首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary The inheritance of resistance to white-backed planthopper, Sogatella furcifera Horvath, was investigated in a rice, Oryza sativa L., cultivar N22. Resistance to the white-backed planthopper in the cross IR30×N22 appears to be governed by a single dominant gene-designated Wbph. The classification for various characteristics of 397 F3 families of the IR30×N22 cross confirmed earlier results about the monogenic dominant control of resistance to brown planthopper, green leafhopper, and bacterial leaf blight, and about the monogenic recessive control of short stature. Additionally, the genes governing plant height and resistance to white-backed planthopper, brown planthopper, green leafhopper, and bacterial leaf blight were found to segregate independently of each other in these 397 F3 families.  相似文献   

2.
Summary Five hundred F3 lines derived from the cross TN1/IR2061-464-6 were examined for the nature of endosperm and resistance to bacterial blight, brown planthopper, and grassy stunt. TN1 has non-glutinous endosperm and is susceptible to bacterial blight, grassy stunt, and brown planthopper. IR2061-464-6 has a glutinous endosperm and is homozygous resistant to bacterial blight, grassy stunt, and brown planthopper. The F3 data fit the 1:2:1 ratio expected for monogenic control of each trait. A two-way classification for all the traits indicated that these four traits are inherited independently. Thus, it should be possible to recombine these four traits in various combinations in rice varieties.  相似文献   

3.
We have constructed a linkage map of the rice brown planthopper (BPH)resistance gene, Bph1. RFLP and AFLP markers were selected by thebulked segregant analysis and used in the mapping study of 262 F2sthat were derived from a cross of `Tsukushibare', a susceptible japonica cultivar, and `Norin-PL3', an authentic japonicaBph1-introgression line. Twenty markers were mapped within a 28.9-cMregion containing the Bph1 locus on the long arm of rice chromosome12. Combining the result of segregation analysis of BPH resistance by themass seedling test and that of the markers, the Bph1 locus wasmapped within a 5.8-cM region between two flanking markers. The closestAFLP markers, em5814N and em2802N, was at 2.7 cM proximal to theBph1 locus. Together with the previously constructed high-resolutionmap of bph2 locating the locus at ca. 10 cM proximal to the Bph1 locus, this improved version of the linkage map would facilitatepyramiding these two important BPH resistance genes.  相似文献   

4.
结合分子标记辅助轮回选择和田间鉴定的方法, 将三黄占2号的抗稻瘟病基因Pi-GD-1(t)和Pi-GD-2(t)(分别简称G1和G2)、CBB23中的抗白叶枯病基因Xa23 (简称X)和IR65482-7-216-1-2-B(简称IR65482)的抗褐飞虱基因Bph18(t) (简称B)导入温恢845、温恢117和温恢143等3个中籼恢复系,获得了8个兼抗稻瘟病和褐飞虱聚合系,温恢845-G1-G2-B-4、温恢845-G1-G2-B-5、温恢117-G1-G2-X-B-3、温恢143-G1-G2-B-3、温恢143-G2-X-B-9、温恢143-G2-X-B-10、温恢143-G1-G2-B-11和温恢143-G1-G2-B-37。这些聚合系及其与不育系五丰A的测交种,对稻瘟病和褐飞虱的抗性水平接近或略低于稻瘟病抗性亲本三黄占2号和稻飞虱抗性亲本IR65482。部分改良恢复系如温恢117-G1-G2-X-B-3、温恢143-G2-X-B-9和温恢143-G2-X-B-10及其测交种对白叶枯病表现为抗病或中抗。改良恢复系及其测交种在正常条件下的农艺性状与原始恢复系及其测交种相仿或更优,具有生产应用价值。研究结果表明,Xa23在不同恢复系背景下抗性表达完全,而Pi-GD-1(t)、Pi-GD-2(t)和Bph18(t)对稻瘟病和褐飞虱抗性的改良效果与恢复系的遗传背景有关。  相似文献   

