首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
本工作是研究在CaCO3体系和石灰性土壤体系中NH3的挥发与磷的吸附之间相互作用的化学变化,结果表明:在NH4Cl—CaCO3体系中,通气的pH值比不通气的低,但溶液中Ca2+浓度正好相反。在K2HPO4-CaCO3体系中,在24小时内,通气与不通气的,CaCO3吸附磷没有差异。在24小时反应期间,在DAP-CaCO3体系中,因溶液pH值不断增高,NH3的挥发对CaCO3吸附磷的影响也就逐渐降低。在石灰性土壤体系中,施用尿素加过磷酸钙或单施尿素时,几乎没有发现NH3的挥发,而施DAP时,在6天后,NH3的挥发损失占加入的56%,且DAP处理的土壤,其水溶性磷未通气比通气的高。尿素加过磷酸钙处理的,其水溶性磷通气与未通气的没有差异。另外,尿素加过磷酸钙或过磷酸钙单独处理的土壤,水溶性磷含量均相同。所有这些均表明,在石灰质体系中,NH3的挥发(如果发生的话)能够加强CaCO3对磷的吸附,而磷的吸附又能加强NH3的挥发,两者是相互影响和相互促进的过程。  相似文献   

2.
我国华南地区的石灰化水稻士是由于长期施用石灰使土壤剖面中具有石灰粘核或石灰硬盘的一种低产水稻土,每造水稻产量仅120-200斤/亩。早在1941年,郭魁士[1]称之为石灰岩水稻土。1958年,王卓仁[2]在稠查桂北土壤时,称此种土壤为石灰性水稻田土壤;握过1958-1959年的土壤普查,获悉广西农民根据它们的发育程度,分别称之为石灰板拮田,硬底田和锅巴田。但从此种土壤的发生特点来看,主要是由于施用石灰而使土壤产生石灰化,因此,本文称此种土壤为石灰化水稻士。  相似文献   

3.
改良剂对镉污染酸性水稻土的修复效应与机理研究   总被引:29,自引:0,他引:29  
为探明田间条件下施用石灰、钙镁磷肥、海泡石和腐殖酸等改良剂对Cd污染酸性水稻土的修复效应和作用机理, 通过在Cd污染区建立田间小区试验, 研究了改良剂单施和与石灰配施对Cd污染酸性水稻土中Cd作物有效性的影响。结果表明, 施用改良剂有效地改变了土壤中Cd的存在形态, 除腐殖酸外, 其他改良剂均使土壤酸提取态Cd不同程度地转化为可还原态Cd和残渣态Cd; 施用改良剂可使0.1 mol·L-1 NaNO3和 0.01 mol·L-1CaCl2提取态Cd 降低26%~97%, 降低效果为石灰+海泡石>海泡石>石灰+钙镁磷肥>钙镁磷肥>石灰>石灰+腐殖酸>腐殖酸; 改良剂使水稻地上部分的Cd吸收量降低6%~49%。试验结果还显示, 施用改良剂提高土壤pH是引起土壤中Cd作物有效性降低的主要原因之一。根据田间试验的结果, 海泡石可推荐作为Cd污染酸性水稻土的改良剂, 而腐殖酸则不宜使用。  相似文献   

4.
徐淮地区石灰性土壤磷素固定的研究   总被引:13,自引:0,他引:13  
用化学和物理化学的方法研究了纯CaCO3固磷机制和特性.结果表明,随着起始磷浓度从低(0-10ppm P)到高(>10ppm P)变化,CaCO3与磷先后发生吸附、沉淀反应,CaCO3对磷具有很强的固定作用.徐淮地区石灰性土壤(黄潮土)固磷机制和特性的研究指出:起始磷浓度较低(0-200ppm P)时,以粘粒固定作用为主,CaCO3的沉淀怍用不明显;起始磷浓度较高(>200ppm P)时,则粘粒与CaCO3同时起作用,其中CaCO3和磷之间的沉淀反应非常突出.石灰性土壤的固磷量和固磷强度均较高.  相似文献   

