首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H. Z. Dong    W. J. Li    W. Tang    Z. H. Li    D. M. Zhang  . 《Plant Breeding》2007,126(2):169-175
Although heterosis in cotton has been studied for many decades, very little is known about the performance of hybrids derived from Bt transgenic cotton parents. In order to known better the heterosis performance, yield and endotoxin expression in 20 hybrids (F1) and their Bt transgenic parents were examined from 2002 to 2003 (Experiment 1), and the dynamics of source, sink and their ratios in a well‐performing hybrid H01 were investigated in 2004 and 2005 (Experiment 2). Results in Experiment 1 showed an average mid‐parent heterosis of 21.3% and an over check heterosis of 7.6% in lint yield. Considerable heterosis was also detected in boll numbers, boll size and Bt protein content. Of the 20 hybrids, H01 (K0215 × K643) exhibited the greatest heterosis in yield and Bt protein content in 2002 and 2003, while lint yields of H01 were increased 12.6% and 9.1% in 2004, and 11.7% and 8.9% in 2005, compared with K0215 and K643 in Experiment 2, respectively. Significant heterosis for dry matter accumulation and dry matter allocation to reproductive organs and ratio of fruiting forms/total plant (w/w) were also detected in H01. Sources (leaf area, leaf area index, leaf dry weight per plant and diurnal performance of photosynthesis), sinks (number of fruiting nodes, fruiting forms and dry weight of fruiting forms per plant) and the flow from source to sink were significantly enhanced in H01 relative to its parents. Both total N and Bt protein in H01 were higher than those in its parents. Significant correlation was also found between total N and Bt protein in the main‐stem leaves (R2 = 0.877**). It is concluded that there existed considerable heterosis in yield, yield components and endotoxin expression in some Bt transgenic hybrids. Yield advantage of hybrid cotton (F1) over parents can be attributed to improved source, sink and flow, while the enforced expression of Bt genes in hybrid cotton appeared to be due to the enhanced nitrogen level in plants.  相似文献   

2.
以杂交棉石杂2号和新陆早43的F1、F2代及亲本NT2、H2、4-14为试材,通过测定不同生育时期各材料叶面积指数(LAI)、叶倾角(MTA)、冠层光截获率等指标,分析了各指标变化对群体光合物质生产的影响。结果表明,2个杂交棉F1代LAI具有超亲优势,冠层光截获率具有中亲优势; LAI和冠层光截获率具有明显的母系遗传特性,而MTA受到父本的显著影响。F2代冠层结构主要受F1代相关指标和衰退率的影响,LAI中亲优势减小了衰退率; 杂交棉F1代光合物质积累主要受亲本参数和超亲优势的影响,F2代主要受F1代参数的影响。杂交棉光合物质积累最大增长速率和直线增长期开始时间较晚,直线增长期及活跃增长期较长,最终积累量和最大增长速率较高。杂交棉F1代具有明显的光合生产和产量优势,F2代具有一定的产量优势。以选择具有优化冠层结构的亲本为基础,组配具有较大MTA的父本和较大LAI的母本,有利于改善杂交棉光合性能,提高群体光能利用率,进一步挖掘产量潜力,为杂交棉高光效组合的选育及提高F2代应用提供理论依据。  相似文献   

3.
转Bt抗虫棉与常规棉品种间配合力分析及杂种优势研究   总被引:4,自引:1,他引:3  
 利用6个抗虫棉品种作母本,4个常规品种作父本,按NCⅡ设计,对24个组合的杂种F1进行了分析。结果表明,杂种F1具有明显的优势,所研究的13个性状全部具有中亲优势,9个性状具有高亲优势,11个性状具有竞争优势。配合力分析的10个性状中单株铃数、铃重、纤维长度、纤维伸长率和麦克隆值主要受基因的加性效应控制,而子棉产量和皮棉产量主要受基因的非加性效应影响。鲁棉研17是优良的抗虫棉亲本,而冀棉12 是良好的非抗虫棉亲本,组合鲁棉研17×中棉所12在重要农艺性状上优势明显,相对而言纤维品质的改良较难。  相似文献   

4.
为了克服细胞质雄性不育恢复系恢复基因鉴定难和保纯难的问题,选育了丛生铃恢复系、鸡脚叶恢复系、海岛棉恢复系和无腺体恢复系。对这4个标记恢复系进行了产量、品质和光合生理特性的比较。结果表明,丛生铃恢复系的产量、品质和光合生理特性总体表现最优;鸡脚叶恢复系具有早熟、通透好、烂铃少和纤维品质较好的特点;海岛棉恢复系的纤维品质最优,铃数最多;无腺体恢复系除了棉副产品综合利用的优势外,在光合生理特性、产量和品质性状上表现仅次于丛生铃恢复系。4个恢复系的标记性状明显,在三系杂交棉育种、制种和繁种中具有良好的利用价值。  相似文献   

