首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To increase digestibility for ruminant livestock and for lignocellulosic ethanol conversion efficiency in sorghum (Sorghum bicolor), brown midrib (bmr) lines carrying bmr6 or bmr12 and the double mutant (bmr6 bmr12) in two backgrounds (RTx430 and Wheatland) were developed, resulting in lines with significantly reduced lignin, as compared with the near‐isogenic wildtype. Under greenhouse conditions, these lines had previously demonstrated no increased susceptibility, and some lines were more resistant to the highly virulent stalk rot pathogen, Fusarium thapsinum, compared to the wildtype. Fusarium stalk rot of sorghum is a destructive disease that under high temperatures or drought conditions may lead to lodging. To determine if greenhouse observations could be extended to field environments, bmr and near‐isogenic wildtype lines were inoculated with F. thapsinum at field locations, Mead (irrigated) and Havelock (dryland) in Nebraska, USA. Analysis of mean lesion lengths showed those of most bmr lines were statistically similar to the wildtype. Across both genetic backgrounds, bmr6 and bmr6 bmr12 double mutant plants grown at Mead had significantly smaller mean lesion lengths than the corresponding wildtype ( 0.05). To assess responses of the two genetic backgrounds to controlled (greenhouse) water stress, wildtype RTx430 and Wheatland plants were inoculated with F. thapsinum under well‐watered and water stress conditions. Mean lesion lengths resulting on water deficit plants were significantly larger than those on well‐watered plants (= 0.01). These results indicate that this bioassay can be used to screen sorghum lines in the greenhouse for increased resistance or tolerance to both drought and fusarium stalk rot.  相似文献   

2.
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical.  相似文献   

3.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

4.
Fusarium pseudograminearum, F. culmorum and F. graminearum are the most important fusarium crown rot (FCR) causal agents. They have the common ability to biosynthesize deoxynivalenol (DON). To elucidate the behaviour of each of the three species, a comparative study was carried out to investigate symptom progression, fungal systemic growth and translocation of DON following stem base inoculation of soft wheat. FCR symptoms were mainly localized in the inoculated area, which extended up to the second node for all inoculated species. Only the most aggressive strains caused symptoms up to the third node. Real‐time quantitative PCR showed that fungal colonization reached the third node for all the tested species, but a low percentage of plants showed colonization above the third node following inoculation with the most aggressive strains. Fungal growth was detected in symptomless tissues but none of the three species was able to colonize as far as the head tissues. However, even if the pathogens were not detected in the heads, DON was detected in head tissues of the plants inoculated with the most aggressive strains. These results demonstrate that F. pseudograminearum, F. culmorum and F. graminearum, under the same experimental conditions, follow a similar pattern of symptom progression, fungal colonization and DON translocation after stem base infection. Differences in the extent of symptoms, fungal colonization and mycotoxin distribution were mainly attributable to strain aggressiveness. These findings provide comparative information on the events following infection of the stem base of wheat by three of the most important FCR casual agents.  相似文献   

5.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

6.
Brazil is the world’s biggest producer of sugarcane (Saccharum spp. hybrids). Pokkah boeng is an important fungal disease in this crop caused by members of the Fusarium fujikuroi species complex (FFSC) and characterized by deformation of the aerial part of the plant and stem rot. While the occurrence of symptoms has been reported in plantations in Brazil, no official reports of the disease exist. In this study, species of the FFSC were identified that are associated with sugarcane plants with symptoms of pokkah boeng in Brazil. This was achieved using two-loci molecular phylogeny, sexual compatibility and analysis of morphological markers. The ability of strains to cause disease in plants of sugarcane, maize, sorghum and millet was also evaluated. The 39 isolates studied were identified as F. sacchari, F. proliferatum and another, still unknown, phylogenetic lineage that is sister to F. andiyazi. Crossing field isolates of F. sacchari and F. proliferatum with their respective tester strains produced fertile perithecia and viable ascospores. All three species induced symptoms of pokkah boeng on inoculated sugarcane plants and caused stem rot in maize, sorghum and millet. Symptoms on sugarcane are chlorosis and necrosis of leaves, punctured lesions, twisted leaves, reduction of the total leaf area, death of the top of the plant and stalk rot. The findings confirmed the aetiology of the disease in Brazil, generated basic knowledge for the development of strategies for diagnosis and monitoring of the disease and support breeding programmes for selecting resistant germplasm.  相似文献   

