首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
不同来源腐殖酸的组成和性质的研究   总被引:30,自引:1,他引:30  
贺婧  颜丽  杨凯  马明贺  刘晔  崔桂芳 《土壤通报》2003,34(4):343-345
本研究从三种有机物料草炭、褐煤、风化煤中提取腐殖酸,对其组成和性质进行了测定,同时对胡敏酸进行酒精沉淀分级。研究结果表明:褐煤胡敏酸氧化度和芳香度最高,其次为风化煤胡敏酸,最后是草炭胡敏酸;风化煤富里酸的氧化度和芳香度最高,其次为褐煤富里酸和草炭富里酸。胡敏酸各级分的回收率均随着级分数的升高而增加。回收率以风化煤胡敏酸最高,依次为褐煤胡敏酸、草炭胡敏酸。  相似文献   

2.
In view of the considerable interest in laboratory-prepared fungal “humic acids” as possible precursors or incorporated structural components of soil humic substances, we degraded four fungal “humic acids” by the relatively mild alkaline cupric oxide oxidation. The oxidation products were extracted into organic solvents, methylated, separated by thin-layer chromatography and identified on a gas chromatographic-mass spectrometric-computer system.Average yields of major degradation products were: (a) aliphatic compounds, 38 per cent; (b) benzene-carboxylic compounds, 25 per cent; and (c) phenolic compounds, 21 per cent. The remaining 16 per cent consisted of a number of dialkyl phthalates. Our data agree with those that we reported earlier when we degraded a number of fungal “humic acids” by the more drastic alkaline permanganate oxidation and show that fungal “humic acids” are enormously complex organic materials containing aliphatic and aromatic structures, (some of which contain N), but only a relatively small proportion of which is phenolic. Most of the aliphatics isolated consisted of alkanes and fatty acids, which are known to persist in soils over long periods of time and are frequently firmly retained by soil humic substances.  相似文献   

3.
Humic acids (HAs) from four soils were fractionated by size exclusion chromatography (SEC) on Sephadex G-75. Three fractions were obtained in all humic acids, collected and assayed by Polyacrylamide gel electrophoresis (PAGE). The unfractionated HA from each soil was used as reference. Each chromatographic fraction formed one electrophoretic zone corresponding closely to one band of the reference sample with some admixture of the fractions preceding or following. The results indicate that fractionation of HAs by tandem SEC-PAGE can be successfully used for obtaining fractions of reduced polydispersity and different electrophoretic mobilities. Pyrolysis/methylation-gas chromatography-mass spectrometry of the full size preparations of HA and fractions with exactly defined molecular size and electrophoretic mobility showed a different distribution in humic components, mainly lipids, lignin derivatives and N-containing compounds.  相似文献   

4.
Humic substance fractions obtained from a degraded loess soil taken from a long-term lysimeter experiment with the fungicide anilazine were incubated in aerated liquid cultures together with native soil microorganisms. Biomineralization, remobilization of [U-phenyl-(14)C]anilazine, respectively, its metabolites, and changes of the humic matrix were observed under variable nutrient conditions. Stimulated microbial activity favored the degradation of nonextractable (14)C-anilazine residues. However, nitrogen deficiency enhanced structural changes in the humic substances, which seemed to be used then as a nitrogen source. Along with the microbial degradation of the humic substances, parts of the bound anilazine residues became remobilized. Furthermore with the use of AMD-TLC, dihydroxy anilazine was detected within the nonextractable residues. The portion of rather weak bondings between the soil organic acids and the anilazine residues turned out to be considerably lower in the humic acids fractions than in the fulvic acids fraction.  相似文献   

