首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xylella fastidiosa is a plant pathogenic bacterium emerging in Europe. In France its emergence has been demonstrated through interceptions of contaminated coffee plants and, in 2015, by a survey of natural settings. The first French focus of contamination was detected in 2015 in Corsica; since then, almost 300 foci have been found and nearly 30 plant species have been declared contaminated, with Polygala myrtifolia remaining the principal host, suffering from severe leaf scorch. This study reports on the diversity of X. fastidiosa identified in France in 2015. Multilocus sequence analysis/typing revealed the presence of mainly X. fastidiosa subsp. multiplex sequence types (STs) ST6 and ST7. A focus of X. fastidiosa subsp. pauca ST53 was identified in mainland France; one sample contaminated by X. fastidiosa subsp. sandyi ST76, one novel recombinant, and coinfections of different isolates in individual samples were also identified, but could not be confirmed by successive samplings, indicating limited or transient contamination. Koch's postulates were fulfilled for two isolates of X. fastidiosa subsp. multiplex on P. myrtifolia, one being ST6 and the other ST7. Comparative genomics of the genome sequences of three French isolates (one ST6 and two ST7) with available sequences revealed that, unlike the American Dixon strain, the French ST6 and ST7 strains are devoid of a plasmid encoding a complete type IV secretion system. Other differences regarding phage sequences were highlighted. Altogether, the results suggest that the emergence of X. fastidiosa in France is linked to several introduction events of diverse strains from different subspecies.  相似文献   

2.
Xylella fastidiosa is a phytopathogenic bacterium that causes disease in many different crops worldwide. In Brazil, X. fastidiosa subsp. pauca causes citrus variegated chlorosis (CVC), which is a disease responsible for economic losses in the citrus agribusiness. Variable host responses to bacterial colonization and disease development have been observed. This work studies the colonization processes of a pathogenic GFP‐labelled X. fastidiosa citrus strain in sweet orange (susceptible) and tangor (resistant) parents and two resulting hybrids that exhibited contrasting responses to CVC. Xylella fastidiosa showed increased populations and movement in the susceptible genotypes, but slower compared to other hosts such as grapevine. Scanning electron microscopy revealed that the predominant pitted stem morphology in citrus makes the bacterial movement difficult. In susceptible genotypes X. fastidiosa can move from the primary to the secondary xylem, whilst it is confined to the primary xylem in resistant plants. Associated with this is an induction of lignification that occurs earlier in the resistant genotypes when in the presence of the pathogen, and represents a genetic mechanism that leads to formation of a physical barrier, impairing bacterial colonization.  相似文献   

3.
Xylella fastidiosa subspecies pauca strain De Donno (XfDD) ST53 is the causal agent of olive quick decline syndrome, a severe disease first described in Apulia, Italy. Although the two local cultivars Cellina di Nardò and Ogliarola Salentina showed high susceptibility, traits of resistance to the bacterium were found in the cultivar Leccino. Previous studies in field-grown olives suggested that vascular occlusions and anatomophysiological properties of the different cultivars played a role in the olive response to XfDD. The present investigation reports observations at the early stage of the infection on artificially inoculated olives. Electron microscope studies showed that XfDD exploits the pit membranes (PMs) of the susceptible cultivar Cellina di Nardò to spread systemically. In this cultivar, PMs were degraded upon XfDD infection, suggesting activity of bacterial cell wall-degrading enzymes. Moreover, occluded vessels contained an amorphous electrondense matrix resembling gum. Conversely, in Leccino, occluded vessels were mainly filled by callose-like granules that tightly entrapped XfDD cells. In addition, PMs from Leccino had a compact undegraded structure that was not permeable to XfDD. Our study suggests that exploitation of PMs is a key event in the infection process of X. fastidiosa subsp. pauca ST53 in susceptible olive cultivars.  相似文献   

