首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 57 Ilyonectria liriodendri isolates were identified by a combination of species‐specific PCR and DNA sequencing from a collection of 174 Ilyonectria‐like isolates recovered from 101 diseased grapevine samples. These samples were representative of the national vineyard, comprising material contributed by 49 grape growers across seven grape growing areas. This species was predominant, representing 33% of the recovered isolates, and has been reported as a major pathogen of grapevines in other countries. The genetic diversity of the 57 New Zealand isolates was compared to that of isolates from Australia and South Africa using universally primed polymerase chain reaction (UP‐PCR). A total of 66 informative loci distinguished 52 genotypes, of which five contained up to four clonal isolates. Four main clades were identified in a neighbour‐joining (NJ) tree. The international isolates (Australia and South Africa) were placed in a clade that did not include New Zealand isolates. There was a high level of intra‐ and inter‐vineyard genetic variation indicating the free movement of isolates between regions. A subset of nine isolates from different branches of the NJ tree produced two vegetative compatibility groups and hyphal fusion was observed between non‐self pairings. Pathogenicity tests using isolates from different genetic groups inoculated onto either detached roots or 1‐year‐old potted vines showed variability in virulence; however, no correlations were detected.  相似文献   

2.
Unique bands were identified in single isolates of Neofusicoccum parvum and Neofusicoccum luteum using universally primed polymerase chain reaction (UP‐PCR) analysis of isolates obtained from grapevines and non‐grapevine hosts in New Zealand, Australia, South Africa and the USA. Primers were designed to amplify a 1550 bp portion of the 1573 bp marker band from N. parvum isolate B2141 and a 510 bp portion of the 524 bp marker band from N. luteum isolate G51a2. A PCR‐RFLP assay was developed to distinguish the N. parvum isolate B2141 from other N. parvum isolates, based on a polymorphism found in the marker band using the TaqI restriction endonuclease. For N. luteum isolate G51a2, the designed primers were specific at an annealing temperature of 63°C in the PCR. The sensitivity threshold of the N. parvum and N. luteum isolate‐specific markers was 50 pg and 5 pg, respectively, when used in standard PCR with purified genomic DNA. The sensitivity of the N. parvum isolate‐specific marker was increased to 0·5 pg by nested PCR. The specificity test of both isolate‐specific markers with six other Botryosphaeriaceae spp. showed that they were specific to their respective species and isolates. Both markers were able to detect the conidia of N. parvum and N. luteum marker isolates in rainwater samples collected at different distances from an inoculation point in the vineyard. The results showed that rain splash could disperse the conidia of both of these species up to 2 m from the inoculum point in a single rainfall event.  相似文献   

3.
Species‐ and population‐specific differences in fungicide resistance and aggressiveness within Botrytis makes basic data on genetic diversity important for understanding disease caused by this fungus. Genetic diversity of Botrytis was surveyed between 2008 and 2012 from grapes from five New Zealand wine‐growing regions. A total of 1226 isolates were gathered from symptomless flower buds at the start of the growing season and 1331 isolates from diseased fruit at harvest. Two species were found, B. cinerea and B. pseudocinerea. Botrytis pseudocinerea was common in both Auckland vineyards sampled, and infrequent elsewhere. However, even in Auckland, it was rarely isolated from diseased fruit. The presence of the Boty and Flipper transposons was assessed. Isolates with all four transposon states (Boty only, Flipper only, both Boty and Flipper, no transposons) were found for both species. Both vineyards in the Auckland region had high numbers of Flipper‐only isolates at flowering; both vineyards from the Waipara region had high numbers of Boty‐only isolates at flowering. Most isolates from diseased fruit at harvest contained both transposons. These observations suggest that B. pseudocinerea, and isolates with one or both of the transposons missing, may be less aggressive than B. cinerea, or than isolates with both transposons present. Two clades were resolved within B. pseudocinerea, only one of which has been reported from European vineyards. Phylogenetic diversity within B. cinerea in New Zealand was similar to that known from Europe, including isolates that appear to match Botrytis ‘Group S’. The taxonomic implications of this genetic diversity are discussed.  相似文献   