5.
The resistance of soil humic material in soil seems to depend on its molecular characteristics. We have studied 12 chemically modified humic samples in mineral soil to identify molecular characteristics connected with their resistance to biodegradation. The treatments, used to introduce changes in the composition, reactivity and N content of the original humic acid (HA), consisted of acetylation, amidation, methylation, nitration, oximation, sulfonation, acid and alkaline hydrolysis, hydrogen peroxide oxidation and fixation of ammonia and of stearic acid. The relations between respirometric data (total mineralization coefficient and mineralization rates at different stages of the 85-day mineralization curve) and a series of HA characteristics (wet chemical analyses, spectroscopic data and relative yields of different pyrolysis products) were examined by correlation and by multiple regression models. The structural characters of HA most directly related to the susceptibility to biodegradation were the concentration of O–alkyl structures and oxygen content mainly in phenolic structures. The aliphatic/aromatic ratio showed no significant correlation with the resistance of organic matter. The fact that the yields of lignin-derived pyrolysis compounds were directly related to carbon mineralization suggested that the structural contribution of domains consisting of preserved biomacromolecules is more important than the neat aromaticity of the HA. The multiple regression models suggested that molecular size of the HA had the greatest influence in the early mineralization stages, whereas the characteristics of the C backbone (concentration of O–alkyl and alkyl carbons) had a greater influence in the advanced transformation stages in the soil. The lack of significant correlations with N concentration indicated that native N forms as well as N-containing groups introduced in peat HA did not have a measurable trophic effect on the biodegradation. The disordered macromolecular structure of the HAs seems to play a greater role in their resistance to biodegradation than the relative amounts of their major structural constituents.  相似文献   

6.
【目的】腐殖酸对磷肥增效的调控效应与其结构性密切相关。本文比较了不同磺化反应方法制备的腐殖酸磷肥对冬小麦磷素利用的影响,为制备调控磷肥专用的腐殖酸增效载体提供依据。【方法】采用磷酸与氢氧化钾反应法制备普通磷肥 (P)、普通腐殖酸磷肥 (HAP),并采用加双氧水、硝酸等方法制备了四种磺化腐殖酸磷肥 (HA1P、HA2P、HA3P和HA4P)。用田间土柱栽培试验方法,在等磷量基础上,设置普通磷肥 (P)、普通腐殖酸磷肥 (HAP)、磺甲基化腐殖酸磷肥 (HA1P)、双氧水+磺甲基化腐殖酸磷肥 (HA2P)、硝酸+磺甲基化腐殖酸磷肥 (HA3P)、双氧水+硝酸+磺甲基化腐殖酸磷肥 (HA4P) 6个处理,同时设置不施磷肥对照 (CK) 处理和施用等量腐殖酸处理 (C-HA、C-HA1、C-HA2、C-HA3、C-HA4)。调查了小麦产量和产量构成及经济效益,分析了0—80 cm土壤有效磷含量。【结果】1) 与CK相比,普通腐殖酸 (C-HA) 和磺化处理腐殖酸 (C-HA1、C-HA2、C-HA3、C-HA4) 对小麦籽粒产量无显著影响。与P处理比较,HAP、HA1P、HA2P、HA3P、HA4P处理的小麦籽粒产量分别提高了6.3%、17.8%、10.1%、17.5%、11.1%,4个腐殖酸磺化磷肥 (HA1P、HA2P、HA3P、HA4P) 处理均高于普通腐殖酸磷肥 (HAP) 处理。2)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA3P、HA4P分别提高小麦地上部磷吸收量12.3%、12.3%、9.2%、10.8%,其中HA1P和HA2P处理最高。3)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA3P分别提高小麦磷肥农学效率23.6%和7.1%。4)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA4P可分别提高0—20 cm土层土壤速效磷含量17.5%、16.2%、17.2%。【结论】磺化腐殖酸磷肥比普通腐殖酸磷肥可以更有效地提高土壤中磷肥的有效性,提高冬小麦对磷素的吸收利用,进而提高冬小麦籽粒产量。四种磺化工艺中,以磺甲基化处理的腐殖酸磷肥 (HA1P) 效果最优。  相似文献   

7.
Three soil humic acids were degraded by a new mild chemical oxidation method using potassium persulfate at pH 2.0. The method degraded 30–40% of the starting material. The type and relative quantities of the products or fragments released as determined by GC/MS varied with the source of the polymers. Humic acid extracted from an Inceptisol yielded fatty, benzenecarboxylic and phenolic acids; humic acid from a Typic Chromoxerert produced largely dialkyl phthalates, and humic acid from an Humic Haplorthod gave only branched and straight-chain fatty acids. It is suggested that the method may be used to advantage as a first oxidant in a sequential degradation.  相似文献   

