首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of various storage temperatures on germination of sclerotia ofSclerotium cepivorum Berk. were investigated. Sclerotia buried in soil for 10 weeks at temperatures of 5 and 10 °C were conditioned to a fast germination. When germination was performed at 15 °C and induced byAllium extracts, 50% of these sclerotia germinated within 10 days and the total of germination was over 90%. Sclerotia buried at temperatures of 15, 20 and 25 °C were conditioned to a slow germination. About 50% of these sclerotia could be induced to germinate at 15 °C byAllium extracts. The conditioning by high or low temperatures proved to be reversible.The optimum temperature for germination of the cold (5°C) conditioned sclerotia was 10–20 °C. The optimum temperature for germination of sclerotia conditioned at 20 °C was about 10 °C. WithoutAllium extracts 90%, 80%, 50% and 40% of the sclerotia stored at 5 °C, germinated at temperatures of 10, 5, 15 and 20 °C respectively. Sclerotia stored at 20 °C did not germinate withoutAllium extracts at any temperature.Samenvatting Sclerotiën vanSclerotium cepivorum Berk. werden onder niet steriele omstandigheden bewaard bij verschillende temperaturen. Het effect van de bewaring bij verschillende temperaturen op de kieming werd onderzocht. Het bleek dat sclerotiën, die 70 dagen bewaard werden in zakjes met zand in niet steriele grond bij een temperatuur van 5 °C of 10 °C, geconditioneerd werden tot een snelle, vrijwel volledige kieming. Onder invloed van vluchtige stoffen uit gesnipperde ui en knoflook kiemden meer dan 90% van deze sclerotiën bij een temperatuur van 15 °C. Sclerotiën die bij een hogete temperatuur bewaard werden, namelijk bij 15, 20 of 25 °C, kiemden na de bewaarperiode langzaam bij 15 °C. Ongeveer 50% van deze sclerotiën konden tot kieming gebracht worden onder invloed van ui- en knoflookextract. Sclerotiën die door een koude bewaarperiode geconditioneerd waren, namelijk bij 5 of bij 10 °C, kiemden ook zonder ui-en knoflookextract; 78% en 90% van deze sclerotiën kiemden bij temperaturen van respectievelijk 5 en 10 °C. De sclerotiën die een warme bewaarperiode ondergaan hadden, namelijk bij 15, 20 of 25 °C, kiemden niet zonder ui en knoflook. De optimum temperatuur voor de kieming was 15–20 °C voor sclerotiën die bij 5 °C bewaard waren. De optimum temperatuur voor de kieming van sclerotiën die bij 20 °C bewaard waren was lager, en wel ca. 10 °C.De conditionering door een hoge of door een lage bewaartemperatuur bleek reversibel te zijn. Sclerotiën die eerst bij 5 °C bewaard werden en daarna bij 20 °C onderscheidden zich niet van sclerotiën die continu bij 20 °C bewaard werden. Sclerotiën die eerst bij 20 °C bewaard werden en vervolgens bij 5 °C, kiemden als sclerotiën die continu bij 5 °C bewaard waren.  相似文献   

2.
Coniothyrium minitans grew on all ten solid-substrates (barley, barley-rye-sunflower, bran-vermiculite, bran-sand, maizemed-perlite, millet, oats, peat-bran, rice and wheat) tested, producing high numbers of germinable pycnidiospores (1.9–9.3×108 g–1 air dry inocula). All solid substrate inocula survived better in the laboratory at 5 and 15 °C than at 30 °C for at least 64 weeks.In pot bioassays carried out in the glasshouse and field, soil incorporations of each inoculum almost completely inhibited carpogenic germination ofS. sclerotiorum. In the field bioassay, no sclerotia were recovered after 38 weeks fromC. minitans-treated pots compared to 56% from control pots. In the glasshouse bioassay, 9–30% of sclerotia were recovered after 20 weeks fromC. minitans-treated pots, but 88–100% of these were infected by the antagonist. The antagonist also spread to infect sclerotia in control pots.In larger scale glasshouse trials, single preplanting soil-incorporations of five inocula (barley-ryesunflower, maizemeal-perlite, peat-bran, rice and wheat) controlled Sclerotinia disease in a sequence of lettuce crops, with only small differences between the types of inocula tested. At harvest,C. minitans reduced sclerotial populations on the soil surface and over 74% of sclerotia recovered fromC. minitans-treated plots were infected by the antagonist.C. minitans survived in soil in all solid-substrate inocula-treated plots for at least 39 weeks at levels of 104–105 colony forming units cm–3 soil and spread to infect over 36% of sclerotia recovered from control plots.  相似文献   

