首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The inheritance of Fusarium head blight (FHB) resistance was investigated in eight western European wheat lines using a half-diallel of F1 crosses. The parents and F1 crosses were point-inoculated, with a highly aggressive isolate of Fusarium graminearum, in replicated field and glasshouse trials. Type II resistance was assessed by measuring the % FHB spread and % wilted tips. There was a good correlation between the two disease parameters, % FHB spread area under the disease progress curve (AUDPC) and % wilted tips AUDPC (r = 0.86, P < 0.01). Correlation coefficients between the field and glasshouse environments were r = 0.46 (P < 0.01) for % FHB spread AUDPC and r = 0.40 (P < 0.05) for % wilted tips AUDPC. Both general combining ability (GCA) and specific combining ability (SCA) effects influenced the inheritance of FHB resistance, suggesting that in this set of parents both additive and non-additive (dominance or epistatic) effects influence the inheritance of type II FHB resistance. Highly significant GCA-by-environment (P < 0.0001) and SCA-by-environment (P < 0.005) interactions were also observed. Specific combinations of western European wheat varieties were identified with type II FHB resistance at a level equal to or more resistant than the winter wheat variety ‘Arina’.  相似文献   

2.
Reciprocal crosses were made between resistant hexaploid spring wheat cultivars/lines Sumai 3, Ning8331, and 93FHB21, and susceptible tetraploids Stewart 63 and DT486 to generate 35 chromosome pentaploids. Four heads from each of five F1 pentaploid plants from each cross were screened with Fusarium graminearum for fusarium head blight (FHB) reaction. No pentaploid was as resistant to FHB as the resistant parents. Pentaploids derived from several crosses were more resistant than the susceptible parents, a few were more susceptible, and all plants from crosses with 93FHB21 failed to survive. Most viable seeds were obtained from the cross Sumai 3 × DT486. From this cross four of the five F1 pentaploid parents were fertile and 354F2 seeds derived from these four pentaploids were sown and evaluated for their FHB reaction. The majority of F2 plants from pentaploids 1 and 3had the visual appearance and level of resistance of Sumai 3, whereas progeny from pentaploids 4 and 5 were more varied morphologically and generally more susceptible. Forty-three of the screened F2 plants were tested for the presence of specific D chromosomes by wheat microsatellite analysis. There was no relationship between presence/absence of D chromosomes and FHB reaction. Twenty-four lines had all D chromosomes present of which 10 were intermediate-susceptible and 14 were resistant to FHB. Three lines, one resistant and two intermediate, had no D chromosomes. The remainder had between 1 and 6 of the D chromosomes present and ranged from resistant to susceptible in FHB reaction. It appears that FHB resistance is not conferred by the D genome of Sumai 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The most effective strategy to control Fusarium head blight (FHB), a devastating disease of small‐grain cereals, is breeding resistant cultivars. This resistance study of F1 crosses, F2 and backcross generations of triticale estimates heterosis, general and specific combining ability (GCA, SCA), additive and dominance effects and compares parents with segregating generations. The genetic material consisted of 10 parents with their 45 F1 crosses and of six parents with their 15 F2 progeny and backcrosses to each parent. Genotypes were grown in various environments and artificially inoculated with an aggressive isolate of F. culmorum. FHB was assessed, by visual rating, as the mean of four to five individual ratings of disease development. Heterosis for FHB was of little importance. The correlation between the FHB rating of F1 crosses and their mid‐parent performance was close. GCA was the predominant source of variation, although the significance of the SCA variance also implied non‐additive allelic interaction. The preponderance of additive gene effects is encouraging for increasing resistance by a recurrent selection programme. The relationship between the GCA effect of a parent and its per se performance was close, which gives the possibility of predicting FHB resistance in F1 crosses. Additive effects were predominant in the F2 progeny and also in the backcrosses. Transgressive segregants could not be detected. Searching for them should be postponed to the F3 or later generations.  相似文献   