4.
Based on partial sequence analysis of the β‐tubulin gene, 19 isolates of fungi causing bull's eye rot on apple in Poland were classified into species: Neofabraea alba, N. perennans and N. kienholzii. To the authors’ knowledge, the detection of N. kienholzii is the second in Europe and the first in Poland. Species affiliation of these fungi was confirmed by a new species‐specific multiplex PCR assay developed on the basis of previously published methods. The new protocol allowed for the specific identification of bull's eye rot‐causing species, both from pure cultures and directly from the skin of diseased or apparently healthy apples. In 550 samples of diseased fruits collected from nine cold storage rooms located in three regions of Poland, in 2011 and 2012, N. alba was detected as the predominant species causing bull's eye rot, occurring on average in 94% of the tested samples. Neofabraea perennans was found in a minority of apple samples, N. kienholzii was found only in two apple samples, while N. malicorticis was not detected in any sample tested. In tests on 120 apparently healthy fruits, only N. perennans was detected in a single sample. The results of genetic diversity analyses of bull's eye rot‐causing fungi based on the β‐tubulin gene sequence and an ISSR (inter‐simple sequence repeat) PCR assay with two primers were consistent, showing the expected segregation of tested isolates with respect to their species boundaries. However, the genetic distance between N. perennans and N. malicorticis was very low, as reported previously.  相似文献   

5.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

6.
Calonectria pseudonaviculata, the causal agent of the disease of Buxus spp. known as ‘box blight’, was first detected in the mid‐1990s in the UK and New Zealand. Since then, the geographic range of box blight has rapidly expanded to at least 21 countries throughout temperate regions of the world, causing significant losses in nurseries, gardens and wild boxwood populations. This study determined the genetic diversity in a collection of 234 Calonectria isolates from diseased Buxus plants, originating from 15 countries and four continents. Two genetic clades, G1 and G2, were identified within this sample using multilocus phylogenetic analysis. The application of genealogical concordance phylogenetic species recognition criteria using four independent nuclear loci determined that the Calonectria isolates in these two clades are separate phylogenetic species. The isolates in the G1 clade were upheld as C. pseudonaviculata sensu stricto. Based on phylogenetic distinctiveness and the lack of mating, a new species is proposed, Calonectria henricotiae sp. nov., for the Calonectria isolates in the G2 clade. A PCR‐RFLP assay and real‐time PCR assays were developed to easily and reproducibly differentiate these species. To assess the practical implications of the identification of the two species, their physiology, fungicide susceptibility and pathogenicity were compared. No differences in pathogenicity were observed. However, C. henricotiae isolates exhibited greater thermotolerance and reduced sensitivity to specific triazole as well as strobilurin fungicides. The identification of a second phylogenetic species causing box blight may have a substantial impact on the epidemiology and control of this destructive disease.  相似文献   

7.
This study assessed the symptoms that developed when 114 Botryosphaeriaceae isolates from grapevine nursery plant materials were used to inoculate excised green shoots and 1‐year‐old rooted canes of Sauvignon blanc. The experiments showed that all isolates and species were able to produce lesions. Overall, the Neofusicoccum species were shown to be highly pathogenic in both tissue types while the Diplodia species were highly pathogenic on canes but not on green shoots. Isolates of the most prevalent species, N. luteum and N. parvum, showed varying lesion lengths on excised green shoots and canes. An evaluation of the factors associated with lengths of lesions showed that they were significantly affected by experimental batch which reflected inherent host and environmental factors over time. Reisolation from inoculated canes also indicated that most isolates of all species except D. seriata were able to spread internally beyond the lesions. Genetic variability analysis using UP‐PCR showed that N. luteum isolates were genetically diverse but no association was observed between the phylogenetic group and degree of pathogenicity caused by the isolates. This study demonstrated that all Botryosphaeriaceae species from grapevine nurseries were pathogenic to grapevines and that the lesion lengths varied between species, among isolates within a species and among nursery sources, and was affected by the test method.  相似文献   