8.
A humic acid (HA) isolated from a volcanic soil was separated in three fractions of decreasing molecular size (I, II and III) by preparative high performance size exclusion chromatography (HPSEC). The molecular content of the bulk soil HA and its size fractions was characterized by pyrolysis-GC-MS (thermochemolysis with tetramethylammonium hydroxide) and NMR spectroscopy. All soil humic materials were used to evaluate their effects on the enzymatic activities involved in glycolytic and respiratory processes of Zea mays (L.) seedlings. The elementary analyses and NMR spectra of the humic fractions indicated that the content of polar carbons (mainly carbohydrates) increased with decreasing molecular size of separated fractions. The products evolved by on-line thermochemolysis showed that the smallest size fraction (Fraction III) with the least rigid molecular conformation among the humic samples had the lowest content of lignin moieties and the largest amount of other non-lignin aromatic compounds. The bulk HA and the three humic fractions affected the enzyme activities related to glycolysis and tricarboxylic acid cycle (TCA) in different ways depending on molecular size, molecular characteristics and concentrations. The overall effectiveness of the four fractions in promoting the metabolic pathways was in the order: III>HA>II>I. The largest effect of Fraction III, either alone or incorporated into the bulk HA, was attributed to a flexible conformational structure that promoted a more efficient diffusion of bioactive humic components to maize cells. A better knowledge of the relationship between molecular structure of soil humic matter and plant activity may be of practical interest in increasing carbon fixation in plants and redirect atmospheric CO2 into bio-fuel resources.  相似文献   

9.
Seventeen samples of soil humic acids, two fractions of soil fulvic acid sample, and several related compounds such as lignin, tannin, flavonoid and artificial humic substances were decomposed in conc. KOH solution at 180°C. Succinic acid, glutaric acid, phloroglucin, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, 3,4-dihydroxy-5-methoxybenzoic acid, and gallic acid were detected in the degradation products of humic acids. The amounts of these degradation products were discussed in relation to the degree of humification or the sources of the humic acid samples. Succinic acid also resulted from glucose, polymaleic acid, and the humic acid and humin prepared from glucose, but glutaric acid resulted only from glucose humic acid and glucose humin but not from glucose and polymaleic acid. Succinic acid and glutaric acid were supposed to result from the same structural portions in humic acids because of the very significant positive linear correlation between their amounts. p-Hydroxybenzoic, vanillic, protocatechuic, and 3,4-dihydroxy-S-methoxybenzoic acids were presumed to result mainly from lignin structure in humic acids. Soil humic acids yielded small amounts of gallic acid although the yields by hydrolysable tannins were in large amounts. The yields of above-mentioned degradation products from humic acids decreased with increasing degree of humification. Phloroglucin resulting from ftavonoids including condensed tannins were also found in the degradation products of humic substances. Its yield showed no linear correlation with RF value of humic acid, and is presumed to be rather related to the vegetation at the sites of soil sampling.  相似文献   

10.
三江平原典型湿地土壤腐殖质的剖面分布及其组成特征   总被引:10,自引:0,他引:10  
以三江平原腹地挠力河、别拉洪河、浓江河流域自然沼泽湿地为研究对象,研究了典型湿地土壤腐殖质的剖面分布及其组成特征,并探讨了土壤腐殖质与植被类型及土壤全氮含量的关系。三江平原典型湿地土壤草根层和泥炭层中胡敏酸(HA)和富里酸(FA)的累计含量在整个剖面总量中的比例均大于70%,各组分相对含量分别高于35%总有机碳和23%总有机碳,其剖面分布与土壤有机碳(SOC)的变化趋势一致,由表层向下层逐渐减少。除小叶章湿地土壤草根层HA/FA值为0.97外,三江平原典型湿地土壤HA/FA均大于1,其剖面均值为1.4~2.5,表明三江平原湿地为胡敏酸型土壤.腐殖质各组份含量及其HA/FA值因植被类型而异,而与土壤全氮含量呈显著线性相关(p<0.05)。  相似文献   