5.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

6.
‘大粒香’是著名的香稻品种之一,但对稻瘟病敏感的缺点限制了其推广。本研究利用分子标记YY5-YY8、Bph14P/Bph14N、MS5、Pibdom、Pi-ta、pTA248、Sub1-1,从课题组选育的129株‘大粒香’改良系F4代中筛选同时聚合香味基因badh2,抗褐飞虱基因Bph14和Bph15,抗稻瘟病基因Pita和Pib,抗白叶枯病基因Xa21及耐涝基因Sub1的单株,并从中选择农艺性状较好的单株进行对应基因的表型鉴定,以期获得具有多种抗性的香稻育种新材料。通过PCR技术对改良系F4代的badh2、Bph14、Bph15、Pita、Pib、Xa21和Sub1基因进行分子标记检测,从129个单株中筛选出同时聚合以上7个基因的植株30株,从中选择农艺性状较好的单株17C1389-4-4W进行表型鉴定。咀嚼实验和KOH浸泡-嗅闻实验结果表明17C1389-4-4W具有香味,褐飞虱接种实验结果表明17C1389-4-4W抗褐飞虱级别为3级,稻瘟病菌株Gally接种实验结果表明17C1389-4-4W抗稻瘟病级别为1级,白叶枯菌株PXO86接种试验结果表明17C1389-4-4W抗白叶枯病级别为1级,苗期淹涝实验结果显示17C1389-4-4W耐涝性显著强于亲本。大粒香改良系17C1389-4-4W聚合了多达6个抗性基因,将在多抗香稻育种中发挥重要作用。  相似文献   

7.
Brown planthopper (BPH) is the most devastating insect pest in rice‐growing areas. Information on availability of BPH resistance alleles and their sources enhances BPH‐resistant breeding programmes. In this study, 260 highly diversified rice cultivars or breeding lines were screened for the presence of five major BPH resistance genes (Bph10, Bph13, Bph18, Bph20 and Bph21) using gene‐specific markers. The analysis revealed that 137 of the 260 cultivars possess at least one BPH resistance gene. Bph10 was predominant while Bph20 was the least distributed. Moreover, two and three different resistance gene combinations were found in the cultivars. Molecular markers play an important role in molecular breeding programmes. A tightly linked PCR‐based co‐dominant Bph18 marker was developed, which is cost effective and time effective and simpler than available Bph18 CAPS marker (7312.T4A). We strongly believe that the identified BPH‐resistant cultivars can be used as alternative resistance gene sources and also as resource for novel BPH resistance genes. The developed Bph18 marker will be highly useful in molecular breeding applications of BPH‐resistant breeding programmes.  相似文献   

8.
9.
Summary The genetics of resistance to whitebacked planthopper, Sogatella furcifera (Horvath) in ten resistant cultivars was studied. The reactions of the F1, F2 and F3 populations of resistant varieties with Taichung Native 1, a suspectible check, showed that WBPH resistance is monogenic in nature and governed by dominant gene(s) in Ptb 19 and IET 6288 and recessive gene in eight cultivars viz. ARC 5838, ARC 6579, ARC 6624, ARC 10464, ACR 11321, ARC 11320, Balamawee and IR 2415-90-4-3. Allelic relationship of resistance gene(s) in the test cultivars revealed recessive gene in IR 2415-90-4-3, ARC 5838 and ARC 11324 to be allelic but it was non allelic to the resistance gene in ARC 6624. Cultivars ARC 6579, ARC 11321 and Balamawee have identical gene among themselves but their relationship with IR 2415-90-4-3, ARC 5838, ARC 11324 and ARC 6624 is unknown. The recessive gene in ARC 10464 is non-identical to all other cultivars having the recessive gene except ARC 6624 with which its relationship needs further investigation.  相似文献   

