首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Fifteen- and forty-year-old cropfields developed from a dry tropical forest were examined for soil organic C and total N and soil microbial C and N. The 15-year-old field had never been manured while the 40-year-old field had been fertilized with farmyard manure every year. The native forest soil was also examined. The results indicated that the native forest soil lost about 57% and 62% organic C and total N, respectively, in the 0–10 cm layer after 15 years of cultivation. The microbial C and N contents of the forest soil were greater than those of the cultivated soils. Application of farmyard manure increased the biomass-C and -N levels in the cultivated soil but the values were still markedly lower than in the forest soil. There was an appreciable seasonal variation in biomass C and N, the values being highest in summer and lowest in the rainy season. During an annual cycle, biomass-C contents varied from 180 to 727 g g–1 and N from 20 to 80 g g–1 dry soil, and both were linearly related. Microbial biomass C represented 1.6%–3.6% of total soil organic C and microbial biomass N represented 1.7% 1–4.4% of soil organic N.  相似文献   

2.
Summary Relationships between soil physicochemical characteristics and soil microbial C, N, and P in Indian dry tropical ecosystems are discussed. The major ecosystem studies were on forest, savanna, cropped fields, and mine spoils. The highest microbial C, N, and P levels were recorded from the mixed forest and the lowest levels in 5-year-old mine spoil. Across the sites, microbial C ranged from 226 to 643 g g-1, microbial N from 19 to 71 g g-1, and microbial P from 9 to 28 g g-1 soil. The proportion of soil organic C contained in the microbial biomass ranged from 2.2 to 5.0%. The microbial C: N ratio in these soils ranged from 7.4. to 13.1 and the microbial C: P ratio from 16.6 to 30.6. The concentrations of microbial C, N, and P were correlated with several soil properties and among themselves. The soil properties, in various linear combinations, explained 90–99% of the variability in the microbial nutrients. Grazing of the savanna had some effect on the level of microbial biomass, and as the mine spoil aged, the level of microbial C, N, and P also increased.  相似文献   

3.
The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (>doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.  相似文献   

4.
To understand the spatial and temporal dynamics of soil microbial biomass and its role in soil organic matter and nutrient flux in disturbed tropical wet-evergreen forests, we determined soil microbial biomass C, N and P at two soil depths (0–15 and 15–30 cm), along a disturbance gradient in Arunachal Pradesh, northeastern India. Disturbance resulted in considerable increase in air temperature and light intensity in the forest and decline in the soil nutrients concentration, which affected the growth of microbial populations and soil microbial biomass. There were significant correlations between bacterial and fungal populations and microbial biomass C, N and P. Soil microbial population was higher in the undisturbed (UD) forest stand than the disturbed forest stands during post-monsoon and less during rainy season due to heavy rainfall. Greater demand for nutrients by plants during rainy season limited the availability of nutrients to soil microbes and therefore, low microbial biomass C, N and P. Microbial biomass was negatively correlated with soil temperature and pH in all the forest stands. However, there were significant positive relationships among microbial biomass C, N and P. Percentage contribution of microbial C to soil organic C was higher in UD forest, whereas percentage contribution of microbial biomass N and P to total N and total P was higher in the moderately disturbed site than in the highly disturbed (HD) site. These results reveal that the nutrient retention by soil microbial biomass was greater in the selective logged stand and would help in the regeneration of the forest upon protection. On the other hand, the cultivated site (HD) that had the lowest labile fractions of soil organic matter may recover at a slower phase. Further, minimum and maximum microbial biomass C, N and P during rainy and winter seasons suggest the synchronization between nutrient demand for plant growth and nutrient retention in microbial biomass that would help in ecosystem recovery following disturbance.  相似文献   