4.
Summary Ten homozygous winter wheat genotypes representing different levels of resistance to Fusarium head blight were crossed in all possible combinations excluding reciprocals. Parents, F1 and F2 were inoculated with one pathogenic strain of Fusarium culmorum. Data for head blight, observed 21 days after first inoculation (OBS-2), and for the area under the disease progress curve, based on observations 14, 21 and 28 days after first inoculation (AUDPC), were analyzed. The contrast between parents and F1 crosses indicated dommance effects of the resistance genes. Diallel analysis according to Griffing's Method 4, Model 1 showed significant general combining ability (GCA) effects for both F1 and F2; specific combining ability effects were not significant. With the exception of one genotype for which general performance for Fusarium resistance was not in agreement with its GCA, the resistance to F. culmorum was uniformly transmitted to all offspring, and the parents can be described in terms of GCA. It is suggested that in the progenies with one of the awned lines as parent, one resistance gene was linked with the gene coding for presence of awns, located on chromosome 4B. A single observation date, taken at the right time, was as effective in assessing resistance as the AUDPC.  相似文献   

5.
New sources of partial resistance to Fusarium head blight (FHB) in wheat have been identified over the past decade; however, little is known of their breeding value. A 20 parent partial diallel that included resistant genotypes from the U.S., Europe, China and South America was used to evaluate the potential of these sources of resistance as parents in wheat breeding programs. Eight plants replication−1 of each of 190 crosses and 20 parents were point-inoculated with Fusarium graminearum under greenhouse conditions in two replicated experiments. Both general (GCA) and specific combining ability (SCA) were significant. Most of the variance for FHB severity was associated with additive genes; however, estimates for SCA ranged from highly negative to highly positive in both resistant × resistant and resistant × susceptible crosses which suggest that improving FHB resistance through gene pyramiding strategies based on additive genetic variation may be complicated by interaction effects that condition FHB resistance.  相似文献   

6.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

7.
H. Buerstmayr    M. Lemmens    M. Schmolke    G. Zimmermann    L. Hartl    F. Mascher    M. Trottet    N. E. Gosman    P. Nicholson 《Plant Breeding》2008,127(4):325-332
During 2 years and at five locations in Europe, 56 winter wheat genotypes were evaluated for resistance to Fusarium head blight (FHB). The genotypes were both parents and selected recombinants taken from the following populations previously tested for FHB resistance: 'Arina'/'Forno', 'Arina'/'Riband', 'Dream'/'Lynx', G16-92/'Hussar', 'Renan'/'Récital', SVP-72017 × 'Capo' and 'Capo'/'Sumai-3'. In addition, a few control lines were included. FHB resistance was evaluated in replicated experiments under artificial inoculation, disease severity was assessed by repeated visual scorings. The highest level of FHB resistance was found in lines selected from crosses of FHB-resistant winter wheat × 'Sumai-3'. The best lines selected from crosses of moderately resistant winter wheat with susceptible winter wheat were similar in their resistance response to the resistant parent. The level of FHB resistance was correlated with stability of resistance. Susceptible wheat lines tended to exhibit severe symptoms under high disease pressure. The symptoms on resistant lines remained comparatively low even under high disease pressure.  相似文献   

8.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. Identification of resistance gene analogs (RGAs) may provide candidate genes for cloning of FHB resistance genes and molecular markers for marker-assisted improvement of wheat FHB resistance. To identify potential RGAs associated with FHB resistance in wheat, 18 primer pairs of RGAs were screened between two parents (Ning7840 and Clark) and seven informative RGA primer combinations were analyzed in their recombinant inbred lines (RILs). Five PCR products amplified from three primer combinations showed significant association with FHB resistance, and their sequences are similar to the gene families of RGAs. Three of them (RGA14-310, RGA16-462, RGA18-356) were putatively assigned to chromosome 1AL and explained 12.73%, 5.57% and 5.9% of the phenotypic variation for FHB response in the F7 population, and 10.37%, 3.37% and 4.53% in F10 population, respectively; suggesting that these RGAs may play a role in enhancing FHB resistance in wheat. Analysis of nucleotide sequence motifs demonstrated that all the RGA markers contain a heat shock factor that initiates the production of heat shock proteins. A sequence tagged site (STS) marker (FHBSTS1A-160) was successfully converted from RGA18-356, and validated in fourteen other cultivars. Significant interaction between the quantitative trait locus (QTL) on 1AL and the QTL on 3BS was detected. The marker FHBSTS1A-160 in combination with markers linked to the major QTL on 3BS could be used in marker-assisted selection (MAS) for enhanced FHB resistance in wheat.  相似文献   