3.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

4.
Sclerotium germination in various isolates of S. cepivorum was studied following different cultivation and conditioning treatments. A simple and rapid laboratory test was developed to trigger sclerotial germination under unsterile conditions. In most isolates, sclerotia produced under sterile and unsterile conditions showed a constitutive dormancy immediately after maturing. In contrast to this, the sclerotia of some isolates germinated quite well as soon as they were mature. The dormancy of sclerotia from axenic cultures broke down after storage in soil for 12 weeks. In a few cases sclerotia produced under unsterile conditions germinated remarkably well. Freezing and thawing of sclerotia decreased the ability of most isolates to germinate.  相似文献   

5.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

6.
ABSTRACT The feasibility of developing a forecasting system for carpogenic germination of Sclerotinia sclerotiorum sclerotia was investigated in the laboratory by determining key relationships among temperature, soil water potential, and carpogenic germination for sclerotia of two S. sclerotiorum isolates. Germination of multiple burials of sclerotia to produce apothecia also was assessed in the field with concurrent recording of environmental data to examine patterns of germination under different fluctuating conditions. Carpogenic germination of sclerotia occurred between 5 and 25 degrees C but only for soil water potentials of >/=-100 kPa for both S. sclerotiorum isolates. Little or no germination occurred at 26 or 29 degrees C. At optimum temperatures of 15 to 20 degrees C, sclerotia buried in soil and placed in illuminated growth cabinets produced stipes after 20 to 27 days and apothecia after 27 to 34 days. Temperature, therefore, had a significant effect on both the rate of germination of sclerotia and the final number germinated. Rate of germination was correlated positively with temperature and final number of sclerotia germinated was related to temperature according to a probit model. Thermal time analysis of field data with constraints for temperature and water potential showed that the mean degree days to 10% germination of sclerotia in 2000 and 2001 was 285 and 279, respecttively, and generally was a good predictor of the observed appearance of apothecia. Neither thermal time nor relationships established in the laboratory could account for a decline in final percentage of germination for sclerotia buried from mid-May compared with earlier burials. Exposure to high temperatures may explain this effect. This, and other factors, require investigation before relationships derived in the laboratory or thermal time can be incorporated into a forecasting system for carpogenic germination.  相似文献   

7.
ABSTRACT A predictive model for production of apothecia by carpogenic germination of sclerotia is presented for Sclerotinia sclerotiorum. The model is based on the assumption that a conditioning phase must be completed before a subsequent germination phase can occur. Experiments involving transfer of sclerotia from one temperature regime to another allowed temperature-dependent rates to be derived for conditioning and germination for two S. sclerotiorum isolates. Although the response of each isolate to temperature was slightly different, sclerotia were fully conditioned after 2 to 6 days at 5 degrees C in soil but took up to 80 days at 15 degrees C. Subsequent germination took more than 200 days at 5 degrees C and 33 to 52 days at 20 degrees C. Upper temperature thresholds for conditioning and germination were 20 and 25 degrees C, respectively. A predictive model for production of apothecia derived from these data was successful in simulating the germination of multiple burials of sclerotia in the field when a soil water potential threshold of between -4.0 and -12.25 kilopascals (kPa) was imposed. The use of a germination model as part of a disease forecasting system for Sclerotinia disease in lettuce is discussed.  相似文献   