10.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

11.
To improve brown planthopper (Nilaparvata lugens Stål; BPH) resistance of an elite indica cultivar of South China, Hemeizhan (HMZ), we applied marker‐assisted backcross (MABC) to incorporate three BPH‐resistance genes (Bph3, Bph14 and Bph15) into the genetic background of HMZ. In the third backcross (BC3) generation, we obtained near‐isogenic lines (Bph3‐NIL, Bph14‐NIL, Bph15‐NIL and Bph14 + Bph15‐NIL) with more than 96% recovery of recurrent parent genome, and pyramided lines (Bph3 + Bph14‐PYL, Bph3 + Bph15‐PYL and Bph3 + Bph14 + Bph15‐PYL) with more than 89% recovery of recurrent parent genome. These lines showed stronger resistance against BPH than HMZ at seedling and booting stages. The rank of resistance gene effect was Bph3 + Bph14 + Bph15  Bph3 + Bph15  Bph3 +Bph14  Bph14 + Bph15  Bph3  Bph15  Bph14 > none. Compared with HMZ, only Bph3 + Bph14 + Bph15‐PYL had a significant difference in yield per plant, and the lines carrying Bph3 had higher amylose contents, indicating that Bph3 was tightly linked to Wxa allele. These improved lines are good intermediate sources of broad‐spectrum and durable BPH resistance to improve other indica cultivars. Our results demonstrate that MABC is a very efficient approach to improve BPH resistance of elite rice cultivar.  相似文献   

12.
Choosing rice germplasm for evaluation   总被引:2,自引:0,他引:2  
Summary Using the evaluation database on the world collection of rice, Oryza sativa, conserved at the International Rice Research Institute, different sampling strategies for choosing germplasm were compared. Random, stratified, sequential and analysed sets of germplasm were chosen and the frequency of finding resistance to different rice pests, the brown planthopper, green leafhopper and whitebacked planthopper, and diseases, bacterial blight and blast were compared. The frequency of the geographically restricted javanica race of rice was also compared in the different germplasm sets. The results indicate that where no prior information is available to choose germplasm for evaluation, for the same sample number, germplasm representing broad genetic diversity are preferable to other sampling strategies.  相似文献   

13.
褐飞虱是水稻的主要害虫之一,利用水稻抗褐飞虱基因培育抗虫品种是目前公认最经济有效、环境友好的策略。本研究利用水稻功能基因组已克隆的抗褐飞虱基因,通过分子标记辅助选择和常规回交育种相结合的方法,将抗褐飞虱基因Bph6、Bph9、Bph14和Bph15单独和聚合导入到节水抗旱稻恢复系旱恢3号,获得了一系列含有单基因、双基因、三基因和四基因的改良系。采用标准苗期集团筛选法进行褐飞虱抗性鉴定,评价这些基因在旱恢3号背景下的效应及相互作用。表明单基因改良系中, Bph9的抗性最强,且Bph9 Bph6 Bph15 Bph14;在聚合改良系中,抗性均优于单基因改良系,四基因聚合改良系的抗性最强,不同基因型组合的抗性效应是Bph6+Bph9+Bph14+Bph15Bph6+Bph9 Bph6+Bph9+Bph14 Bph6+Bph9+Bph15 Bph6+Bph14+Bph15 Bph9+Bph14+Bph15 Bph14+Bph15。在自然条件下,改良系与旱恢3号在株高、有效穗和千粒重等农艺性状上差异不显著,其他性状与旱恢3号相仿或略差。本试验表明单独和聚合导入Bph6、Bph9、Bph14和Bph15基因能显著提高节水抗旱稻恢复系的褐飞虱抗性,这4个基因的加性效应明显,可为今后节水抗旱稻抗褐飞虱育种提供理论依据和材料基础。  相似文献   

14.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

15.
The rice cultivar ASD7 (Oryza sativa L. ssp. indica) is resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) and the green leafhopper (Nephotettix virescens Distant). Here, we analyzed multiple genetic resistance to BPH and the green rice leafhopper (GRH; Nephotettix cincticeps Uhler). Using two independent F2 populations derived from a cross between ASD7 and Taichung 65 (Oryza sativa ssp. japonica), we detected two QTLs (qBPH6 and qBPH12) for resistance to BPH and one QTL (qGRH5) for resistance to GRH. Linkage analysis in BC2F3 populations revealed that qBPH12 controlled resistance to BPH and co-segregated with SSR markers RM28466 and RM7376 in plants homozygous for the ASD7 allele at qBPH6. Plants homozygous for the ASD7 alleles at both QTLs showed a much faster antibiosis response to BPH than plants homozygous at only one of these QTLs. It revealed that epistatic interaction between qBPH6 and qBPH12 is the basis of resistance to BPH in ASD7. In addition, qGRH5 controlled resistance to GRH and co-segregated with SSR markers RM6082 and RM3381. qGRH5 is identical to GRH1. Thus, we clarified the genetic basis of multiple resistance of ASD7 to BPH and GRH.  相似文献   