7.
Y. Zhang  W. Chen  W. Shao  J. Wang  C. Lv  H. Ma  C. Chen 《Plant pathology》2017,66(9):1404-1412
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating wheat diseases in China. Phenamacril is a novel cyanoacrylate fungicide with a unique chemical structure and specific mode of action against Fusarium spp. In this study, the molecular, biological and physiological characteristics of laboratory‐induced mutants of F. graminearum with resistance to phenamacril were investigated. Compared to the wildtype strains, the phenamacril‐resistant mutants showed obvious defects in various biological and physiological characteristics, including vegetative growth, carbon source utilization, response to oxidative and osmotic stresses, sensitivity to cell wall and cell membrane integrity inhibitors, cell membrane permeability, glycerol accumulation and pathogenicity. The phenotypes of the phenamacril‐resistant mutants exhibited many variations. Sequencing indicated that the three parental strains studied were identical, and the mutants TXR1, TXR2, BMR1, BMR2, SYR1 and SYR2 each had a single point mutation in the amino acid sequence encoded by the myosin‐5 gene (FGSG_01410). These results provide new reference information for future investigations concerning the resistance mechanism of F. graminearum to phenamacril and could offer important relevant data for the management of FHB caused by F. graminearum.  相似文献   

8.
Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was constantly present throughout the monitored period. By assessing the population composition of the causal agents as well as their genetic chemotypes and EF‐1α polymorphisms, the study examined whether the two diseases could be differentially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected at different abundances (88% 3‐ADON, 12% NIV). Fusarium graminearum (15‐ADON genetic chemotype) appeared only recently (2013) and in few areas as the causal agent of FHB. In Fculmorum, two haplotypes were identified based on an SNP mutation located 34 bp after the first exon of the EF‐1α partial sequence (60% adenine, 40% thymine); the two populations did not segregate with the chemotype but the A‐haplotype was significantly associated with FRR in the Sardinian data set (= 0·001), suggesting a possible fitness advantage of the A‐haplotype in the establishment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the Sardinian haplotype is distributed worldwide. The question whether the A‐haplotype segregates with characters facilitating FRR establishment will require further validation on a specifically sampled international data set.  相似文献   

9.
The distribution and co‐occurrence of four Fusarium species and their mycotoxins were investigated in maize samples from two susceptible cultivars collected at 14 localities in South Africa during 2008 and 2009. Real‐time PCR was used to quantify the respective Fusarium species in maize grain, and mycotoxins were quantified by multi‐toxin analysis using HPLC‐MS. In 2008, F. graminearum was the predominant species associated with maize ear rot in the eastern Free State, Mpumalanga and KwaZulu‐Natal provinces, while F. verticillioides was predominant in the Northwest, the western Free State and the Northern Cape provinces. In 2009, maize ear rot infection was higher and F. graminearum became the predominant species found in the Northwest province. Fusarium subglutinans was associated with maize ear rot in both years at most of the localities, while F. proliferatum was not detected from any of the localities. Type B trichothecenes, especially deoxynivalenol, and zearalenone were well correlated with the amount of F. graminearum, fumonisins with F. verticillioides, and moniliformin and beauvericin with F. subglutinans. This information is of great importance to aid understanding of the distribution and epidemiology of Fusarium species in South Africa, and for predicting mycotoxin contamination risks and implementing preventative disease management strategies.  相似文献   