8.
The ascomycete fungus Cryphonectria parasitica, causal agent of chestnut blight, is probably one of the best known invasive fungal pathogens in forests of Europe and North America. Mycovirus that reduces virulence of C. parasitica can be used as a biocontrol agent of the chestnut blight. However, anastomosis‐mediated virus transmission is limited by a vegetative (in)compatibility (vc) system involving at least six known diallelic vic genetic loci. This study looked at vegetative compatibility (vc) diversity in two populations of C. parasitica in Croatia. For that purpose, a PCR assay was validated and implemented using already known/published and newly designed primers for amplification of six known vic loci. The vc genotypes determined by PCR for 158 C. parasitica isolates investigated in this study were in complete agreement with the vc genotypes determined by pairwise co‐culturing of the same isolates, revealing the specificity and accuracy of the PCR‐based molecular vic genotyping assay. Twenty‐six unique vc genotypes were found among 158 isolates, and 19 vc types per population, which makes Croatian C. parasitica populations among the most diverse in Europe regarding the number of vc types and genetic diversity. Low values of multilocus linkage disequilibrium suggest sexual reproduction as a major contributor to high C. parasitica genetic diversity in studied populations.  相似文献   

9.
This study investigated the prevalence and identity of botryosphaeriaceous dieback pathogens in necrotic grapevines tissues in New Zealand vineyards, and other woody hosts growing nearby. The presumptive identities of the isolates by conidial and cultural morphology were confirmed with ITS sequence data as Neofusicoccum australe, N. luteum, N. parvum and Diplodia seriata. They were isolated predominantly from necrotic stems of grapevine and other hosts, but also from leaves, flowers and wood debris of grapevines. Inoculation with conidia and mycelium of multiple isolates of each species onto excised and attached green shoots and trunks of five grapevine varieties, Cabernet sauvignon, Chardonnay, Pinot noir, Riesling, and Sauvignon blanc, showed that all varieties became infected to a similar extent. All species except D. seriata were pathogenic, irrespective of the host source, with N. luteum being the most and D. mutila the least pathogenic (P < 0.05). On trunks, N. parvum caused cankers and the other pathogenic species caused die-back when the inoculated vines became winter-dormant. Conidia were produced from green shoot lesions and die-back wood, which indicates potential inoculum sources for vineyard infection.  相似文献   

10.
Botryosphaeriaceous species are significant grapevine trunk pathogens worldwide, which can be difficult to identify to species level using conventional morphological methods. This study developed and optimized a quick, reliable molecular identification method that could facilitate investigations into the epidemiology of these diseases in vineyards. The multi‐species primers, BOT100F and BOT472R, amplified a 371–372 bp portion of the rRNA gene region from the six botryosphaeriaceous species commonly found in New Zealand vineyards. In silico analysis indicated that they would amplify DNA from six of the 12 lineages of the Botryosphaeriaceae, including all of the main species pathogenic to grapevines. A detection sensitivity of 1 and 0·1 pg DNA in standard and nested PCR, respectively, was achieved and this was calculated as equivalent to 2·5 conidia. Validation of the primers for environmental samples showed that their specificity was not compromized by the presence of competing DNA templates extracted from wood and soil. Single stranded conformational polymorphism (SSCP) analysis of the amplicons could resolve Neofusicoccum australe, N. luteum, Diplodia mutila and D. seriata, but did not differentiate between N. parvum and N. ribis. The optimized PCR‐SSCP was used to identify botryosphaeriaceous species present in rainwater traps collected over 1 year in a vineyard known to contain infected vines. It could detect multiple species in individual samples and demonstrated differences in the dispersal patterns of conidia from different species. Given the specificity and sensitivity of this method it could prove useful in epidemiology studies involving the numerous botryosphaeriaceous species that infect a wide range of host species.  相似文献   