5.
Upland cotton (Gossypium hirsutum L.) hybrids display commercially useful levels of heterosis for lint yield. Cotton lint yield is primarily a multiplicative product of boll number and lint per boll, both of which can be further dissected into sub-components. Relationships among the yield components are complex where they further interact with the environment. To identify different yield components of hybrid cotton lint yield and their relationship with environment, three cotton varieties, DP51, STV474 and LA887 and, their respective hybrids were evaluated for lint yield components across five environments. Heterosis was observed for lint yield as well as yield components. The relationship between heterosis and mean environmental yield was negative for two hybrid combinations, whereas one hybrid showed increased heterosis from low to high yielding environments. Boll number was the major yield component contributing to lint yield. However, yield components contributing to the change in heterosis from low to high yielding environments were different for the three hybrids. The change in lint yield heterosis across environments was correlated with lint per boll and lint per seed for DP51 × STV474 and LA887 × DP51. Whereas, bolls number and boll retention were the main yield components contributing to higher lint yield heterosis of STV474 × LA887 in low yielding environments. Results also reveal effects of parental entries on lint yield as well as relationship of heterosis and environment.  相似文献   

6.
红叶棉花的产量杂种优势研究初探   总被引:2,自引:0,他引:2  
利用综合性状表现较好的3个红叶材料作父本,与15个绿叶转基因棉花新品种(系)组配19个红叶杂交组合,研究了具有红叶标记性状棉花的产量杂种优势表现,结果表明:19个红叶杂交组合子棉产量具有明显的杂种优势,皮棉产量的具有正向中亲优势、正向超亲优势和负向竞争优势,衣分和单铃重具有正向的中亲优势,单株铃数表现正向中亲、超亲和竞争优势,筛选出产量竞争优势在5%以上、综合性状较好的优势组合4个。  相似文献   

7.
本文采用NCⅡ交配设计方法,以9个陆地棉品种(系)配置16个杂交组合,利用加性—显性与环境互作的遗传模型(ADE模型),分析亲本和F1在2013年持续高温干旱条件下望江、九江2个环境下的农艺和产量性状,估算了各项遗传方差分量,分析了性状间各项遗传效应的相关性和各性状的杂种优势。结果表明,农艺和产量性状易受环境条件影响,子棉产量、皮棉产量、单株铃数和铃重的遗传主要受显性效应控制,衣分同时受加性和显性效应控制,子指主要受加性效应控制。遗传相关分析表明,子棉产量和皮棉产量与铃重和衣分呈显性正相关;铃重与衣分呈显性正相关,衣分与子指的加性和显性均为负相关。杂种优势分析表明,中棉所63的铃重、衣分、子指、子棉产量和皮棉产量的群体平均优势达极显著水平,其皮棉产量的杂种优势可以利用至F3。  相似文献   

8.
Summary The characterization of photosynthetic, chlorophyll fluorescence parameters and yield and yield components was compared between two newly developed CMS cotton hybrids (H1, H2) and their parents, as well as currently planted hybrid and conventional cultivars (C1, artificially produced hybrid CCRI 29 and C2, conventional cultivar CCRI 12) under the field condition. The results showed that Pn, Fv/Fm, ΦPSII and qP of hybrids was significantly higher than that of C1 and C2. Furthermore, heterosis was found on photosynthetic parameters in hybrids over their parents at the first four growth stages, while only heterosis over mean of parents (HOMP) was detected in chlorophyll fluorescence parameters. It was clearly shown that one male-sterile line M2 was higher than the hybrids in Fv/Fm, ΦPSII and qP over all growth stages. Significantly positive correlations (P < 0.01) were found between LAI or Yield and Pn, Cs, Tr, Fv/Fm, ΦPSII, or qP, while significantly negative correlations between Ci and LAI or Yield, and no significance between qN and Chl a, Cs and qP were found. It was concluded that CMS hybrid cottons showed better potential to maintain relatively higher photosynthetic ability during the growth, which contributes to the increased lint yield.  相似文献   