8.
ABSTRACT Sclerotial germination of three isolates each of Sclerotinia minor and S. sclerotiorum was compared under various soil moisture and temperature combinations in soils from Huron and Salinas, CA. Sclerotia from each isolate in soil disks equilibrated at 0, -0.03, -0.07, -0.1, -0.15, and -0.3 MPa were transferred into petri plates and incubated at 5, 10, 15, 20, 25, and 30 degrees C. Types and levels of germination in the two species were recorded. Petri plates in which apothecia were observed were transferred into a growth chamber at 15 degrees C with a 12-h light-dark regime. All retrievable sclerotia were recovered 3 months later and tested for viability. Soil type did not affect either the type or level of germination of sclerotia. Mycelial germination was the predominant mode in sclerotia of S. minor, and it occurred between -0.03 and -0.3 MPa and 5 and 25 degrees C, with an optimum at -0.1 MPa and 15 degrees C. No germination occurred at 30 degrees C or 0 MPa. Soil temperature, moisture, or soil type did not affect the viability of sclerotia of either species. Carpogenic germination of S. sclerotiorum sclerotia, measured as the number of sclerotia producing stipes and apothecia, was the predominant mode that was affected significantly by soil moisture and temperature. Myceliogenic germination in this species under the experimental conditions was infrequent. The optimum conditions for carpogenic germination were 15 degrees C and -0.03 or -0.07 MPa. To study the effect of sclerotial size on carpogenic germination in both S. minor and S. sclerotiorum, sclerotia of three distinct size classes for each species were placed in soil disks equilibrated at -0.03 MPa and incubated at 15 degrees C. After 6 weeks, number of stipes and apothecia produced by sclerotia were counted. Solitary S. minor sclerotia did not form apothecia, but aggregates of attached sclerotia readily formed apothecia. The number of stipes produced by both S. minor and S. sclerotiorum was highly correlated with sclerotial size. These results suggest there is a threshold of sclerotial size below which apothecia are not produced, and explains, in part, why production of apothecia in S. minor seldom occurs in nature.  相似文献   

9.
Summary. Most freshly-matured seeds of Thlaspi arvense L. (Brassicaceae) were dormant at maturity in May. Seeds sown on soil germinated in autumn and spring, but mostly in autumn. Buried seeds exhumed at monthly intervals and tested in light and darkness over a range of thermoperiods exhibited annual dormancy/non-dormancy cycles. However, the dormant period was short, usually only in April, but sometimes May, and in some years 1–6% of the seeds remained conditionally dormant. After-ripening occurred during summer, and seeds were non-dormant during autumn. Seeds entered conditional dormancy in winter and dormancy in late winter or early spring. When buried dormant seeds were kept at 25/15, 30/15 or 35/20°C for 12 weeks, they gained the ability to germinate to 95–100% at 15/6, 20/10, 25/15, 30/15 and 35/20°C. After burial for 12 weeks at 15/6 and 20/10°C, seeds germinated to 80–100% at 15/6, 20/10 and 25/15°C. but to only 11–64% at 30/15 and 35/20°C. After 4 weeks at 5°C, initially-dormant seeds germinated to 100% at all thermoperiods except 35/20°C, where only 15% of them germinated. However, after 18 weeks at 5°C, only 0–1% of the seeds germinated at all thermoperiods. Most non-dormant seeds exposed to 1, 5 and 15/6°C for 16 weeks were induced into dormancy; 1–15% entered conditional dormancy and thus germinated only at 15/6, 20/10 and 25/15°C. This study indicates that seeds of winter annual plants of T. arvense are non-dormant in autumn and enter dormancy in winter, while those from summer annuals are dormant in autumn and become non-dormant during winter.  相似文献   

10.
Spring-produced seeds of Lamium amplexicaule L. were buried in pots of soil in an unheated glasshouse in June 1978, and at 1–2-month intervals, for 27 months, they were exhumed and tested for germination in light and darkness at temperatures simulating those in the habitat from early spring to late autumn. Freshly-matured seeds were dormant, but by autumn 85% or more germinated in light at 15/6, 20/10, 25/15 and 30/15°C but only 7% or less in darkness. During late autumn and winter germination in light decreased at 25/15 and 30/15 °C but not at 15/6 and 20/10 °C, and germination in darkness increased at 15/6 and 20/10 °C. During late winter and early spring germination in light at 15/6 and 20/10 °C decreased, and seeds lost the ability to germinate in darkness. By the second autumn of burial, seeds germinated to near 100% in light at 15/6 to 30/15 °C and to 10–25% in darkness at 15/6 and 20/10 °C. The cycle of germination responses was repeated during the second winter and spring and the third summer of burial. Autumn-produced seeds were dormant when buried in November 1979, but by spring they germinated to 81 and 36% at 15/6 and 20/10 °C, respectively, in light. These seeds afterripened further during summer. The consequence of seasonal changes in germination responses is that (1) seeds can germinate in the habitat in late summer, autumn and spring but not in early- to mid-summer or in late autumn and winter and (2) during both germination seasons, seeds produced during the previous spring(s) and/or autumn(s) can germinate.  相似文献   