11.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

12.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   

13.
Sclerotinia trifoliorum, an important pathogen of cool season legumes, displays both homothallism and heterothallism in its life cycle, unique among members of the genus Sclerotinia. Very little is known about its genetic diversity and population structure. A sample of 129 isolates of S. trifoliorum from diseased chickpea in California was investigated for genetic diversity, population differentiation and reproductive mode. Genetic diversity was estimated using mycelial compatibility (MCG) phenotypes, rDNA intron variation, and allelic diversity at seven microsatellite loci. Genetic analysis revealed high levels of genotypic diversity demonstrated by high genotypic richness (0·88). Similarly, high levels of gene diversity (mean expected heterozygosity HE = 0·68) were observed at the microsatellite loci. Geographic populations of S. trifoliorum were highly admixed as evident from low FST values (0–0·11), suggesting high contemporary or historical gene flow. Hierarchical analysis of molecular variance showed that more than 92% of the genetic variation occurred among isolates within populations. Bayesian clustering analysis identified four cryptic genetic populations that were not correlated to geographic location, and index of multilocus association was non‐significant in each of the four genetic populations. However, the presence of identical haplotypes within and among populations indicates clonal reproduction. The high levels of haplotype diversity and population heterogeneity, a lack of correspondence between MCG and microsatellite haplotype, and low levels of population differentiation suggest that populations of S. trifoliorum in chickpea have been undergoing extensive outcrossing and migration events probably shaped by human‐mediated dissemination, the underlying diverse cropping systems, and chickpea disease management practices.  相似文献   

14.
To reveal the effects of herbicide selection on genetic diversity in the outcrossing weed species Schoenoplectus juncoides, six sulfonylurea‐resistant (SU‐R) and eight sulfonylurea‐susceptible (SU‐S) populations were analysed using 40 polymorphic inter‐simple sequence repeat loci. The plants were collected from three widely separated regions: the Tohoku, Kanto and Kyushu districts of Japan. Genetic diversity values (Nei's gene diversity, h) within each SU‐S population ranged from = 0.125 to h = 0.235. The average genetic diversity within the SU‐S populations was HS = 0.161, and the total genetic diversity was HT = 0.271. Although the HS of the SU‐R populations (0.051) was lower than that of the SU‐S populations, the HT of the SU‐R populations (0.202) was comparable with that of the SU‐S populations. Most of the genetic variation was found within the region for both the SU‐S and SU‐R populations (88% of the genetic variation respectively). Two of the SU‐R populations showed relatively high genetic diversity (= 0.117 and 0.161), which were comparable with those of the SU‐S populations. In contrast, the genetic diversity within four SU‐R populations was much lower (from h = 0 to 0.018) than in the SU‐S populations. The results suggest that selection by sulfonylurea herbicides has decreased genetic diversity within some SU‐R populations of S. juncoides. The different level of genetic diversity in the SU‐R populations is most likely due to different levels of inbreeding in the populations.  相似文献   

15.
Moniliophthora perniciosa is the causal agent of witches’ broom in Theobroma cacao (cacao). Three biotypes of M. perniciosa are recognized, differing in host specificity, with two causing symptoms on cacao or Solanaceae species (C‐ and S‐biotypes), and the third found growing endophytically on lianas (L‐biotype). The objectives of this study were to clarify the genetic relationship between the three biotypes, and to identify those regions in the Brazilian Amazon with the greatest genetic diversity for the C‐biotype. Phylogenetic reconstruction based on the rRNA ITS regions showed that the C‐ and S‐biotypes formed a well‐supported clade separated from the L‐biotype. Analysis of 131 isolates genotyped at 11 microsatellite loci found that S‐ and especially L‐biotypes showed a higher genetic diversity. A significant spatial genetic structure was detected for the C‐biotype populations in Amazonia for up to 137 km, suggesting ‘isolation by distance’ mode of dispersal. However, in regions containing extensive cacao plantings, C‐biotype populations were essentially ‘clonal’, as evidenced by high frequency of repeated multilocus genotypes. Among the Amazonian C‐biotype populations, Acre and West Amazon displayed the largest genotypic diversity and might be part of the centre of diversity of the fungus. The pathogen dispersal may have followed the direction of river flow downstream from Acre, Rondônia and West Amazon eastward to the rest of the Amazon valley, where cacao is not endemic. The Bahia population exhibited the lowest genotypic diversity, but high allele richness, suggesting multiple invasions, with origin assigned to Rondônia and West Amazon, possibly through isolates from the Lower Amazon population.  相似文献   

