were similar in all groups while PaO2 increased during anaesthesia with no significant difference between groups. In group H, one animal developed a transient hypoxaemia: PaO2 was 7.4 kPa (55.7 mmHg) 40 minutes after induction of anaesthesia. Arterial pH values and bicarbonate concentrations were higher in the MED groups at all time points. CONCLUSION AND CLINICAL RELEVANCE: Intramuscular MED doses of 5 and 10 microg kg(-1) reduced the propofol and isoflurane requirements for induction and maintenance of anaesthesia respectively. Cardiovascular variables and blood gas measurements remained stable over the course of anaesthesia but hypoxaemia developed in one of 16 sheep receiving MED.  相似文献   

17.
Objective To investigate the changes in serum enzymes considered as biochemical indicators of hepatobiliary function in dogs following 5 hours of anaesthesia with isoflurane (ISO) or sevoflurane (SEVO). Study design Experimental randomized crossover study, with intervals of at least 15 days between successive treatments. Animals Eight healthy adult mongrel dogs, four male, four female, weight 13.6–21.6 kg. Methods Treatments consisted of anaesthesia with ISO or SEVO at 1 or 1.5 minimum alveolar concentration (MAC) delivered in oxygen. MAC was taken as 1.39% for ISO and 2.36% for SEVO. Anaesthesia was induced by mask then, after endotracheal intubation, maintained according to the treatment protocol using a small animal circle system. Cardiopulmonary monitoring was carried out. Venous blood samples, obtained by needle puncture, were taken at 24 hours and 2, 7 and 14 days post anaesthesia. Serum concentrations of total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, (LDH), alkaline phosphatase (ALP), gamma‐glutamyltransferese and total bilirubin were measured. Changes with time and with treatment were compared by Friedman analysis, Wilcoxon Signed test and Kruskal‐Wallis test as relevant. p‐ value < 0.05 was considered significant. Results Compared to base‐line values, at 24 hours post‐anaesthesia there were significant increases in AST, ALT, ALP and LDH following one or more of the treatments, but by 2 days residual changes were not significant. At 24 hours, AST for treatment 1.5 MAC ISO was higher than 1 MAC ISO (p < 0.002), and LDH higher for 1.5 MAC SEVO than 1 MAC SEVO. Conclusion and clinical relevance Both ISO and SEVO, at concentrations used for clinical anaesthesia, produce transient moderate effects on some hepatobiliary enzyme concentrations in dogs.  相似文献   

18.
The effects of sevoflurane or isoflurane on arterial blood gas, arterial oxyhaemoglobin saturation and end-tidal CO2 tension were monitored during induction and maintenance of anaesthesia in 10 premedicated New Zealand White (NZW) rabbits.For induction, the anaesthetic agents were delivered via a face-mask. After induction was completed, an endotracheal tube was introduced for maintenance of anaesthesia for a period of 90 minutes. Changes in heart rate, respiratory rate, arterial blood gas, arterial oxyhaemoglobin saturation, blood pH and end-tidal CO2 tension were recorded. Although sevoflurane and isoflurane produce similar cardiopulmonary effects in premedicated rabbits, sevoflurane provides a smoother and faster induction because of its lower blood/gas partition coefficient. Thus sevoflurane is probably a more suitable agent than isoflurane for mask induction and maintenance. Its lower blood solubility also makes sevoflurane more satisfactory than isoflurane for maintenance of anaesthesia because it allows the anaesthetist to change the depth of anaesthesia more rapidly.  相似文献   

19.
A number of clinically important features of isoflurane anaesthesia were studied in comparison to those of halothane. Two groups of dogs were used. After light premedication, anaesthesia was induced by mask, and both groups of dogs were maintained for 30 minutes at 1.5 X MAC value of either halothane or isoflurane in a combination of oxygen and nitrous oxide (50:50). All animals were ventilating spontaneously. There was no difference in the speed of induction of the halothane and isoflurane groups. Blood pressure in both groups dropped to approximately 7.5 kPa (56 mm Hg) during maintenance anesthesia (1.5 MAC), while the heart rate was significantly higher in the isoflurane group. Individual respiratory variables were not significantly different between the two groups, however the differences between the trends of the mean values were significant (Sign-test). In general, with isoflurane, respiration rates were lower, with the tidal volume and end tidal CO2 being greater. The trends in pH and arterial pCO2 showed a slightly more severe respiratory acidosis in the isoflurane group. However, neither group showed values corresponding to any expected clinical problems. Speed of recovery (determined by times to head-lift and righting-reflex) was greater in the isoflurane group. Previously known important features of isoflurane are low biodegradability, low blood: gas partition coefficient, and decreased myocardial sensitivity to catecholamines. It is concluded from this study that isoflurane deserves a place in canine anesthesia whenever these specific pharmacologic properties are desired.  相似文献   

20.
OBJECTIVE: To evaluate cardiovascular and respiratory effects and pharmacokinetics of a 24-hour intravenous constant rate infusion (CRI) of dexmedetomidine (DMED) during and after propofol (PRO) or isoflurane (ISO) anaesthesia in dogs. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Ten healthy adult Beagles. METHODS: Instrumented dogs received a DMED-loading bolus (25 microg m(-2)) at time 0 followed by a 24-hour CRI (25 microg m(-2) hour(-1)), with PRO or ISO induction/maintenance of anaesthesia during the first 2 hours (PRO and ISO treatment groups, respectively). Cardiovascular, respiratory, blood gas, airway gas, serum chemistry variables and DMED plasma concentration data were collected at -15, 5, 15, 30, 45, 60, 90 and 120 minutes. A number of cardiorespiratory and tissue oxygenation variables were calculated from the above data. After the 2-hours of anaesthesia, heart and respiratory rates and electrocardiograms were recorded and DMED plasma concentrations were determined for up to 26 hours. RESULTS: Vasopressor effects and the decrease in heart rate (HR) and cardiac index induced by DMED were greater for PRO than ISO, but were within clinically acceptable ranges. Adequate oxygenation was maintained above the critical O(2) delivery level. The overall incidence of unfavourable arrhythmias was low and tended to vary inversely with HR. Mean DMED plasma concentration ranged from 0.23 to 0.47 ng mL(-1) for both groups during the 24-hour CRI with a mean elimination half-life of approximately 0.46 hour. CONCLUSION AND/CLINICAL RELEVANCE: DMED CRI resulted in typical alpha(2)-agonist induced haemodynamic changes with minimal respiratory effects, and appeared to be an efficacious adjunct during and after PRO or ISO anaesthesia in healthy dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号