11.
Freshly harvested seeds of Poa annua L. collected in south Louisiana were stored in moist soil at seven temperatures between 5°C and 35°C. At monthly intervals, seed lots were removed and germinated at each of the seven temperatures. Seed were dormant for at least 1 month at all test temperatures. Seeds stored for 2 months at 30 and 35°C showed conditional dormancy; there was 100% germination at 10 or 15°C, and poorer germination at 5 or 20°C. Seeds started to lose viability after 2 months at 35°C and were dead after 7 months. In seeds stored at 10–30°C, there were increased percentages and a wider range of germination temperatures as storage time or storage temperatures increased. Seeds stored at 10°C remained dormant for 9 months, but by 12 months of storage the seeds germinated only at 5 or 10°C. Nearly all seeds stored at the same temperatures in air dry soil remained dormant for 6 months, regardless of storage temperature. These results differ from other reports of low temperatures breaking seed dormancy in Poa annua L. and suggest an adaptation to subtropical climates.  相似文献   

12.
Physiological dormancy in weed species has significant implications for weed management, as viable seeds may persist in soil seedbanks for many years. The major stimulatory compound in smoke, karrikinolide (KAR1), promotes germination in a range of physiologically dormant weed species allowing targeted eradication methods to be employed. Control of Chrysanthemoides monilifera ssp. monilifera (boneseed), a Weed of National Significance in Australia, may benefit from adopting such an approach. In this study, we hypothesised that seeds of C. monilifera ssp. monilifera exhibit physiological dormancy, germinate more rapidly as dormancy is alleviated, show fluctuations in sensitivity to KAR1 and form a persistent soil seedbank. Seeds responded to 1 μM KAR1 (40–60% germination) even during months (i.e. March, April, July, August) when seeds were observed to be more deeply dormant (control germination: 7–20%). Seeds germinated readily over a range of cooler temperatures (i.e. 10, 15, 20, 20/10 and 25/15°C) and were responsive to KAR2 (~50% germination) as well. Eradication efforts for C. monilifera ssp. monilifera may benefit from use of karrikins to achieve synchronised germination from soil seedbanks, even at times of the year when C. monilifera ssp. monilifera seeds would be less likely to germinate, allowing more rapid depletion of the soil seedbank and targeted control of young plants.  相似文献   

13.
Aeciospores in Uromyces fabae were found to be repeating spores and play an important role in pea rust outbreaks in the North Eastern Plain Zone (NEPZ) of India. Experiments conducted on pea rust from 2001 to 2004 revealed the dominance of aeciospores at all growth stages of pea in this region. Urediospore production was erratic and was only observed in a few samples of stems and tendrils (5–10%). Inoculation of pea plants either by aeciospores or urediospores resulted in the production of aeciospores. Production of aeciospores was observed at a temperature range of 10–25 °C, with a maximum at 25 ± 2 °C. Among the different growth stages of pea, the pod formation stage was highly susceptible and produced the maximum number (744) of aecidia/leaf at 20–25 °C. Significant effects of growth stages and temperature were also noticed for pustule number. Urediospore production mainly coincided with the senescence of the pea plants. Maximum germination (2%) of aeciospores was observed at 25 °C, whereas maximum urediospore germination (3.5%) was at 15 °C. Temperatures > 15 °C decreased urediospore germination. A relative humidity (RH) of 100% was favourable for aeciospore germination while 98% RH favoured urediospore germination. Typical histo-pathological behaviour of the aeciospores was observed.  相似文献   

14.
The transmission of Stagonospora nodorum from four naturally infected winter wheat seedlots was quantified in controlled environment germination chambers at 9, 13, 17, 21, and 25 °C. Seedlings were harvested when the second leaf began to emerge. Coleoptiles and first seedling leaves were examined for the presence of lesions caused by S. nodorum. First leaves were incubated on Bannon's medium for 2 weeks, after which they were examined for pycnidia of S. nodorum. Transmission to the coleoptile occurred at all temperatures, but decreased from 100% to 72% as temperature increased from 9 to 25 °C. Transmission to the first leaf was less, dropping from 37% to 2% as temperature increased from 9 to 25 °C. At least 44% of infected first leaves were symptomless at all temperatures, with 96% of infected leaves showing no symptoms at 25 °C. Transmission to seedling leaves occurred over a broad temperature range. Under the high densities at which wheat is sown, a significant number of infected seedlings per unit area may originate from relatively low initial seed infection levels and transmission efficiencies.  相似文献   