11.
Specific features of the transformation of humic substances in particle-size fractions of drained soddy-podzolic soils were studied on a field (12 ha) of the Experimental and Educational Center of Lomonosov Moscow State University in Moscow oblast. The field had a clearly pronounced microtopography. Surface-gleyed soddy-podzolic soils (Albic Stagnic Glossic Retisols (Loamic, Aric, Ochric)) of microdepressions with excessive surface moistening and nongleyed soddy-podzolic soils (Albic Glossic Retisols (Loamic, Aric, Ochric)) of elevated positions were examined. These soils were studied before the field drainage and during 25 years after drainage works in the periods differing in conditions of humification and with due account for not only drainage works but also other factors, such as topography and agrotechnology and their joint action. The specificity of transformation of humic substances in the soils and their particle-size fractions was analyzed in the basis of data on the organic carbon content, group and fractional composition of humus, the intensity of individual stages of humification (the neoformation of humic acids and the formation of humates), and the optical density of the fractions of humic acids. The results of the study of these properties in the fine soil fractions (<50 μm) made it possible to assess the response of the clay (<1 μm) and silt (1–5, 5–10, 10–50 μm) fractions to changes in the ecological situation and the role of separate particle-size fractions in the degradation of humus under adverse impacts. Overall, a clear tendency toward worsening of the humus quality was observed in both soils during the 25-year-long period, which is related to the long-term (20 years) agricultural use of the reclaimed field without application of agrochemicals. The features of humus degradation were mainly manifested in the finest (<10 μm) fractions with a general decrease in the humus content, slowing down of the formation of humic acids and humates, and considerable loss of humic acids, including their agronomically valuable fractions HA1 and HA2. The degradation of humus quality in the clay fraction was largely due to the impact of the reclamation (drainage) factor; the degradation of humus quality in the fine and medium silt fractions was mainly due to the negative changes in the agricultural background. Among negative consequences of the worsening humus quality, the lowering of soil fertility, ecological sustainability, and productivity of agrocenoses should be noted.  相似文献   

12.
Three lipid fractions, namely the freely extractable fraction and those associated with humin and humic acid fractions, were obtained from the loamy soil of a carefully maintained long-term experiment located on Deffend ORE field, Poitiers, France. The analyses showed differences in molecular distribution, suggesting different sources and diagenetic states of the source material. Despite a major input of plant material to the soil organic matter, intensive bacterial activity was suspected. Most distributions suggested an increase in the microbial/terrestrial lipid ratio from the free to humin to humic fractions. Molecular evidence of fungal activity, especially in the top layer, was also found in the distributions of n -alkanes and n -alkanoic acids. In the surface horizon A1 alkanes were the major compounds, followed by n -alkanoic acids and sterols. The degraded horizons, poorer in organic matter, i.e. the A2 and B horizons, were dominated by long-chain (>C20) n -alkanoic acids with a strong even-over-odd predominance and C24 and C26 n -alkanols. Sterols had been removed from these horizons through degradation. A comparison of humic acid and humin composition on the basis of Py(methylation)-GC-MS showed that the two fractions produce partly similar pyrolysis products. Most prominent were molecules from plant and microbial carbohydrates, lignin building blocks and linear aliphatic (carboxylic acids, esters) and nitrogen compounds. The investigation showed that while low-molecular-weight soil lipids were highly dominated by compounds derived from the overlying vegetation, pyrolysis data from the corresponding high-molecular-weight fractions reflected the incorporation of microbial biomarkers into the humic-type fractions.  相似文献   

13.
Abstract

Total organic P, humic and fulvic acid‐P associations and inositol phosphates in nine volcanic soils of southern Chile were determined. The concentration of organic P (Po) ranged from 654 to 1942 ppm accounting for 49% to 64% of total soil P. Phosphorus associated to humic (HA‐P) and fulvic acids (FA‐P) accounted for 51–68% and 32–49% of Po, respectively. Inositol penta‐ and hexaphosphates represented 42% to 67% of Po suggesting that significant amounts are associated with both humic and fulvic acids. Po content was significantly correlated to organic C, total soil P and HA‐P. HA‐P and FA‐P fractions obtained from the most representative soil were examined by dyalisis and gel filtration. While approximately 96% of HA‐P presented a molecular weight higher than 100,000 daltons, 53% of FA‐P had a molecular weight under 12,000 daltons. It is suggested that these more labile organic P forms would be more easily mineralized, thus increasing the available P pool.  相似文献   