9.
The cultivated tetraploid Gossypium barbadense L. cotton produces superior natural fibers for the textile industry in the world. However, the possibility in utilization of heterosis to further increase its lint yield has not been extensively explored. In this study, two commercial US Pima cotton cultivars and three exotic G. barbadense lines, together with all of their possible hybrids in F1 and F2 progeny without reciprocals, were tested for lint yield, yield components, and fiber quality traits in four environments in 2005–2007. With a few exceptions, genotype (G), environment (E), and G × E were all significant or highly significant for all the traits studied. General combining ability (GCA) variances for all the traits in both F1 and F2 were also significant, while specific combining ability (SCA) variances were detected only for lint yield, fiber length, and micronaire in both generations and boll weight in F1. GCA × E was also detected for lint percent, seed index, and fiber length in both F1 and F2, and boll weight in F1, but none of the traits had significant SCA × E. As a group, F1 and F2 out-yielded the parent group by 20–40% and 6–10%, respectively. Mid-parent heterosis (MPH) for lint yield in F1 was generally positive, ranging from ?4.7 to 116.4% with an average of 21.2–48.7%, while lint yield MPH in F2 ranged from ?23.3 to 69.4% with an average of 6.4–12.4%. However, useful heterosis in lint yield was only detected in the hybrid between the two US commercial cultivars Pima S-7 and DP 340. MPH for other traits was low or not detected. MPH in F2 was lower than that in F1 but they were generally positively correlated. The genetic distances (GD) of the parents (based on 467 polymorphic RAPD and AFLP markers) between the five parents was not consistently correlated with MPH and SCA of their hybrids and dominant effects for lint yield and other traits. However, significant and positive correlations between GD of parents and the performance of their hybrids were detected for lint yield, lint percentage, and lint index in both F1 and F2 in most of the tests. GD of parents was also correlated with their GCA and additive effects in lint yield, lint percent, lint index, micronaire, plant height, and elongation. The results suggest that the close correlation between GD and hybrid performance per se was mainly due to the existence of GCA and additive effects from parents.  相似文献   

10.
陆地棉显性无腺体品系杂种优势及配合力研究   总被引:5,自引:0,他引:5  
以7个显性无腺体陆地棉品系和4个常规品种(系)为材料,按NCI设计,对28个组合的杂种F1进行了分析。结果表明。杂种F1具有明显的优势,28个组合所研究的15个性状中全部具有中亲优势,6个性状具有高亲优势,4个性状具有竞争优势;配合力分析的11个性状中,株高、衣分、纤维长度和麦克隆值主要受基因加性效应控制,而子棉产量、皮棉产量、单株铃数、铃重和子指等性状同时受基因加性和非加性效应作用,显无073是丰产的显性无腺体品系,而显无260是较好的优良品系,组合显无073X泗棉2号在重要性上表现较好。  相似文献   

11.
Linghe Zeng  Jixiang Wu 《Euphytica》2012,187(2):247-261
Determination of genetic effects for lint yield and yield components in cotton (Gossypium hirsutum L.) germplasm is critical for its utilization in breeding programs. This study was designed to apply the conditional approach and an additive and dominant model to analyze genetic effects for lint yield and yield components. Forty-eight F2 populations derived from crosses between four existent Upland cotton cultivars as female parents and 12 germplasm lines as male parents were evaluated at two locations in 2008 and 2009. Conditional and unconditional variance components were estimated by the mixed linear model based conditional approach. Lint yield and yield components were mainly controlled by genotypic effects, i.e., additive variance and dominance variance (≥66 % of total phenotypic variation). Lint percentage and lint index had the highest proportions of additive variance component to the total phenotypic variances. SP156 and SP205 had positive additive effects for lint yield and yield components, and were also parents of the most hybrids with positive predicted dominant effects. Therefore, these two lines are good combiners for development of both pure lines and hybrids. Positive additive contribution effects to lint yield from lint percentage, boll number, boll weight, and seed index were detected in different parents. Adding seed index to boll number and lint percentage increased additive contribution effects to lint yield from these two components relative to the contribution effects from either boll number or lint percentage alone. Results in this study suggest that boll number, lint percentage, and seed index should be balanced in pure line development.  相似文献   

12.
转Bt基因棉杂种优势及性状配合力研究   总被引:45,自引:19,他引:26  
采用NCⅡ设计方法,选用我国构建的Bt(Bacillus thuringiensis)基因棉GK3和美国构建的Bt基因棉新棉33B等Bt基因棉为父本,配制杂交组合,分析了含Bt基因杂交棉组合的性状优势表现及配合力效应。性状优势分析表明,组合的中亲优势和竞争优势明显,皮棉产量中亲优势率达100%,竞争优势率达86.7%,多数品质性状较对照为优,表明转Bt基因棉品系与常规品种间杂种优势利用潜力较大;通径分析表明,在增产因素中,铃重和铃数所起贡献较大;配合力分析表明,父本间和母本间的GCA均方值均达显著或极显著水平,组合的SCA均方值除子、皮棉声量性状外,其余均不显著,在F1性状的遗传中,各性状的加性效应起主导作用;F1的性状表型值与父、母本的GCA呈高度正相关,并达显著水平,表明选配含Bt基因杂交组合时,选择GCA值大的亲本较为可靠。  相似文献   