15.
Spring-produced seeds of Lamium amplexicaule L. were dormant at maturity in May and after-ripened when buried and stored over a range of temperatures, becoming conditionally dormant at low (5, 15/6 and 20/10°C) and non-dormant at high (25/15, 30/15 and 35/20°C) temperatures. Conditionally dormant seeds germinated to high percentages at 5 and 15/6°C, and non-dormant seeds germinated to high percentages at 5, 15/6, 20/10, 25/15 and 30/15°C. Seeds that became conditionally dormant at 5°C afterripened completely (i.e. became non-dormant) after transfer to 30/15°C. Buried seeds that became non-dormant in a non-temperature-controlled glasshouse during summer were still non-dormant after 12 weeks of storage at 30/15°C, while those stored at 5°C for 12 weeks had entered conditional dormancy. Thus, low temperatures cause reversal of the afterripening that takes place at high temperatures, but not that which takes place both at low and at high temperatures. Low winter temperatures cause dormant autumn-produced seeds and non-dormant seeds in the soil seed pool to become conditionally dormant. The ecological consequences of these responses to temperature are discussed in relation to the timing of seed germination in nature.  相似文献   

16.
When sclerotia of a Canadian isolate of Sclerotinia sclerotiorum were exposed to temperatures of – 10 or– 20 C for 4 weeks, their germination behaviour changed from carpogenic to myceliogenic type. Mycelial growth from sclerotia exposed to– 20 C was more vigorous than that from sclerotia exposed to– 10 C. The mode of germination in sclerotia treated with above-freezing temperatures of 0 5, 10. 15. 25 or 30 C did not change: they retained the capacity for carpogenic germination. The possible epidemiological impact of this low-temperature induction of myceliogenic germination on the development of sclerotinia wilt of sunflower seedlings in western Canada is discussed.  相似文献   

17.
Seeds of Viola arvensis collected in different years and in different months within those years were buried in soil under natural seasonal temperature cycles, and changes in their germination requirements monitored. Seeds were dormant at maturity in May or June, but nondormant by autumn. During winter, some seeds entered dormancy, while others entered conditional dormancy, i.e. retained the ability to germinate at 15/6 and 20/10oC but not at other thermoperiods. Dormant and conditionally dormant seeds became nondormant the following summer. Seeds collected in 1981 exhibited an annual dormancy:nondormancy cycle, while those collected in 1982 exhibited an annual conditional dormancy:nondormancy cycle. The type of dormancy cycle found in these seed lots during their first year of burial persisted in subsequent years. Thirty–five and 36% of seeds collected in May 1983 and 1986, respectively, were conditionally dormant the following May, while only 5 and 9% of those collected in the same field in June 1983 and 1986, respectively, were conditionally dormant. Dormant seeds collected in 1981,1982 and 1984 and buried at 5oC during summer germinated to 0, 33 and 0% respectively, at 15/6oC in autumn. After the 1982 seeds became nondormant during summer, only 25% entered conditional dormancy when buried at 5oC, but after the 1981 and 1984 seeds became nondormant, 100% entered conditional dormancy at 5oC. Thus, the persistent seed bank of V. arvensis at a population site may consist of seeds with an annual dormancy:mondormancy cycle and others with an annual conditional dormancy:nondormancy cycle. This is the first report of the two types of annual seed dormancy cycles in the same species.  相似文献   