5.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

6.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

7.
Summary The soil microbial biomass contains important labile pools of C, N, P, and S, and fluctuations in its size and activity can significantly influence crop productivity. In cropping systems where fertilizer use is reduced or eliminated and green-manure legumes are used, nutrient availability is more directly linked to C-cycle dynamics. We observed the fluctuations in microbial biomass C and P, and in microbial biomass activity over three cropping seasons in continuous maize and 2-year maize-wheat-soybean rotation agroecosystems under no-till and reduced-chemical-input management. We estimated the concentrations of microbial C and P using fumigation-incubation and fumigation-extraction techniques for the surface 20 cm of Cecil and Appling series soils (clayey, kaolinitic, thermic, Typic Kanhapludults). There were significant seasonal fluctuations in microbial C and P under all cropping systems. Generally, the magnitude of fluxes and the quantity of microbial C and P tended to be higher in reduced-chemical-input systems due to tillage and incorporation of crop, weed, and legume residues. Over 3 years, the means for microbial C were 435 under reduced-input maize; 289 under no-till maize; 374 und the reduced-input crop rotation; and 288 mg kg-1 soil under the no-till rotation. The means for microbial P were 5.2 under reduced-input maize; 3.5 under no-till maize; 5.0 under the reduced-input rotation; and 3.5 mg kg-1 soil under the no-till rotation. Estimates of microbial activity, derived from CO2–C evolution and specific respiratory activity (mg CO2–C per mg biomass C), suggest that reduced-chemical-input management may cause a larger fraction of the biomass to be relatively inactive but may also increase the activity of the remaining fraction over that in no-till. Thus in these specific systems, the turnover of C and P through the microbial biomass with a reduced chemical input to the soil may be higher than under a no-till system.  相似文献   

8.
Changes in microbial C, N, and P were investigated for 1 year in two soils with similar physicochemical properties but supporting different crops under subtropical conditions. One was cropped with palmarosa (Cymbopogon martinii L.) and the other with Japanese mint (Mentha arvensis L.). Both the season and the type of cropping had a significant influence on changes in the soil microbial biomass. In general, soil microbial biomass C, N, and P were highest in summer months and lowest in midwinter. Soil microbial biomass levels and microbial C:N and C:P ratios were higher and N:P ratios lower under palmarosa soil than under mint.  相似文献   

9.
Changes in the soil microbial biomass following applications of farmyard manure and inorganic fertilizer, alone and in combination, were studied for two annual cycles in a rice-lentil crop sequence grown under rainfed tropical dryland conditions. During the two annual cycles the microbial biomass C range (g g-1) was 146–241 (x = 204), 191–301 (245), 244–382 (305), and 294–440 (365) in control, fertilizer, manure and manure+fertilizer plots, respectively. The corresponding ranges for microbial biomass N (g g-1) were 16.5–21.0 (19.5), 20.4–38.2 (26.0), 23.0–34.6 (27.0) and 26.2–42.4 (33.3), and for microbial biomass P (g g-1) 4.4–8.2 (7.0) 6.0–11.2 (9.6), 11.2–22.0 (17.0), and 10.0–25.4 (18.3). The maximum increase in the microbial biomass, due to these inputs was observed under the manure+fertilizer treatment followed, in decreasing order, by manure alone and fertilizer alone. Within individual crop periods the levels of microbial biomass decreased sharply from the seedling to the flowering stage and then increased slightly with crop maturity. The maximum levels of microbial biomass C and P were observed during the summer fallow. The maximum accumulation of microbial biomass N occurred in the early rainy season, immediately after the soil amendments. Microbial biomass C, N, and P were positively related to each other throughout the annual cycle.  相似文献   