4.
Xylella fastidiosa (Xf) is a gram-negative bacterial plant pathogen that can infect over 500 plant species. While it is endemic in America, X. fastidiosa subsp. pauca was reported for the first time in Europe in 2013 on olive trees in southern Italy. The availability of fast, sensitive, and reliable diagnostic tools is indispensable for managing current and future outbreaks of Xf. In this paper, we use the OXford Nanopore Technologies (ONT) MinION platform for detecting and identifying Xf at species, subspecies, and sequence type (ST) level. Two workflows were developed: the first one provided a “shotgun” strategy, that is, exploring the possibility of detecting Xf within DNA extracted from plant samples. This allowed detection of Xf by direct DNA sequencing and identifying the subspecies only in samples with high bacterial levels. Nanopore amplicon sequencing was pursued as a second workflow. This consists of PCR amplification of a set of seven multilocus sequence typing (MLST) fragments, officially adopted for identifying Xf at type strain level, followed by Nanopore-sequencing of the amplicons and an ad hoc pipeline to generate MLST consensus calls. This combined approach, which takes only a few hours, allowed the detection and identification of Xf at ST level in plant material with low bacterial infection.  相似文献   

5.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

6.
In Europe, the meadow spittlebug Philaenus spumarius is the main known vector of the quarantine bacterium Xylella fastidiosa. So far detection and identification of X. fastidiosa has more often been performed from plant matrices than insects, mainly using a real-time PCR and multilocus sequence typing (MLST) approach. Detection of X. fastidiosa in its insect vectors would enhance knowledge of the epidemiologic situation in France, specifically in the already infected Corsica and Provence-Alpes-Côte d’Azur (PACA) regions. The aim of this study was to validate a methodological approach to detect X. fastidiosa in P. spumarius, analysed individually or in groups of 10, using real-time PCR and MLST, and to apply the approach to more than 4,000 individuals collected between 2015 and 2019 from infected areas. The corresponding results expanded our knowledge of the epidemiology of X. fastidiosa in France: (a) X. fastidiosa subsp. multiplex including the sequence types ST6 and ST7 were identified in the insect vector; (b) the rate of positive insects per infected area was as high as 33.3% in Corsica or 50% in the PACA region; (c) positive adults were found during winter; and (d) the bacterial load in P. spumarius (droplet digital PCR) usually ranged from 103 to 104 cells per insect, but could be as high as 105 or 106 cells per insect for some individuals (13%). The subspecies and sequence types detected in P. spumarius corresponded to the situation officially reported for plants in the same areas.  相似文献   

7.
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers.  相似文献   

8.
9.
A 2‐year comprehensive field survey was conducted across major tomato‐growing areas of Iran. Two hundred and thirty‐four tomato fields and six tomato‐producing greenhouses were surveyed for the potential presence of bacterial spot disease. Five hundred and ninety‐six tomato samples with and without symptoms were analysed. While Xanthomonas spp. were found in association with tomato plants both with and without symptoms from five surveyed counties, the bacterial spot disease was observed only in plants from three of them. Only strains isolated from plants with symptoms induced disease symptoms on tomato, while those isolated from symptomless plants caused symptoms only on cabbage and common bean. None of the isolates caused disease symptoms on pepper and eggplant. Phylogenetic analysis showed that X. perforans is the causal agent of tomato bacterial spot in Iran, although X. campestris and X. axonopodis were also associated with symptomless tomato plants. All X. perforans isolates in this study were sensitive to streptomycin, copper sulphate and copper oxychloride at concentrations of 50 mg L?1, 200 mg L?1 and 0.8 g L?1, respectively. Unlike the type strain of X. perforans, isolates in this study did not produce bacteriocin against other Xanthomonas spp., nor were they detected using the usual species‐specific primer pair Bs‐XpF/Bs‐XpR. This suggests an atypical nature of X. perforans strains in Iran, which leads to the hypothesis that X. perforans strains in Iran may have a separate origin to those causing disease epidemics elsewhere. The aggregated dispersal pattern of the diseased tomato fields signifies the seedborne introduction of the pathogen into the country.  相似文献   

10.
Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of bacterial canker and wilt, causes severe economic losses in tomato net‐houses and greenhouses worldwide. In this study, seedlings which were transplanted and inoculated monthly over 2 years wilted and died earlier in the spring (21–24°C) and autumn (18–23°C) than in the winter (15–18°C) and summer (28–31°C): T50 (the time taken for 50% of the plants to wilt or die) was 2 and 3–4 months after inoculation, respectively. A highly significant correlation was found between the average temperatures during the first month after inoculation and T50; the shortest T50 mortality (70 days) was observed for an average temperature of 26°C. Expression of virulence genes (pat‐1, celA, chpC and ppaA) by Cmm was higher in plants inoculated in the spring than in those inoculated in the summer. In another set of experiments, seedlings were inoculated and maintained in controlled‐environment growth chambers for 2 weeks. Subsequently, they were transplanted and maintained in commercial‐type greenhouses for 4–5 months. The temperatures prevailing in the first 48 h after inoculation were found to affect Cmm population size and virulence gene expression and to have season‐long effects on bacterial canker development.  相似文献   