18.
The influence of depth of inoculum on white rot and plant growth, and the response of sclerotia ofSclerotium cepivorum Berk. to artificial onion oil, at various depths in soil, was investigated.Field tests showed that effects of depth of inoculum were apparent 12 weeks after sowing and by week 14, sclerotia buried at 0–2, 10–12 and 18–20 cm reduced onion growth by 75, 56 and 37% in comparison with controls. The results indicate the importance of correct placement of treatments, such as onion oil, in soil to achieve maximum levels of disease control. In vitro tests in closed containers at 15°C showed that between 50–70% of sclerotia ofS. cepivorum germinated on soil treated with artificial onion oil. Production of secondary sclerotia was restricted to 0.5% of those which germinated. Application of oil at 10 cm depths in columns of soil caused germination of 60–70% of sclerotia at 3, 6, 14 and 17 cm over 4 weeks at 15°C. Germination at the soil surface was reduced. In field plots onion oil and one of its components, diallyl disulphide, reduced recovery of introduced sclerotia by 70%.Samenvatting Het effect van de diepte in grond waarop het inoculum vanSclerotium cepivorum berk. zich bevindt op het optreden van witrot in ui en op de ontwikkeling van de uieplant werd onderzocht. Ook werd de uitwerking van in grond geïnjecteerde uienolie op de op verschillende diepten in grond geplaatste sclerotiën bestudeerd.In veldexperimenten werd na 12 weken een duidelijk effect van de diepte van het inoculum op de ontwikkeling van de planten waarneembaar. Na 14 weken bleken sclerotiën die op 0–2, 10–12 en 18–20 cm diepte in grond waren geplaatst de groei van de uieplanten met respectievelijk 75, 56 en 37% te hebben verminderd ten opzichte van de controleplanten. Deze resultaten wijzen er op, dat voor een zo goed mogelijke bestrijding van witrot, de diepte in grond waar middelen zoals uienolie moeten worden toegediend, van grote betekenis kan zijn.Bij in vitro toetsen in gesloten Conway-schalen bij 15°C kiemde 50–70% van de sclerotiën vanS. cepivorum op het oppervlak van grond die behandeld was met synthetische uienolie. De vorming van secundaire sclerotiën beperkte zich tot 0,5% van het aantal gekiemde sclerotiën. Toediening van uienolie op 10cm diepte in grondkolommen veroorzaakte de kieming van 60–70% van de sclerotiën op 3, 6, 14 en 17 cm diepte over een periode van 4 weken bij 15°C. Bij het grondoppervlak was de kieming lager. In veldexperimenten werd na behandeling van grond met uienolie en met een bestanddeel daarvan, diallyl-disulfide, het aantal in grond geïntroduceerde sclerotiën dat kon vorden teruggevonden, met 70% gereduceerd.The senior author was a visiting scientist of the Plant Research Institute, Melbourne, Australia who received a scholarship administered by the International Agricultural Center (IAC) from the Netherlands Ministry of Agriculture.  相似文献   

19.
Grendene  A.  Marciano  P. 《Phytoparasitica》1999,27(3):201-206
The effects ofSclerotinia sclerotiorum live and autoclaved sclerotia, and sclerotial exudates, and commercial oxalic acid were testedin vitro on sevenConiothyrium minitans strains differing in aggressiveness towardsS. sclerotiorum. Only sclerotial exudates and autoclaved sclerotia affected the mycelial growth rate of almost all the strains tested, whereas a change in theC. minitans mycelial growth pattern was observed in the presence of autoclaved sclerotia and live sclerotia germinating by the myceliogenic eruptive germination. In addition, sclerotial exudates had a stimulatory effect on spore germination. These findings indicate that the various treatments could influence theC. minitans strains regardless of their aggressiveness.  相似文献   

20.
Cardinal temperatures for mycelial growth ofPhytophthora porri on corn-meal agar were <5 (minimum), 15–20 (optimum) and just above 25 °C (maximum). The number of infections after zoospore inoculation of young leaf plants was relatively low at supra-optimal temperatures, but was not affected by sub-optimal temperatures. Even at 0 °C plants were infected. The incubation periods needed for symptom formation were 36–57 d at 0 °C, 13–18 d at 5 °C, and 4–11 d at > 11 °C, and were fitted to temperature between 0 and 24 °C with a hyperbolical model (1/p=0.00812*T+0.0243). Oospore germination, reported for the first time forP. porri, was strongly reduced after 5 h at 45 °C, and totally absent after 5 h at 55 °C. Soil solarization for six weeks during an exceptionally warm period in May–June 1992 in The Netherlands raised the soil temperature at 5 cm depth for 17 h above 45 °C, but did not reduce the initial level of disease in August significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号