10.
Four treatments (control, chemical fertilizer, wheat straw, and wheat straw+fertilizer) were established on the dryland experimental farm of the Institute of Agricultural Sciences, Banaras Hindu University. Organic in C in the different treatments ranged from 0.69 to 0.93%, total N from 0.08 to 0.11%, and total P from 0.018 to 0.021. The application of straw significantly increased the soil water-holding capacity. The maximum effect on the microbial biomass was realized with the straw+fertilizer treatment, followed by straw and then by the fertilizer treatment. During the study microbial biomass C ranged from 144 to 491 g g-1 dry soil, biomass N from 14.6 to 50.1 g g-1, and biomass P from 7.2 to 17.6 g g-1 soil. Microbial biomass C, N and P represented 3.2–4.6% of total C, 2.6–3.8% of total N, and 5.8–8.2% of total P in the soil, respectively, in all cases the highest proportion occurred in the straw+fertilizer treatment and the lowest in the control. Microbial biomass C, N, and P were positively correlated with each other. Microbial biomass C and N increased by 77% in straw+fertilizer-treated plots relative to the control. The increase in microbial biomass P in the straw+fertilizer treatment over the control was 81%. The increase in the microbial biomass is expected to enhance nutrient availability in the soil, as the microbial biomass acts both as a sink and a source of plant nutrients.  相似文献   

11.
The ratios of soil carbon (C) to nitrogen (N) and C to phosphorus (P) are much higher in Chinese temperate forest soils than in other forest soils, implying that N and P might limit microbial growth and activities. The objective of this study was to assess stoichiometric responses of microbial biomass, enzyme activities, and respiration to N and P additions. We conducted a nutrient (N, P, and N + P) addition experiment in two temperate soils under Korean pine (Pinus koraiensis) plantation and natural broadleaf forest in Northeast China and measured the microbial biomass C, N, P; the activities of β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), and acid and alkaline phosphomonoesterase (AP); and the microbial respiration in the two soils. Nitrogen addition increased microbial biomass N and decreased microbial biomass C-to-N ratio and microbial respiration in the two soils. Nitrogen addition decreased NAG activity to microbial biomass N ratio, P addition decreased AP activity to microbial biomass P ratio, and N, P, and N + P additions all increased BG activity to microbial biomass C ratio. These results suggest that microbial stoichiometry is not strictly homeostatic in response to nutrient additions, especially for N addition. The responses of enzyme activities to nutrient additions support the resource allocation theory. The N addition induced a decline in microbial respiration, implying that atmospheric N deposition may reduce microbial respiration, and consequently increase soil C sequestration in the temperate region.  相似文献   

12.
Summary Three mollisols, typical of the Palouse winter wheat region of eastern Washington and northern Idaho, were analyzed for microbial biomass, total C and total N after 10 years of combined tillage and rotation treatments. Treatments included till, no-till and three different cereal-legume rotations. All crop phases in each rotation were sampled in the same year. Microbial biomass was monitored from April to October, using a respiratory-response method. Microbial biomass, total C and total N were highest under no-till surface soils (0–5 cm), with minimal differences for tillage or depth below 5 cm. Microbial biomass differences among rotations were not large, owing to the relative homogeneity of the treatments. A rotation with two legume crops had the highest total C and N. Microbial biomass was significantly higher in no-till surface soils where the current crop had been preceded by a high-residue crop. The opposite was true for the tilled plots. There was little change in microbial biomass over the seasons until October, when fresh crop residues and rains had a strong stimulatory effect. The seasonal pattern of biomass in no-till surface soils reflected the dry summer/winter rainfall climate of the region. The results of this study show that numerous factors affect soil microbial biomass and that cropping history and seasonal changes must be taken into account when microbial biomass data are compared.Scientific paper no. 7634  相似文献   

13.
Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests   总被引:3,自引:0,他引:3  
Thirty-eight soils from forest sites in central Germany dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of the overlying organic layers. Microbial biomass P was estimated by the fumigation — extraction method, measuring the increase in NaHCO3-extractable phosphate. The size of the microbial P pool varied between 17.7 and 174.3 g P g-1 soil and was on average more than seven times larger than NaHCO3-extractable phosphate. Microbial P was positively correlated with soil organic C and total P, reflecting the importance of soil organic matter as a P source. The mean microbial P concentration was 13.1% of total P, varying in most soils between 6 and 18. Microbial P and microbial C were significantly correlated with each other and had a mean ratio of 14.3. A wide (5.1–26.3) microbial C: P ratio indicates that there is no simple relatinship between these two parameters. The microbial C: P ratio showed strong and positive correlations with soil pH and cation exchange capacity.  相似文献   