13.
在田间自然条件下, 以标杂A1、石杂2号为材料, 研究了超高产(3 500 kg hm-2以上)杂交棉冠层的叶面积配置、叶倾角和光分布等冠层特性的变化及与群体光合生产的关系。结果表明, 超高产条件下杂交棉叶面积指数高且持续期长, 群体叶面积配置与光分布较均匀, 花铃期冠层中部有较好的透光性, 吐絮期底部漏光损失较小, 整个冠层仍保持较高的光吸收率。超高产杂交棉不仅群体光合速率峰值高, 而且高值持续时间长, 生育后期非叶器官仍维持较高的光合能力, 特别是茎的光合贡献率为常规高产棉花的1.6~4.9倍, 这是杂交棉在生育后期能保证群体光合优势的一个重要原因。超高产杂交棉的棉铃干物质空间分布与叶分布、光分布和冠层光合分布的比例吻合程度较高, 保证了光能的有效利用, 促进同化物及时向棉铃转运, 有利于挖掘杂交棉品种的增产潜力。  相似文献   

14.
在田间自然条件下, 以标杂A1、石杂2号为材料, 研究了超高产(3 500 kg hm-2以上)杂交棉冠层的叶面积配置、叶倾角和光分布等冠层特性的变化及与群体光合生产的关系。结果表明, 超高产条件下杂交棉叶面积指数高且持续期长, 群体叶面积配置与光分布较均匀, 花铃期冠层中部有较好的透光性, 吐絮期底部漏光损失较小, 整个冠层仍保持较高的光吸收率。超高产杂交棉不仅群体光合速率峰值高, 而且高值持续时间长, 生育后期非叶器官仍维持较高的光合能力, 特别是茎的光合贡献率为常规高产棉花的1.6~4.9倍, 这是杂交棉在生育后期能保证群体光合优势的一个重要原因。超高产杂交棉的棉铃干物质空间分布与叶分布、光分布和冠层光合分布的比例吻合程度较高, 保证了光能的有效利用, 促进同化物及时向棉铃转运, 有利于挖掘杂交棉品种的增产潜力。  相似文献   

15.
Y. T. Wu    J. M. Yin    W. Z. Guo    X. F. Zhu  T. Z. Zhang 《Plant Breeding》2004,123(3):285-289
Because of the difficulty of producing F1 hybrid seeds by hand emasculation and pollination, wide use of heterosis in cotton production has been limited in China. The objective of this study was to evaluate the potential of F2 hybrids for yield and fibre quality. A half diallel involving eight parents and their F1 and F2 hybrids was grown in replicated studies at Linqing and Nanjing in 1999 and Nanjing in 2000. Yield and fibre quality was determined for all 64 entries. Fibre quality was also determined for parents and F1s, but only for Zhongmiansuo 28 (ZMS28), Xiangzamian 2 (XZM2) and Wanmian 13 (WM13) F2s. These three F2 hybrids are extensively planted in China and provide experimental controls with which to compare the performance of new hybrids. Average yield heterosis for F1s and F2s was 15.9 and 9.2%, respectively. Inbreeding depression for yield varied but some F2s greatly out‐yielded the best variety. Average F1 heterosis was 6.7, 6.2 and 2.9%, respectively for number of bolls per unit area, boll weight, and lint percentage. The average F2 heterosis for the same traits was 4.4, 3.3 and 1.6%, respectively. F1 heterosis for fibre traits was low. In general, parental average was a good indicator of the yield and fibre quality of F1 hybrids. These encouraging results suggest there is sufficient heterosis for yield to use F2s in China.  相似文献   

16.
陆地棉配合力与杂种优势、遗传距离的相关性分析   总被引:6,自引:2,他引:4  
 用10个陆地棉亲本进行不完全双列杂交,共配置了45个组合,计算亲本的一般配合力(GCA)、特殊配合力(SCA)、杂种优势,并结合SSR标记研究了陆地棉亲本配合力与杂种优势、遗传距离之间的相关关系。配合力分析发现,10个亲本的一般配合力和特殊配合力存在显著或极显著差异。分析亲本配合力、杂种优势和遗传距离的相关性发现,子棉产量、皮棉产量、衣分的一般配合力和杂种优势呈显著或极显著相关,纤维长度、比强度、麦克隆值、株高、果枝数、单株铃数、铃重、子棉产量、皮棉产量、衣分的特殊配合力和杂种优势均呈极显著正相关,而与遗传距离相关均不显著。单株铃数、铃重、子棉产量、皮棉产量、衣分的杂种优势与遗传距离均为正向显著或极显著相关。在育种实践中这些显著或极显著相关的性状可能具有较高的改良潜力。  相似文献   