11.
The taxonomic status of Colletotrichum gloeosporioides sensu lato (s.l.) associated with olive anthracnose is still undetermined and the pathogenic ability of this species complex is controversial. In the present study, isolates obtained from olive and provisionally identified as C. gloeosporioides s.l. on the basis of morphological and cultural features were reclassified using ITS and TUB2 as DNA barcode markers and referred to seven distinct species, recently separated within C. gloeosporioides (C. aenigma, C. gloeosporioides sensu stricto (s.s.), C. kahawae, C. queenslandicum, C. siamense and C. theobromicola) and C. boninense (C. karstii) species complexes. Furthermore, isolates of Ckahawae were ascribed to the subspecies ciggaro by analysing the GS gene. A single isolate, not in either of these two species complexes, was not identified at the species level. In pathogenicity tests on detached olive drupes some of these species, including C. aenigma, C. kahawae subsp. ciggaro, C. queenslandicum, C. siamense and C. karstii, were shown to be weakly pathogenic. Moreover, they were found very sporadically on olive. In contrast, some isolates of C. gloeosporioides s.s. and isolates of C. theobromicola proved to be virulent on both green and ripening olives. This study gives a better insight into both the aetiology and the epidemiology of olive anthracnose and might have implications for biosecurity and quarantine because C. theobromicola has never been reported in major European olive‐producing countries.  相似文献   

12.
P. H. Goodwin  W. Gao 《Plant pathology》2017,66(8):1299-1307
The aim of this study was to determine if treatment of soil with a branched‐chain alkane mixture known to induce resistance against Colletotrichum orbiculare also changes populations of bacterial endophytes from Nicotiana benthamiana. Eight culturable bacterial endophyte types matching six species of Bacillus and two species of Pseudomonas were found in roots, stem + petioles and/or leaves. Application of the branched‐chain alkane mixture resulted in significantly higher endophyte populations compared to the water or emulsifier controls for the Pseudomonas sp. LW3, Bacillus simplex LW4 and Bacillus pumilis LW5 colony types in roots and the B. simplex LW4 colony type in stem + petioles. The Pseudomonas sp. LW3 and B. simplex LW4 colony types also had higher populations in pure cultures under in vitro conditions with the branched‐chain alkane mixture compared to the controls. Inoculation with each of the eight colony types increased their population in the plant and induced resistance against C. orbiculare, with the most effective being Pseudomonas sp. LW3 and Pseudomonas alcaligenes SW1. Most of the endophytes could inhibit C. orbiculare growth in vitro, but the level of resistance in planta was not correlated to the ability of the colony type to inhibit C. orbiculare in culture. Thus, a branched‐chain alkane mixture can selectively affect the biomass of a subset of bacterial endophytes, demonstrating that it is a novel in planta endophyte growth promoter.  相似文献   

13.
Application of the polymerase chain reaction (PCR) to disease diagnosis is limited in part by the presence of PCR inhibitors. Inhibition can be overcome and sensitivity increased by culturing bacteria on agar media prior to PCR (termed BIO-PCR). However, Xylella fastidiosa grows slowly, requiring 10–14 days for visible colonies to appear. In this study an agar-absorption BIO-PCR method for detecting X. fastidiosa in grape and citrus plants was developed. Optimum lengths of time for absorption of inhibitors by the agar medium or enrichment of bacteria on the medium were determined for Pierce's disease of grape and citrus variegated chlorosis. When petioles of grape and citrus leaves with symptoms were spotted onto agar media, the spots washed after various time intervals and assayed for X. fastidiosa by real-time PCR, 97% (31 out of 32) and 100% (six out of six) of spots were positive after 2 days and 4 h for grape and citrus, respectively. With direct PCR, only 12·5% (four out of 32) and 33% (two out of six) of spots were positive, respectively, and visible X. fastidiosa colonies were evident after 10 and 14 days, respectively. In a separate experiment with samples from a different vineyard, 46% (13 out of 28) of the grape samples (agar spots) were positive after 1 day and 93% (26 out of 28) after 5 days using agar-absorption PCR. In contrast, all samples were negative by direct PCR. Viable X. fastidiosa were recovered from all samples after 14 days. Further tests with eight randomly selected grape petioles from three Texas vineyards known to have Pierce's disease resulted in 50% being positive by a simple 24 h agar-absorption PCR assay, whereas none was positive by direct PCR. Overall, 10 out of 16 (63%) vines from five vineyards (two in California and three in Texas) were positive after the 24 h agar-absorption PCR assay. In contrast, only one vine was positive by direct PCR. This simple agar absorption-based PCR assay protocol should prove useful for the routine detection of X. fastidiosa and other slow-growing bacteria in the presence of PCR inhibitors.  相似文献   