5.
13年长期施肥和轮作试验结果表明,连续种植苜蓿时N肥、P肥、有机肥的配合施用(NPM)较单施P肥对提高土壤硝态氮(NO-3-N)含量水平有较好效果;而无论施肥与否,种植苜蓿对土壤深层NO-3-N均造成不同程度的亏缺。苜蓿(NPM)连作较小麦(NPM)连作土壤NO-3-N利用率高;种植苜蓿对土壤铵态氮(NH+4-N)分布影响与NO-3-N不同,深层土壤CK、NPM配施处理NH+4-N含量明显高于施P和裸地处理,不同作物种植系统中以苜蓿连作土壤剖面中NH+4-N含量最高。与其他轮作相比,苜蓿连作在提高土壤剖面供N能力方面有较好作用。  相似文献   

6.
南方酸化红壤钾素淋溶对施石灰的响应   总被引:2,自引:1,他引:1  
为探究石灰施用的长期和短期效应对酸化红壤钾素的影响,依托始于1990年的国家红壤肥力与肥料效益监测长期定位试验,选取化肥氮磷配施(NP)、氮磷钾配施(NPK)、氮磷钾配施+半量秸秆还田(NPKS)及其增加常量石灰(NPL、NPKL、NPKSL)6个处理。室内土柱淋溶试验设置0 L、0.5 L、1 L和1.5 L石灰施用量,监测田间和淋溶后0 ~ 50 cm土层速效钾和缓效钾含量、pH及淋溶液中钾离子(K+)含量的变化。结果表明:1)施用石灰4年后,与NPKS、NPK、NP相比,各处理均增加了相应土层的缓效钾含量;NPKSL和NPL处理分别增加了0 ~ 40 cm和0~10 cm速效钾含量,增幅分别为2.06 % ~ 36.39 %和27.26 %。2)石灰施用量相同,各处理土壤累积K+淋溶量由大到小依次为NPKS处理、NPK处理和NP处理。施用石灰减少了NPKS和NPK处理淋溶液中累积K+含量,降幅为18.10 % ~ 57.70 %,且K+淋溶率也下降。3)施石灰提高了表层土壤pH;土壤中钾素盈余情况下,石灰当季施用量每增加1 000 kg·hm-2,K+淋溶损失率降低11.7%;施用石灰和施肥是显著影响平均淋溶K+量和K+累积淋溶量的主效应。可见,施用石灰的短期和长期效应均能提高表层土壤pH;减少速效钾在剖面的运移,增加剖面下层缓效钾的含量;土壤淋溶K+量、累积K+淋溶量和K+淋溶率均随土壤中速效钾含量的增加而增加,随施用石灰而降低。合理的石灰用量能够有效降低酸化红壤K+淋溶损失风险。  相似文献   

7.
[目的] 为探究高寒湿地土壤碳氮组分对气候变暖和氮沉降的响应特征。[方法] 以尕海湿地沼泽草甸为研究对象,采用开顶箱增温(OTC)和外源氮素(NH4NO3)添加模拟未来气候变暖及氮沉降试验,分别设置对照(CK)、增温(W)、施氮(N)和增温施氮(WN)4种处理。在试验进行1.5年后对土壤碳氮组分含量进行测定。[结果] (1)开顶箱增温装置提高0—20 cm土层平均温度1.126℃,显著降低0—10 cm土层土壤含水量(SMC)、pH、全氮(TN)、微生物量氮(MBN)、铵态氮(NH4+—N)、有机碳(SOC)和可溶性有机碳(DOC)含量,提高硝态氮(NO3-—N)含量。(2)施氮显著降低NH4+—N、SOC和10—20 cm土层微生物生物量碳(MBC)及DOC含量,增加土壤TN、MBN和NO3-—N含量。(3)增温施氮显著增加土壤SMC、TN、NO3-—N和MBC含量,降低MBN、NH4+—N和DOC含量。(4)相关分析显示,土壤水分与各理化因子均存在正相关性,土壤碳氮组分间均呈正相关性。[结论] 模拟增温施氮缓解尕海湿地植物生长的温度和氮的限制,促进TN的积累,对土壤微生物量碳氮影响较大,导致土壤微生物量碳氮及分布特征发生转换。  相似文献   