16.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

17.
A collection of 102 Diaporthe isolates was compiled from lesions on carrot, parsley and wild Apiaceae species in France from 2010 to 2014. Molecular typing based on ITS rDNA sequences resulted in the identification of 85 D. angelicae and 17 D. eres isolates. Based on sequences of the 3′ part of the IGS rDNA, intraspecific variability was analysed for 17 D. angelicae and 13 D. eres isolates from diverse plant species, locations in France, and plant tissues. The genetic diversity was greater for D. angelicae isolates than D. eres isolates. In vitro sensitivity of five D. angelicae and four D. eres isolates to each of nine fungicides was similar for isolates of both species, with a marked variation in fungicide sensitivity depending on the active ingredient. To assess the pathogenicity of D. angelicae and D. eres isolates on carrot, one isolate of each species was inoculated onto umbels in a controlled environment. Typical lesions were observed for both isolates. Carrot crop debris collected from a seed production field in France and placed in controlled conditions produced perithecia and ascospores typical of Diaporthe, that were further characterized molecularly as belonging to D. angelicae. Detection of Diaporthe species on seed lots from three carrot production fields in France was investigated. Both species were detected on seeds by conventional PCR assay, with a greater frequency for D. angelicae than D. eres (67% vs 33%, respectively). Overall, the results highlighted that umbel browning in carrot seed crops in France was mainly caused by D. angelicae.  相似文献   

18.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

19.
Bacterial isolates from tomato plants with symptoms revealing pith necrosis collected over a 20‐year period were screened and characterized using biochemical and pathogenicity tests, as well as molecular approaches. The examined isolates were categorized into two main Pseudomonas species: P. corrugata and P. mediterranea. The diversity of these isolates was characterized through a variety of biochemical, serological, pathogenicity, DNA fingerprinting and multi‐locus sequence analysis features. Of the total Pseudomonas isolates causing pith necrosis, the biochemical profile of the selected non‐fluorescent pseudomonads consisting of P. corrugata and P. mediterranea revealed differentiation in only three characters among 43 examined. Serological analysis managed to identify the P. corrugata isolates using the laboratory prepared antiserum anti‐PC14. Genomic analyses using rep‐PCR fingerprinting and multilocus sequence analysis (MLSA) revealed considerable inter‐ and intraspecies genetic diversity. However, artificial inoculations of several plant species revealed similar pathogenicity patterns for both P. corrugata and P. mediterranea isolates. These results provide the basis for a more comprehensive understanding of the biology, sources and shift in genetic diversity and evolution of both P. corrugata and P. mediterranea populations and could support the development of molecular identification tools and epidemiological studies in diseases caused by these species. Moreover, this is the first report of P. mediterranea in Greece on tomato as well as on pepper plants.  相似文献   

20.
Exserohilum turcicum is the causal agent of northern leaf blight, a devastating foliar disease of maize and sorghum. Specificity of Eturcicum to either maize or sorghum has been observed previously, but molecular evidence supporting host specialization is lacking. The aim of this study was to compare the genetic structure of Eturcicum isolates collected from adjacent maize and sorghum fields in Delmas and Greytown in South Africa. In addition, the mode of reproduction of this pathogen was investigated. Isolates from maize (N = 62) and sorghum (N = 64) were screened with 12 microsatellite markers as well as a multiplex mating type PCR assay. No shared haplotypes were observed between isolates from different hosts, although shared haplotypes were detected between isolates from maize from Delmas and Greytown. Population structure and principal coordinate analyses revealed genetic differentiation between Eturcicum isolates from maize and sorghum. Analysis of molecular variance indicated higher among‐population variation when comparing populations from different hosts, than comparing populations from different locations. Lack of shared haplotypes, high proportion of private alleles, greater among‐population variance between hosts than locations and significant pairwise population differentiation indicates genetic separation between isolates from maize and sorghum. The high haplotypic diversity in combination with unequal mating type ratios and significant linkage equilibrium indicates that both sexual and asexual reproduction contributes to the population genetic structure of Eturcicum in South Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号