9.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat.  相似文献   

10.
The genetic constitution of resistance to Fusarium head blight (FHB, scab) caused by Fusarium graminearum in the Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165 was investigated using doubled haploid lines (DHLs) and recombinant inbred lines (RILs). Frequency distributions of DHLs derived from two F1 crosses, Sumai 3 (very resistant to resistant; VR-R) / Gamenya (very susceptible; VS) and Sumai 3 / Emblem (VS), fitted well to 1: 2: 1 (resistant: moderately resistant: susceptible) ratios for reaction to FHB in the field. It is suggested that the resistance of Sumai 3 is controlled by two major genes with additive effects. One of the resistance genes may be linked in repulsion to the dominant suppressor B1 for awnedness with recombination values 15.1 ± 3.3% in Sumai 3 /Gamenya and 21.4 ± 4.3% in Sumai 3 / Emblem. Saikai 165 is a Japanese resistant line derived from an F1 Sumai 3 / Asakaze-komugi (moderately resistant; MR). The data for RILs derived from the cross Emblem / Saikai 165, indicates that three resistance genes control the resistance of Saikai 165. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
G.-L. Jiang    R. W. Ward 《Plant Breeding》2006,125(5):417-423
Fusarium head blight (FHB or scab) caused by Fusarium graminearum is a worldwide serious disease in wheat. Exploitation and genetic studies of elite resistance sources can speed up the development of resistant cultivars. To characterize the inheritance of host plant resistance in two new lines, ‘CJ 9306’ and ‘CJ 9403’, developed from a recurrent selection programme in China, six generations P1, P2, F1, F2, B1 and B2 of four crosses and 137 F6 : 7 recombinant inbred lines (RILs) from one cross were evaluated in the greenhouse for scab resistance using single‐floret inoculation. The data of area under disease progress curve (AUDPC) in F2, backcross (BC) and RIL populations exhibited mono‐modal distributions without clear‐cut demarcations and skewing towards resistance. An additive–dominance model was well‐fitted, additive effects played a predominating role, and dominance effects were also significant. Continuous distributions with two major peaks and one minor peak for the number or percentage of scabby spikelets (NSS or PSS) in segregating populations implied the existence of major genes or quantitative trait loci (QTL) for resistance. The estimates of broad‐sense and narrow‐sense heritabilities based on the six‐generation experiment were 56–76% and 26–67% respectively. The estimates of broad‐sense heritabilities based on anova with RILs were 89–90%. These two improved lines with excellent scab resistance and good agronomic traits are of interest for wheat breeding and production.  相似文献   

12.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Wheat breeders in South Asia are attempting to develop wheat (Triticum aestivum L.) cultivars resistant to Helminthosporium leaf blight (HLB), which occurs mainly as a complex of spot blotch caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, and tan spot caused by Pyrenophora tritici-repentis (Died.) Drechs. Information on the combining ability for HLB resistance in wheat cultivars of South Asia is not available. This study was undertaken to examine the resistance to HLB in nine genetically diverse wheat parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Nine parents were crossed in a half-diallel mating design to produce 36 populations. The F1 and F2 progenies, and the parents were evaluated in replicated field tests at Rampur, Nepal. Multiple disease scores were recorded, and area under the disease progress curve (AUDPC) was calculated to measure disease severity over time. The combining ability analysis was performed using Griffing's Method 2, Model 1. The parents chosen showed wide variation for resistance to HLB. They and the F1 and F2 progenies differed significantly for AUDPC. GCA and SCA effects were significant in both generations suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. Wheat genotypes 'SW89-5422', 'G 162', 'NL 781'and 'Chirya 7' had significantly negative GCA effects for AUDPC in both F1 and F2 generations, suggesting their prime suitability for use in wheat breeding programs to improve resistance to HLB. The estimate of narrow-sense heritability was 0.77 in both generations suggesting that selection for HLB resistance should be effective in these crosses. The results indicate a predominance of additive gene action in the inheritance of HLB resistance in spring wheat.  相似文献   