8.
尿素水解中NH3对根系的抑制作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了石灰性土壤和低钾酸性土壤上由于尿素水解引起pH升高,产生NH3对作物生长的影响,特别是对根系发育的有害作用。盆栽试验表明,石灰性土壤上表施尿素200ppmN后播种小麦,抑制了种子的生根和发芽。分蘖末期追施尿素200 ppmN,在10天中小麦根系干物质的积累量与对照相比反而有减少趋势,在低钾的酸性土壤上也观察到同样的现象。受尿素伤害的植株含钾低,并出现类似缺钾的症状。用一定量的NH3处理植株,其体内K+和游离氨基酸出现大量的外溢。气态NH3为5微克/厘米3时,水稻、小麦根系就出现明显的受害症状。在低浓度,短时间处理后取消NH3的作用,则受害植株尚能恢复生长。尿素施入后盖土再播种,种、肥分隔条施以及尿素掺泥炭混施等措施都可防止NH3逸失,减缓对作物根系的有害作用。  相似文献   

9.
钱泽澍  闵航  莫文英 《土壤学报》1985,22(2):144-149
本试验观察了在杭州生态条件下土壤中不同NH4+-N水平对水稻根际固氮活性的影响。试验的结果表明:1.NH4+-N肥在一定时间内对水稻根际固氮活性具有明显的抑制效应,施用量越大,其抑制作用越严重。土壤速效氮浓度与水稻根际固氮活性之间呈高度(或中度)负相关,不同生育期两者的相关系数r值在-0.4288—0.9945之间。2.土壤速效氮对水稻土柱固氮活性抑制的起始浓度为20ppm。3.NH4+-N对水稻根际固氮活性的抑制时间随施用量而不同,低氮区在20天左右,中氮区和高氮区在25—30天左右。此后施氮区对水稻根际固氮活性具有促进作用。  相似文献   

10.
中国的冻土   总被引:17,自引:0,他引:17       下载免费PDF全文
中国冻土面积大,分布规律特殊,对于研究世界冻土的形成、分布具有重要意义。中国冻土有高纬度冻土和高海拔冻土两种。高纬度冻土分布于东北地区,北纬53—46°N,面积38.2×104km2,纬度高而海拔较低,这类冻土的一系列特征主要受高纬度的影响;高海拔冻土主要分布于青藏高原和西部高山,面积176×104km2,占北半球高海拔冻土面积的75.7%,居世界首位,大部分分布于北纬35°N以南,最南达27°左右,纬度低而海拔高,其一系列特征主要受海拔高度的影响。两类冻土的土壤类型和性状各具特点,差异很大。高纬度冻土具有湿寒特点,植被为森林,土壤有机质含量高,pH低,不含CaCO3,盐基不饱和;高海拔冻土具有干寒特点,植被为草原和荒漠,土壤有机质含量很低,PH高,盐基饱和,大多富含石灰,部分含石膏磐层。目前中国及国际上均未将冻土列为独立的土壤分类单元,我们建议在中国土壤中,增设一个冻土土纲,下设正常冻土(高纬度冻土)和高寒冻土(高海拔冻土)两个亚纲。  相似文献   