10.
Red rot is an important disease of sugarcane, reported from the main producing countries of the crop. The main causal agent is Colletotrichum falcatum, which induces reddish internal stalk rot, resulting in loss of quality and quantity of sugars. While the occurrence of this disease has been reported in plantations in Brazil, the aetiology of the disease is not yet fully understood. We isolated and identified the fungi associated with sugarcane plants showing symptoms of red rot. Thirty isolates were recovered and grouped by morphology within the genera Colletotrichum and Fusarium. Based on phylogenetic analyses of DNA sequences from ITS, ACT, SOD, GAPDH, and EF-, eight isolates were identified as C. falcatum (n = 6) and C. plurivorum (n = 2). Twenty-two isolates belonged to the Fusarium fujikuroi species complex and were identified as F. sacchari (n = 8), F. proliferatum (n = 3), and F. madaense (n = 11). Coinfection with C. falcatum and Fusarium species were frequently observed. C. falcatum and Fusarium strains induced reddening of internal tissues and stalk rot in sugarcane plants, symptoms of red rot, while Fusarium species also induced symptoms of pokkah boeng. C. plurivorum, whose sexual stage was observed on the surface of stems, did not induce stalk rot or leaf symptoms. The results obtained in this study clarify the aetiological agents of red rot of sugarcane in Brazil. The conditions that lead to the development of specific symptoms of red rot or pokkah boeng are under investigation.  相似文献   

11.
A. Serfling  F. Ordon 《Plant pathology》2014,63(6):1230-1240
Fusarium culmorum causes head blight, produces toxins and reduces yield and quality of cereals. To prevent damage caused by fusarium head blight (FHB), azole fungicides are mainly applied. The occurrence of insensitivity to azoles is a major problem in agriculture. The present study shows that a tebuconazole insensitive strain of F. culmorum can be readily produced in the laboratory, but that the resulting strain of the fungus is of lower fitness in vitro. Insensitivity was confirmed microscopically and by cell viability and metabolic activity. The tebuconazole insensitive strain shows cross insensitivity to nine important azoles. In addition, plants inoculated with the insensitive F. culmorum strain showed no reduction of FHB symptoms and deoxynivalenol (DON) content after tebuconazole treatment, compared to an inoculation with the sensitive strain. Use of wheat cultivars carrying a high resistance level (i.e. cv. Toras) was the most effective method for reducing symptoms and decreasing DON content, independent from the level of fungicide insensitivity of the F. culmorum strain. In conclusion, resistant cultivars and a fungicide mixture which combines different mechanisms of action in fungal metabolism should be applied to avoid fungicide insensitivity of Fusarium spp. in future.  相似文献   

12.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand‐kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC‐UV‐MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single‐individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.  相似文献   

13.
A decline of unknown aetiology has become a major problem for commercial orchid production in Hawaii, one of the primary orchid‐producing states in the USA. The major symptoms of decline include root degradation, foliar blight, pseudobulb rot and sheath rot. It was unclear whether all these symptoms are caused by the same or different pathogens, but preliminary research indicated that Fusarium species may be involved. In this study, the incidence of Fusarium species was examined across 186 plants, from 29 orchid genera and intergeneric hybrids across three islands in the state of Hawaii. The main five species associated with diseased orchids were F. proliferatum (38% of samples), F. solani (16%), F. oxysporum (16%) and two previously undescribed species (8% for both species combined). The two undescribed species were similar in appearance to F. subglutinans, and were designated FS‐A and FS‐B. Pathogenicity tests established that both F. proliferatum and FS‐B caused foliar spots, foliar blight and pseudostem rot on Dendrobium orchids, and that F. proliferatum isolates from diseased tissue of several genera could also induce symptoms on Dendrobium orchids. Although orchids have increasing importance in floriculture, relatively little is known about orchid pathogens, and previous studies focused primarily on Cymbidium and Phalaenopsis. This study provides new information concerning Dendrobium orchid pathogens and suggests a much wider host range than previously recognized for the five Fusarium species recovered from tissue with symptoms. These findings can contribute to better management of Fusarium diseases, which represent a significant challenge to orchid production in Hawaii.  相似文献   

14.
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. This study evaluated the effect of P. indica on fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilized soil‐free medium or in a non‐sterilized mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real‐time polymerase chain reaction (qPCR). The ratio of FusariumDNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. Piriformospora indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of FusariumDNA in root systems increased in the absence of P. indica but was static in plants co‐inoculated with P. indica.  相似文献   