14.
小麦品种赤霉病抗性的遗传研究   总被引:3,自引:0,他引:3  
利用8个不同抗性小麦品种双列杂交的F1及其亲本,以赤霉病病粒率为抗性指标,研究了小麦赤霉病抗性的遗传。结果表明,参试品种间存在3~4对赤霉病抗性基因的差异,苏麦3号、宁麦9号和扬麦158具有较多控制赤霉病抗性遗传的显性基因,对于减少它们杂交后代的病粒率有较高的一般配合力。小麦赤霉病抗性符合加性-显性模型。赤霉  相似文献   

15.
Z. P. Yang    X. Y. Yang  D. C. Huang 《Plant Breeding》1999,118(4):289-292
The objectives of this study were to compare efficiency of evaluation for resistance to Fusarium head blight (FHB) under two inoculation methods in a recurrent selection programme. Fifty selected homozygous F5 fertile lines, from each of five cycles (C0, C1, C2, C3 and C4) of recurrent selection, and two control cultivars were evaluated in a split-plot design in 1995 and 1996 under the soil-surface inoculation with Fusarium graminearum-colonized kernels and the single-floret inoculation with ascospore suspension. Comparison of the two inoculation methods using means, ranges, coefficients of variation, heritabilities and correlations among infected spikelet rate (ISR), reaction index (RI) and disease index (DI) indicated that FHB resistance could be evaluated with similar accuracy and precision using either of the two inoculation methods. Regressions of disease scores in the soil-surface inoculation on disease scores in the single-surface inoculation were positive and highly significant, showing a strong relationship between both inoculation methods for FHB resistance. The percentage of lines with similar performance for FHB disease scores in both inoculation methods was high. The soil-surface inoculation and single-floret inoculation appear to be useful techniques for evaluating numerous individuals of segregating population and screening advanced homozygous lines for FHB resistance in a recurrent selection programme in wheat, respectively.  相似文献   

16.
Fusarium head blight (FHB) is a highly destructive disease of wheat and other cereals which causes serious mycotoxin contaminations of grain. A number of molecular mapping studies led to the detection of QTL with small to moderate effects on FHB resistance in European winter wheat. Genes involved in the defence reaction of these genotypes remain largely unknown. WIR1 (wheat induced resistance 1) genes have been shown to be upregulated in cereals during attack of various fungal pathogens; however, their role in resistance is ambiguous. In this study, the expression of three WIR1 genes and a gene with high sequence similarity to WIR1 was investigated in European winter wheat genotypes after inoculation with Giberella zeae. Floret tissues of four winter wheat genotypes (Dream, Lynx, G16-92, Hussar) were challenged with G. zeae conidia or water (control) and sampled six times during 0–96 h after inoculation. Quantitative real-time PCR showed that all four genes were highly upregulated in the resistant genotypes compared to the susceptible ones. WIR1b and a gene with sequence similarity to WIR1 genes mapped to chromosome 5DS in the G16-92/Hussar mapping population. Two genes annotated as WIR1a mapped in the interval of a FHB resistance QTL on chromosome 7BS in the Dream/Lynx mapping population. These could be considered possible candidate genes for quantitative FHB resistance.  相似文献   