11.
Abstract

In the course of routine analytical work, wide discrepancies were noted between results from alternative, established procedures for measuring calcium carbonate (CaCO3) in soils. In one procedure (Method I), the CaCO3 content is calculated from the weight of CO2 lost after treating a sample with excess hydrochloric acid. Results of an investigation using this procedure in our laboratory tended to be inaccurate and poorly reproducible. The method was therefore modified by using as the reaction vessel a plastic vial with pin‐holes in its lid, instead of a glass Erlenmeyer flask with a stopper removed at intervals, to let CO2 escape. Further, the weighed soil sample was placed in a disposable cup inside the vial of acid, instead of being weighed and transferred. These modifications greatly improved accuracy and reproducibility of results obtained by Method I. In another procedure, the CaCO3 content was calculated from the pH of a suspension of the soil in dilute acetic acid (Method II). This method tends to give results appreciably greater than zero for acidic soils containing no free lime. This undesirable tendency was reduced after Method II was modified by calibrating it against soils spiked with known amounts of CaCO3, instead of against CaCO3 alone. As a result of the modifications, agreement between results for soils analyzed by both methods was greatly improved. Method I is considered more suitable for soils with appreciable free lime, or for liming materials, and Method II for soils with low CaCO3 content (.5% or less).  相似文献   

12.
Abstract

The adsorption of nutrient elements is one of the most important solid‐ and liquid‐phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3, organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r2 values for the Langmuir isotherm were highly significant (r2=0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.  相似文献   

13.
There is considerable interest in the use of coal combustion byproducts as soil liming materials in agricultural production, but there is concern that such use may be detrimental to the quality of agricultural soils. To evaluate these byproducts as liming materials and address issues related to soil quality, we compared the influence of different amounts of four combustion byproducts [fly ash and bed ash from a fluidized bed combustion furnace, lime-injected multistage burner residue, and spray dryer residue] and CaCO3 on soil pH and activities of urease, phosphatase, arylsulfatase, and dehydrogenase in an acidic soil. Studies comparing the influence of the combustion byproducts and CaCO3 on soil pH showed that on a weight basis of application, substantial differences were observed in the ability of these materials to influence soil pH but that such differences decreased markedly after the data were transformed to a CaCO3 equivalent basis of application. Analysis of covariance for these transformed data indicated that whereas the liming abilities of fly ash and CaCO3 were not significantly different when compared on the CaCO3 equivalent basis, those of bed ash, multistage burner residue, and spray dryer residue were less than that of CaCO3. Studies comparing the influence of the byproducts and CaCO3 on soil enzyme activities showed that the effect of these liming materials on the enzyme activities studied was largely due to their influence on soil pH. The relationships obtained between soil pH and enzyme activities in soil amended with the liming materials generally demonstrated the marked similarities in the influence of the combustion byproducts and CaCO3 on these activities when observed within the domain of soil pH. These studies showed that the combustion byproducts tested functioned as soil liming materials in a manner similar to that of CaCO3 and seemed to have little adverse effect on soil quality.  相似文献   

14.
This study investigated those soil factors related to iron (Fe) chlorosis between Fe status of peach leaves and some soil properties in the Antalya region of Turkey. The total Fe content of leaves was negatively correlated with soil pH and the organic matter content of the soils. Extractable Fe (by 1N HCl) was negatively correlated with the calcium carbonate (CaCO3) and bicarbonate (HCO3‐) content of the soils. In addition, both total‐ and extractable‐Fe contents of leaves were also negatively correlated with the copper (Cu) content of the soils. On the other hand, significant correlations were found among the Fe index, P/Fe ratio of leaves, and soil pH, phosphorus (P), zinc (Zn), and Cu content of the soils. It appears from these studies that high pH, and the CaCO3, HCO3‐, and Cu contents are effective soil factors affecting the availability of Fe and its uptake by the peach trees, and these soil factors were associated with severity of Fe chlorosis in the studied area.  相似文献   