15.
Soybean (Glycine max) is the most important crop in Argentina. At present Fusarium graminearum is recognized as a primary pathogen of soybean in several countries in the Americas, mainly causing seed and root rot and pre‐ and post‐emergence damping off. However, no information about infections at later growth stages of soybean development and pathogenicity of F. graminearum species complex is available. Therefore, the objectives of this study were to compare the pathogenicity of F. graminearum and F. meridionale isolates towards soybean under field conditions and to evaluate the degree of pathogenicity and trichothecene production of these two phylogenetic species that express different chemotypes. Six isolates of F. graminearum and F. meridionale were evaluated during 2012/13 and 2013/14 soybean growing seasons for pod blight severity, percentage of seed infected in pods and kernel weight reduction. The results showed a higher aggressiveness of both F. graminearum and F. meridionale species during the 2013/14 season. However, the differences in pathogenicity observed between the seasons were not reflected in a distinct trichothecene concentration in soybean seeds at maturity. Fusarium meridionale isolates showed similar pathogenicity to F. graminearum isolates but they were not able to produce this toxin in planta during the two field trials.  相似文献   

16.
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (= 43 isolates), Brazil (= 35), and Uruguay (= 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (= 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates.  相似文献   

17.
A large collection (= 539) of Fusarium graminearum species complex (FGSC) isolates was obtained from Brazilian maize, and collections formed according to geography and maize part: (i) kernel (= 110) from south and south‐central Brazil; (ii) stalk (= 134) from Paraná state (south); and (iii) stubble (= 295) from Rio Grande do Sul state (south). Species composition, identified using a multilocus genotype approach, was assessed separately in each collection due to differences in geographic sampling. Overall, three species were found: F. meridionale (Fmer; 67% prevalence) with the nivalenol (NIV) genotype, F. graminearum (Fgra; 19%) with the 15‐acetyl (A) deoxynivalenol (DON) genotype, and F. cortaderiae (Fcor; 14%) with the NIV (49/74) or the 3‐ADON (25/74) genotype. In kernels, Fmer was spread across all locations and Fgra and Fcor were found mostly at high elevation (>800 m a.s.l.). The majority (97·8%) of stalk isolates was assigned to Fmer; three were assigned to Fgra. In the stubble, Fmer was less dominant (53%), with a shift towards Fcor as the most frequent species at high elevation sites (>600 m a.s.l.). No differences in the mycelial growth rate were observed among isolates from each species grown at 15°C. Fgra grew faster at 25°C and Fmer showed the widest range of variation across the isolates at both temperatures. The survey data suggest that Fmer may outcompete other species on ears and stalks in comparison to stubble. Additional sampling that controls for other factors, as well as direct testing of aggressiveness on ears and stalk tissue, will be needed to fully evaluate this hypothesis.  相似文献   

18.
Endophytic fungi, which stimulate a variety of defence reactions in host plants without causing visible disease symptoms, have been isolated from almost every plant. However, beneficial interactions between fungal endophytes and pathogens from the same habitat remain largely unknown. An inoculation of Atractylodes lancea plantlets with Gilmaniella sp. AL12 (AL12) prior to infection with Fusarium oxysporum prevented the necrotization of root tissues and plant growth retardation commonly associated with fusarium root rot. Quantification of Foxysporum infections using real‐time PCR revealed a correlation between root rot symptoms and the relative amount of fungal DNA. Pretreatment with AL12 reduced the accumulation of reactive oxygen species stimulated by F. oxysporum. An in vitro analysis of their interactions under axenic culture conditions showed AL12 could inhibit F. oxysporum growth. Additionally, F. oxysporum infections were shown to decrease salicylic acid (SA) production compared with control plantlets. SA biosynthesis inhibitors, 2‐aminoindan‐2‐phosphonic acid and paclobutrazol, abolished the inhibition of F. oxysporum growth in A. lancea even after inoculation with AL12. The results indicated that the fungal endophyte protected A. lancea not only by direct antibiosis, but also by reversing the F. oxysporum‐mediated suppression of SA production.  相似文献   

19.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号