17.
Summary The resistance sources among various test cultivars of urdbean to Colletotrichum truncatum, a leaf spotting pathogen, were identified and genetics of resistance was worked out by studying F1, F2 and F3 generations of crosses between resistant cultivars and the susceptible cv. Kulu 4 and of those among the resistant parents. The resistance was found to be controlled by single dominant genes and the resistance genes were non-allelic.  相似文献   

18.
Fusarium head blight (FHB) remains a serious problem that causes yield and grain quality losses, and mycotoxin accumulation in wheat production in western Japan. A 3-year field trial with artificial FHB inoculation was conducted to evaluate varietal characteristics of FHB resistance among 31 wheat cultivars/lines cultivated in western Japan, including one standard line. Severity of FHB, frequency of Fusarium-damaged kernels (FDK), deoxynivalenol concentration (DON), nivalenol concentration (NIV), and grain yield showed significant differences among years and among cultivars/lines. Interaction between years and cultivars/lines was also significant in these traits, but F values were larger for cultivars/lines than for the interaction. Correlation analysis showed that cultivars/lines with lower FHB severities tended to have lower FDK, DON and NIV, and a higher yield. Resistance to kernel infection (RKI), residuals calculated by regressing FDK against FHB severity, and resistance to mycotoxin accumulation (RTA), residuals calculated by regressing DON + NIV against FDK, also differed significantly among cultivars/lines. These results indicated that varietal differences in response to FHB symptom development, RKI and RTA exist among wheat cultivars/lines in western Japan. Such information is important to aid producers in controlling the disease and for breeders to improve FHB resistance and reduce mycotoxin accumulation in commercial wheat cultivars.  相似文献   

19.
Variation for resistance to Fusarium head blight in spring barley   总被引:3,自引:0,他引:3  
Fusarium head blight (FHB) is a fungal disease of barley and other cereals, causing substantial yield and quality losses, mainly due to the contamination of the harvest with mycotoxins. We aimed to evaluate genetic variation for resistance to FHB and its association with other plant characters in diverse barley germplasm in order to identify useful lines for resistance breeding. The 143 barley lines consisted of 88 current European spring barley lines and cultivars, 33 accessions from the genebank at IPK Gatersleben, and 22 lines obtained from North American institutions. We conducted artificially inoculated field experiments with Fusarium graminearum Schwabe during two seasons. FHB severity was evaluated by repeated assessment of visual symptoms. On a set of 49 lines several trichothecene mycotoxins were analyzed. Variation for FHB severity was quantitative. The lines with lowest FHB severity were 'CIho 4196' and 'PI 566203'. Also within the European spring barley collection variation for FHB severity was highly significant. There was a significant negative correlation between plant height and FHB severity (r=– 0.55). FHB severity assessed in the field and the amount of deoxynivalenol in the harvested grains were positively correlated (r= 0.87). Several lines with a useful level of FHB resistance were found or confirmed and are recommended as crossing partners.  相似文献   

20.
Root rot of lettuce, which is caused by Fusarium oxysporum f. sp. lactucae (FOL), is a critical problem in the production of lettuce. FOL-resistant lettuce genetic resources have been identified and used in breeding programs to produce FOL-resistant cultivars. However, the genetic characteristics of resistance genes have not been studied in depth and, therefore, no DNA markers are presently available for these genes. In this study, we analyzed the RRD2 (resistance for root rot disease race 2) locus, which confers resistance to FOL race 2. Resistance loci were analyzed using two cultivars of crisphead lettuce: VP1013 (resistant) and Patriot (susceptible). The segregation patterns of resistant phenotypes in F2 indicated a single major locus. To define the positions of resistance loci, a linkage map was constructed using amplified fragment length polymorphism and random amplified polymorphic DNA (RAPD) markers. Quantitative trait loci analysis revealed the position of the major resistance locus. A high LOD score was observed for RAPD-marker WF25-42, and this marker showed good correspondence to the phenotype in different cultivars and lines. We successfully developed a sequence characterized amplified region marker from WF25-42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号