16.
河北省地方水(陆)稻品种抗病虫性研究   总被引:1,自引:1,他引:0  
对河北省地方水、陆品种抗两病两虫性进行了鉴定,并在此基础上分析了抗稻瘟病、抗白叶枯、抗褐稻虱、抗白背飞虱品种的分布情况。对抗性频度较高的抗稻瘟病性、抗白叶枯病性从水、陆稻,熟期,不同稻作区等方面作了详细研究。结果表明:抗稻瘟病、白叶枯病品种频度高,分别为45.86%和50.34%,高抗率仅为0.75%和2.05%,抗率分别为24.81%和15.75%;抗褐稻虱、白背飞虱品种频度很低,分别为4.51%和3.34%,高抗褐稻虱品种2个,无抗至高抗白背飞虱品种。抗稻瘟病、白叶枯种质频度和强度均是陆稻高于水稻。纬度、海拔高,气候寒冷的张家口、承德两市稻瘟病抗性强度低;唐山、秦皇岛两市抗性强度高;冀南零星种植亚区抗性强度最高。抗白叶枯病种质分布规律是随着纬度的增加,温热条件的降低呈递减趋势。  相似文献   

17.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

18.
N. Saka    T. Tsuji    T. Toyama    M. Yano    T. Izawa    T. Sasaki 《Plant Breeding》2006,125(2):140-143
The chromosomal location of the resistance gene for green rice leafhopper (GRLH), an injurious insect for rice, has been determined and RFLP markers closely linked to this gene have been identified. The susceptible japonica rice variety ‘Nipponbare’ was crossed with a resistant japonica rice line ‘Aichi42’, in which green rice leaf hopper resistance had been introduced from an indica variety ‘Rantaj‐emas2’, and the 100 F2 plants obtained were used for linkage analysis. The green rice leafhopper resistance gene, Grh3(t), was mapped between RFLP markers C288B and C133A on chromosome 6 and co‐segregated with C81. Of the RFLP markers tightly linked to Grh3(t), C81 was converted to a SCAR marker and C133A to a cleaved amplified polymorphic sequence marker that could distinguish the heterozygous genotype to establish an effective marker‐aided selection system for the GRLH resistance gene.  相似文献   

19.
利用分子标记辅助选择和田间鉴定选择相结合的方法,将抗白叶枯病基因Xa23和抗褐飞虱基因Bph18(t)导入明恢86、蜀恢527和浙恢7954等3个骨干中籼恢复系,获得带有Xa23抗性基因纯合的改良恢复系明恢86-Xa23、蜀恢527-Xa23、浙恢7954-Xa23和携有抗褐飞虱Bph18(t)基因的蜀恢527-Bph18(t)、浙恢7954-Bph18(t),并从蜀恢527/IRBB23 F1和浙恢7954/IR65482 F1复交后代中选育出的带有Xa23和Bph18(t)的双基因聚合系浙蜀-Xa23-Bph18(t)。明恢86-Xa23、蜀恢527-Xa23、浙恢7954-Xa23和浙蜀-Xa23-Bph18(t)对中国和菲律宾的17个白叶枯病菌均表现高抗,蜀恢527-Bph18(t)、浙恢7954-Bph18(t)和浙蜀-Xa23-Bph18(t)对褐飞虱的抗性也达到中抗以上水平。抗性改良恢复系及其与不育系II-32A、沪旱11A的测交种在不接种白叶枯病菌条件下的产量和结实率与原来的恢复系及相应杂交种相仿,但在接种条件下带有Xa23基因的恢复系及测交种的结实率和产量明显优于原来的恢复系及相应杂交种。研究表明,抗性基因Xa23在不同恢复系背景下的抗性表达完全,对恢复系白叶枯病改良的效果明显,而抗性基因Bph18(t)对褐飞虱的改良效果与遗传背景有关。对分子标记回交和复交改良恢复系的抗病虫性进行了讨论。  相似文献   

20.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号