14.
The quick decline syndrome of olive (OQDS) is a disease that appeared all of a sudden some years ago in a restricted area near the city of Gallipoli (Ionian coast of the Salento peninsula, southern-east Italy) and began spreading through the heavily olive-grown countryside of lower Salento. Xylella fastidiosa, a quarantine pathogen of American origin previously undetected in the European Union territory, except for two unconfirmed records from Kosovo and Turkey, proved to be consistently associated with symptomatic trees. X. fastidiosa is a Gram-negative bacterium that invades and multiplies in the xylem vessels of infected hosts, from which it is acquired by xylem-feeding insect vectors (belonging to Auchenorrhyncha, including cicadellids sharpshooter leafhoppers group, Cicadellidae, Cicadellinae), and aphrophorids (cercopids and spittlebugs, Cercopidae) and transferred to other plants. The Salentian strain of X. fastidiosa, denoted CoDiRO, was obtained in axenic culture. Its genome, a DNA molecule ca. 2.5 million base-pairs in size, was sequenced and identified as a genotype of X. fastidiosa subsp. pauca molecularly identical to an isolate of the same subspecies from Costa Rica. In nature, strain CoDiRO infects a number of woody and shrubby hosts but not grapevines and citrus and is mainly transmitted by Philaenus spumarius (meadow spittlebug), a froghopper quite common in the Salento area where it thrives primarily on olive. Since OQDS eradication and sanitation of infected olives are unfeasible, strategies have been envisaged for restraining the spread of the pathogen and its vector within the boundaries of the currently infected zone.  相似文献   

15.
Coffee is a very important crop for several tropical countries across different continents. The diseases bacterial halo blight (BHB), bacterial leaf spot (BLS), bacterial leaf blight (BLB) and coffee leaf scorch (CLS), caused by the bacterial pathogens Pseudomonas syringae pv. garcae (Psgc), P. syringae pv. tabaci (Psta), Pseudomonas cichorii (Pch) and Xylella fastidiosa subsp. pauca (Xfp), respectively, cause significant reductions in coffee production, although other minor bacterial diseases have also been reported in some countries. Little research progress has been made on aspects that are relevant for control and management of these diseases. In all cases, there is an urgent need to develop rapid and more reliable methods for early detection of the pathogens in order to minimize their negative impact on coffee production. Because of the high rate of intra- and intersubspecific recombination occurring in X. fastidiosa, a permanent revision of the detection methods is necessary. Greater efforts should be made to understand the genetic and virulence diversity of Psgc, Psta and Pch populations. Early studies reported the identification of potential sources of resistance against Psgc and Psta, but, to date, no resistance gene has been isolated. Little effort has been made to understand the biology and molecular mechanisms underlying the interaction between Coffea spp. and these pathogenic bacteria. This review discusses the recent progress on the molecular mechanisms used by these bacteria to cause diseases on other plant species, in order to provide a guideline for the establishment of future research programmes.  相似文献   