14.
Humic substances (HS) often are dominant constituents of soil organic matter. In this study 28 fractions of HS were purified and chemically characterized from horizons of three Danish soils differing in texture. A commercial humic acid (HA) was included for comparison. The HS fractions were chemically characterized by CHNS analysis, pH-titration and liquid state 13C-NMR experiments. Amino acids and carbohydrates could clearly be differentiated from other O- and N-aliphatic compounds. The data were analysed by principal component analysis. The analysis revealed greater difference between HS fractions than between locations. The characteristics of the HS fractions were compared with several models in the literature and an average structural model for one HA and one FA fraction is proposed.  相似文献   

15.
Humic acids (HAs), similar to other fractions of humic substances (HSs), have a large number of reactive functional groups enabling them to aggregate in solutions. Regardless of the origin of humic acid (aqueous or soil), this aggregation process is dependent on environmental conditions and strongly influences the mobility of soluble ionic and molecular pollutants. The aim of this work was to monitor the aggregation process of two humic acids isolated from different mineral soils (IHSS Elliot soil HA standard and Rendzic Leptosol HA) in the 2–11 pH range. Changes in aggregate size in HA sols were followed up using dynamic light scattering (DLS), while zeta potential (ZP) measurements in the same pH range were performed applying laser Doppler electrophoresis (LDE) technique. The effect of HA sol concentration and soil source on aggregation was examined as well. Besides, HA samples were characterized using Fourier transform infrared (FT‐IR) spectroscopy. By inspecting HA‐particle‐size dependence on pH, it can be concluded that both HAs in corresponding sols behave as molecular aggregates or supramolecular structures, formed from small individual moieties (sizes < 10 nm) at higher pH values. The ZP vs. pH curve for both HAs revealed the ZP minimum in the 5–7 pH range, caused most likely by dissociation of acidic functional groups prevailing at lower pH values and deaggregation predominating over dissociation at higher pH values.  相似文献   

16.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

17.
《Geoderma》2006,130(1-2):77-96
Base- and acid-hydrolysable fractions of humic acids (HAs) isolated from a forest soil, an agricultural soil and a lignite deposit were analysed, and comparisons were made between the base hydrolysable lipid (bound lipid), carbohydrate and amino acid signatures of the different humic acids.Bound lipids differ depending on the humic acid origin. Their composition were rather similar for the two soil humic acids, with three main lipid classes identified: (i) aliphatic components, (ii) aromatic components and (iii) sterols and triterpenols. The aliphatic subfraction was the most abundant and consisted predominantly of cutin- and suberin-derived moieties some of which could be clearly related to the vegetation. A minor bacterial input was indicated by the presence of short chain α- and β-hydroxyalkanoic acids. Aromatic subfraction contributed to a low amount to the total base hydrolysates and consisted mainly of lignin-derived methoxyphenols. Present in trace amounts, sterols and triterpenols are mainly of higher plant origin. The base hydrolysate from lignite humic acid markedly differs. Bound lipids released from lignite HA comprised almost exclusively aliphatic components, largely dominated by long chain alkanoic acids. Lignin-derived moieties, hardly detected, consisted solely of vanillic and 4-hydroxybenzoic acids indicating a much higher degree of lignin alteration in lignite humic acid. Sterols and triterpenols were absent.Although the composition of monosaccharides released upon acid hydrolysis was rather uniform irrespective of the humic acid origin, the distribution changed with the degree of humification of the HAs. Ratios of (Galactose+Mannose) to (Xylose+Arabinose) increased from soil to lignite humic acids. The high values of the ratios indicate that carbohydrates are primarily of microbial origin.In all humic acids neutral and acidic protein amino acids dominated. Non protein amino acids were only minor components consisting mainly of hydroxy proline and ornithine. The amino acid distributions of both soil HAs were similar. The amino acid distribution of lignite HA resembled that of soil HAs except for the following differences: (1) the absence of hydroxy proline and the greater abundance of ornithine suggesting a higher microbial contribution to the amino acids as the degree of humification increases, (2) the higher contribution of polar amino acids suggesting a preferential preservation of these amino acids possibly by interaction with the humic acid surface through hydrogen bonds.  相似文献   