15.
Abstract

Calcareous soils vary considerably in their characteristics which need to be considered in soil test interpretation. Yield data from 22 corn and 13 wheat field experiments were used to relate yield response, expressed in relative terms (Y%), to phosphorus (P), potassium (K), and zinc (Zn) soil test results based on NaHCO3, NH4OAc, and DTPA extraction procedures, respectively. The experiments were conducted for three years on newly reclaimed desert soils in Egypt. Relative infuence of different soil components was evaluated as modifiers of the critical levels (CL) based on 95% of maximum yield. The CL values obtained for corn were close to those for wheat. Therefore, results presented here were based on the combined data of the 35 corn plus wheat experiments. With Olsen P, a backward elimination regression procedure indicated that the variance in Y% that was accounted for increased in significance from 21 to 52% by including the CaCO3 content of the soil. The CL increased from 9 to 17 mg P/kg as CaCO3 increased from 1 to 30%. Coarser textured soils had lower CLs for K than finer textured ones. The critical exchangeable K levels were 200 and 500 mg K/kg for soils having more than 85% and 85 to 45% sand, respectively. With an increase in organic matter content, the response to applied Zn was observed at higher levels of extracted Zn. The DTPA‐critical levels for Zn were found to be 0.5 and 0.8 mg Zn/kg for soils containing less than 1% and 1.7% organic matter, respectively.  相似文献   

16.
Modern agricultural systems have to provide enough micronutrient output to meet all the nutritional needs of people. Accordingly, knowledge on micronutrient status in soil and crop edible tissues is necessary. This study was carried out to investigate zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) concentration of calcareous paddy soil and the relative rice grain. Rice crops (straw, hull, and grain) and associated surface soils (0–25 cm) were collected from 136 fields and analyzed for total and diethylene triamine pentaacetic acid (DTPA) available Zn, Fe, Mn, and Cu. The DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg−1), while the concentrations of DTPA Fe, Mn, and Cu were sufficient. The grain Zn concentration of more than 54% of the rice samples was less than 20 mg kg−1. About 55% and 49% of the rice samples were deficient in Mn and Cu, respectively, while the Fe concentration in rice grains was sufficient. A significant negative correlation was found between the CaCO3 content and soil DTPA-extractable Zn, Fe, Mn, and Cu. There were significant relationships between the total soil phosphorus and DTPA-extractable micronutrient concentrations. By considering the average daily rice consumption of 110 g per capita, the Zn, Fe, Mn, and Cu intake from rice consumption was estimated to be 2.4, 7.7, 1.6, and 0.7 mg for adults, respectively.  相似文献   

17.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

18.
Trema micrantha (L.) Blume is a neotropical multipurpose tree species, which could be used in forest restoration and agroforestry. Several cultures, however, require liming to satisfactory yields in acid soils. Therefore, it is important to determine the effect of liming to this native species, in order to include it in agroforestry associations. The aim of this work was to evaluate the morphological changes of T. micrantha, including the calcium oxalate (druses) and cystolith density, as caused by the calcium carbonate (CaCO3) addition. The assay included three treatments: control, pH 5.3; treatment 1, pH 5.5; treatment 2, pH 6.0. The liming reduced the root biomass and increased the shoot biomass. The leaf specific mass and nutrients concentration were not changed. The leaves presented higher density of druses in treatment 2. The cystolith density was not modified, but the cystolith size was increased by the liming. The results indicate liming tolerance in this species.  相似文献   

19.
Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption‐based models for determining the clay fraction. The applicability of such models to semi‐arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption‐based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3 on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4.2, respectively). The model that considers hysteresis had better prediction accuracy than the other two that do not. Moreover, the prediction errors of all three models arose from under‐prediction of the clay content. The amount of hygroscopic water scaled by clay content decreased with increasing CaCO3 content. The low organic carbon content of the soils and the low fraction of low‐activity clay minerals like kaolinite suggested that the clay content under‐predictions were due to large CaCO3 contents. Thus, for such water‐sorption based models to work accurately for calcareous soils, a correction factor that considers the reduction of water content due to large CaCO3 content should be included.  相似文献   

20.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号