14.
Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 g C m-2 and 347 g N m-2, while minimum contents were 317 and 30 g m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C>12 mg g-1, microbial:total N>28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C12 mg g-1, microbial:total N28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.  相似文献   

15.
Seasonal changes in microbial biomass and nutrient flush in forest soils   总被引:14,自引:0,他引:14  
Microbial biomass and N, P, K, and Mg flushes were estimated in spring, summer, autumn, and winter samples of different forest soils. The microbial biomass showed significant seasonal fluctuations with an average distribution of 880±270 g C g-1 soil in spring, 787±356 g C g-1 soil in winter, 589±295 g C g-1 soil in summer, and 560±318 g C g-1 soil in autumn. The average annual concentrations of C, N, P, K, and Ca in the microbial biomass were 704, 106, 82, 69 and 10 g g-1 soil, respectively. Microbial C represented between 0.5 and 2% of the organic soil C whereas the percentage of microbial N with respect to the total soil N was two-to threefold higher than that of C; the annual fluctuations in these percentages followed a similar trend to that of the microbial biomass. Microbial biomass was positively correlated with soil pH, moisture, organic C, and total N. The mean nutrient flush was 31, 15, 7, and 4 g g-1 soil for N, K, P, and Mg, respectively, and except for K, the seasonal distribution was autumn spring winter summer. The average increase in available nutrient due to the mineralization of dead microbial cells was 240% for N, and 30, 26, and 14% for P, K, and Mg, respectively. There was a positive relationship between microbial biomass and the N, P, K, and Mg flushes. All the variables studied were significantly affected by the season, the type of soil, and the interaction between type of soil and season, but soil type often explained most of the variance.  相似文献   

16.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

17.
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability.  相似文献   

18.
Carbon and nitrogen budgets of nematodes in arable soil   总被引:2,自引:0,他引:2  
Summary The amounts of C and N that pass through the nematode biomass in four cropping systems, barley without and with N fertilization, grass ley and lucerne, has been estimated. The nematodes were sampled at the field site of a Swedish integrated research project Ecology of Arable Land: The Role of Organisms in Nitrogen Cycling. The nematode biomass was lower (200 mg dry weight m–2) in the annual (barley) than in the perennial (grass and lucerne, 350 mg dry weight m–2) crops. For respiration, the nematodes used 4–71 O2m–2 year–1 corresponding to C liberation of 1.3%–2.0% of the carbon input to the soil. A higher relative contribution by bacterial-feeding nematodes to the C and N fluxes and a higher turnover rate of the nematode biomass is an indication of more rapid nutrient circulation in the annual than in the perennial cropping systems.  相似文献   

19.
Summary The chloroform fumigation-incubation method (CFIM) was used to measure the microbial biomass of 17 agricultural soils from Punjab Pakistan which represented different agricultural soil series. The biomass C was used to calculate biomass N and the changes occurring in NH4 +-N and NO3 -N content of soils were studied during the turnover of microbial biomass or added C source. Mineral N released in fumigated-incubated soils and biomass N calculated from biomass C was correlated with some N availability indexes.The soils contained 427–1240 kg C as biomass which represented 1.2%–6.9% of the total organic C in the soils studied. Calculations based on biomass C showed that the soils contained 64–186 kg N ha–1 as microbial biomass. Immobilization of NCO3 -N was observed in different soils during the turnover of microbial biomass and any net increase in mineral N content of fumigated incubated soils was attributed entirely to NH4 +-N.Biomass N calculated from biomass C showed non-significant correlation with different N availability indexes whereas mineral N accumulated in fumigated-incubated soils showed highly significant correlations with other indexes including N uptake by plants.  相似文献   

20.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号