18.
Humic acids originating from South-Moravian lignite were subjected to a comparative study with the aim to assess the alteration of their physico-chemical properties after various lignite pre-treatments. Physical modification was achieved with two organic acids, such as acetic acid and citric acid and chemical modification by nitric acid and hydrogene peroxide in various concentrations. Elemental analysis, solid-state NMR, GC–MS analysis of polyols and size exclusion chromatography were carried out for chemical–physical characterization of obtained humic acids. Their biological effect, in form of potassium and ammonium humates, was tested on maize (Zea mays) seedlings. In these tests, potassium humates achieved far better overall results than ammonium humates. Results were inter-correlated in order to appraise the influence of humic acids physical and chemical properties on biological activity. Surprisingly, fractions with the lowest molecular size (0–35 kDa) showed no correlation with bioactivity results (Pearson coefficient from 0.05 to −0.4). On the contrary, middle-sized fractions (35–175 kDa) showed highly significant positive correlation (Pearson coefficient up to 0.92) and the highest molecular-size-fractions (275–350 kDa) showed negative correlation (Pearson coefficient up to −0.75). These findings were identical for both potassium and ammonium humates. No connection was found between bioactivity of humates and polyols content which was remarkably high; it reached 150 mg per g of humic acids in the most extreme case of 5% hydrogene peroxide pre-treatment. In the final analysis, the preparation mode bore pivotal responsibility for the control of humic acids biological effect and showed the best results for potassium humates obtained from lignite pre-treated by acetic acid and by 2% hydrogen peroxide.  相似文献   

19.
Fats, oils, and grease (FOG) and source separated organics (SSO) were treated with the microwave-enhanced advanced oxidation process (MW-AOP) at 90 and 110 °C, with varying amounts of hydrogen peroxide dosages. The treatment efficiency, in terms of soluble substrates and volatile fatty acids (VFA), increased with an increase in both temperature hydrogen peroxide dosages. Fatty acids and compounds with carbonyl group and/or hydroxyl group in both initial and treated FOG samples were identified by gas chromatography-mass spectrometry. MW-AOP treatment temperatures and hydrogen peroxide dosages dictated the formation of degradation products. The degradation followed peroxidation mechanism to produce lower molecular weight substrates such as short chain fatty acids which would be less inhibitory to microbes. After the MW-AOP treatment, both SSO and FOG comprised of more soluble and low molecular weight compounds. These compounds included VFA and nutrients that would be readily available for bacterial or plant uptake.  相似文献   

20.
  目的  探究施用不同种类和数量改良剂对矿区复垦土壤水稳性团聚体和有机碳的影响。  方法  在山西省古交市屯兰煤矿复垦6年的地块上设置随机区组试验,在0 ~ 20 cm土层按土壤重量的1%、3%、5%分别施用腐殖酸和泥炭两种改良剂,于施用后1年和2年时两次取样测定0 ~ 20 cm土壤团聚体组成、有机碳含量及其组分,对不同种类和数量改良剂的改良效果进行评价。  结果  施用腐殖酸、泥炭后1年时各处理土壤 > 2 mm水稳性团聚体质量分数均高于对照,增幅为1.53% ~ 62.27%,且土壤水稳性团聚体均以大团聚体(> 0.25 mm)为主;施用改良剂后2年时各处理土壤水稳性大团聚体含量降低,降幅为1.73% ~ 11.35%,土壤团聚体以 < 0.053 mm粒级的团聚体为主。施用改良剂后腐殖酸处理的土壤有机碳储量、固碳量和固碳速率呈先增加后减少的趋势,泥炭处理随泥炭施用量的增加而增加。施用改良剂后土壤 > 2 mm粒级团聚体质量分数与土壤有机碳储量呈显著正相关。施用改良剂能增加复垦土壤矿物结合态有机碳含量,且施用腐殖酸处理的含量高于泥炭处理。施用改良剂后2年时与1年相比,复垦土壤颗粒态有机碳含量呈增长的趋势,土壤铁铝键结合态有机碳含量则呈降低趋势。施用腐殖酸、泥炭可增加复垦土壤羧酸、醇类等官能团含量,显著增加土壤中多糖物质的含量。  结论  在矿区复垦土壤上施用腐殖酸、泥炭可显著增加土壤大团聚体数量,提高土壤有机碳、矿物结合态有机碳和颗粒态有机碳含量及土壤固碳量;随腐殖酸、泥炭施用量增加,土壤固碳速率增加、固碳效率减小;复垦区土壤改良需逐年施用腐殖酸、泥炭等改良剂,才能获得稳定的改良效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号