16.
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe.  相似文献   

17.
Differences in the virulence of a pathogen among host species can occur because hosts differ in their resistance or tolerance to infection or because of underlying genetic variation in the pathogen. The xylem-limited bacterium Xylella fastidiosa is pathogenic to dozens of plant species throughout the Americas, and is structured into genetically and biologically distinct strains. In some plants X. fastidiosa causes striking leaf scorch symptoms and in others, such as alfalfa, stunting is the primary symptom. The mechanism by which these symptoms occur has been debated. We tested the hypothesis that symptoms result from X. fastidiosa-induced water stress, and that the magnitude of water stress is strain-dependent. We mechanically inoculated alfalfa plants with one of 14 isolates (5 identified genetically as “almond” and 9 as “grape” isolates), and compared stable carbon isotope ratios among isolates. Infected plants showed significant isotopic shifts (up to 2% on average) relative to healthy plants that were consistent with water stress. Moreover, there were significant differences in water stress among isolates, with a tendency for grape isolates to cause more severe water stress than almond isolates. There was also a positive relationship between plant infection level and isotopic shift (slope ± SE = 0.273 ± 0.068), which supports the hypothesis that X. fastidiosa symptoms result from bacterial multiplication and vessel occlusion. Unexpectedly, however, water stress was not correlated with measures of alfalfa stunting. These results suggest X. fastidiosa induces strain-specific levels of water stress, but factors other than water stress alone are responsible for stunting.  相似文献   

18.
After the first confirmed outbreak of Xylella fastidiosa in the European Union (EU), associated with an olive disease denoted olive quick decline syndrome, mandatory surveys are now carried out in the member States and inspections increased at EU entry points such as ports. Such activities led to the interception of X. fastidiosa-infected coffee plants in consignments originating from Central America. Similarly, the geographic expansion of the olive decline epidemic area of the Apulia region (southern Italy) prompted investigations to identify new host plants. Here we report the interception of three novel bacterial sequence types in Italy, based on multi-locus sequence typing, that cluster with different X. fastidiosa subspecies, illustrating the risk of the introduction of additional pathogen genetic diversity into Europe. In the epidemic area of Apulia, new foci as well as host plant species positive with X. fastidiosa, including cherry, myrtleleaf and rosemary, were found to be all infected with the same sequence type of this bacterium (ST53, or CoDiRO strain). This work highlights the limited knowledge of X. fastidiosa phylogenetic and phenotypic diversity, the risk of novel X. fastidiosa introductions via contaminated plant material, and corroborates other studies indicating that the Apulia epidemic emerged from a single introduction of this pathogen into the region.  相似文献   

19.
Since the 1980s a new disease has been affecting Australian lychee. Pepper spot appears as small, black superficial lesions on fruit, leaves, petioles and pedicels and is caused by Colletotrichum gloeosporioides, the same fungus that causes postharvest anthracnose of lychee fruit. The aim of this study was to determine if a new genotype of C. gloeosporioides is responsible for the pepper spot symptom. Morphological assessments, arbitrarily‐primed PCR (ap‐PCR) and DNA sequencing studies did not differentiate isolates of C. gloeosporioides from anthracnose and pepper spot lesions. The ap‐PCR identified 21 different genotypes of C. gloeosporioides, three of which were predominant. A specific genotype identified using ap‐PCR was associated with the production of the teleomorph in culture. Analysis of sequence data of ITS and β‐tubulin regions of representative isolates did not group the lychee isolates into a monophyletic clade; however, given the majority of the isolates were from one of three genotypes found using ap‐PCR, the possibility of a lychee specific group of C. gloeosporioides is discussed.  相似文献   

20.
The angular leaf spot disease caused by Xanthomonas fragariae is an important plant disease with major impact for the strawberry nursery industry. Currently there is no plant protection product available for controlling the disease effectively. Planting of resistant cultivars seems to be promising, but all commercially used cultivars are susceptible and no donor with a high level of resistance has yet been found. Therefore, a total of 145 genotypes from the Fruit Genebank Dresden (Germany) were evaluated for resistance to X. fragariae by artificial inoculation. Six genotypes were classified as partly resistant, out of which only two (US4808 and US4809) are octoploid. Fragaria vesca f. alba, Fragaria nilgerrensis ‘Yunnan’, F. vesca ‘Illa Martin’ and F. moschata ‘Bauwens’ were also classified as partially resistant, but they are only of limited use for breeding because of their variable ploidy level. Fully resistant genotypes could not be detected. The systemic dispersal of the bacteria in strawberry plants was investigated after inoculation of leaves with X. fragariae strain XF3.9.C and the GFP‐tagged strain XF3.9.C(pKAN). The systemic spread was evaluated after 3, 7, 14 and 28 days post‐inoculation (dpi) by nested PCR and fluorescence microscopy. After 3 dpi, X. fragariae could be found in all tissues tested including the inoculated leaf, its petiole, the rhizome, the heart bud up to the youngest fully expanded leaf and its petiole. The systemic spread was also detectable in partially resistant genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号