17.
转Bt基因杂交棉主要性状优势率分布研究   总被引:10,自引:5,他引:10  
分析了 73个转 Bt基因抗虫杂交组合 F1主要性状的杂种优势及优势率分布 ,认为 :1杂种一代的霜前皮棉产量、株高、铃重、衣分、霜前花率等性状具有明显的正向优势。 2 5 6%的组合霜前皮棉产量竞争优势 ( CH% )集中在 1 0 .1 %~ 35 %之间 ;子棉总产则以 0 .1~ 2 0 %居多 ;铃重、衣分、子指、霜前花率的 CH%主要分布在 0 .1 %~ 1 5 %之间 ;生育期、2 .5 %跨长为负优势 ,多在 - 5 %~ - 0 .1 %之间。 3与 F1相比 ,除子指、2 .5 %跨长外 ,F2主要性状杂种优势均不同程度下降 ,以子棉总产、霜前皮棉产量、霜前花率、单株铃数降幅较大 ;生育期变化较小 ;铃重、衣分、子指虽比 F1有所下降 ,但仍呈现较强的正向优势  相似文献   

18.
Summary Combining high fiber strength with high yield in upland cotton (Gossipium hirsutum L.) was been difficult. The cross combination, 69–120 × 6M-10, was chosen for this study because of the divergence of parents for fiber strength, seeds per boll and crop maturity. Forty F2 plants were selected in 1974 solely on the basis of visual yield and 20 plants were randomly chosen to serve as a bulk check. The F3 progenies, the bulk check, the parents and a commercial check were tested in 1975. From these results, five groups were established, consisting of four (10%) progenies each to represent high seed/boll, low seeds/boll, high fiber strength, low fiber strength and high yield in the 1976 test of F4 progenies. This experiment was conducted to (a) compare the contributions of yield components to lint yield among groups of early generation progenies (F3 and F4) and (b) determine the phenotypic correlations between yield and quality attributes. The yield components, bolls/m2, seeds/boll, fibers/seed, mean fiber length and micronaire, were included as well as fiber strength.No significant lint yield differences were found among the five groups. Progenies within groups did, however, differ in lint yield. The low and high seeds boll groups gave similar yield and fiber quality results. The low and high fiber strength groups gave similar yield but longer fiber was obtained with the high strength group.Stepwise regression analyses estimates show that the number of bolls produced per unit area, although the major contributor to lint yield for all groups, contributed only 66.9% of the total variation in the progeny group selected for high yield, with fibers/seed, mean fiber length, micronaire and seeds/boll accounting for 13.2%, 8.1%, 6.0%, and 5.8%, respectively. Correlations between the various yield components and fiber strength were low and mainly insignificant, indicating that minor alterations might be made in later generations without serious consequences.Potential gains from second-stage selective pressure upon yield-per-boll components following initial selection for lint yield are discussed.  相似文献   

19.
在新疆气候生态条件下,设置适量化调和超量化调方式,每个化调下设3个种植密度,研究了化学调节剂(DPC)对不同密度棉花冠层结构及产量的影响.结果表明:随密度增加,两种化调量下均表现叶面积指数(LAI)增大、叶倾角(MFA)变大,株型变紧凑;但密度过大,群体散射辐射透过系数(TR)小,造成生育后期群体光合速率(CAP)较快...  相似文献   

20.
Cotton yield improvement is vital to fulfill rising global demands. The identification of major quantitative trait loci (QTL) for yield components was helpful in molecular marker-assisted selection (MAS) to improve cotton yield. We previously identified a densely populated QTL region for fiber qualities and yield components on chromosome D8 (Chro.D8) of Upland cotton from a (7235 × TM-1)RIL. In the present study, to fine-map yield component QTLs, we chose three overlapped recombinant inbred lines (RILs) with different intervals included the yield component QTLs, and backcrossed each line with TM-1 to develop three large sized mapping populations. Phenotypic data for yield components were collected in Nanjing (JES/NAU) and Xinjiang (BES/XJ) in 2006 and 2007. Three simple sequence repeat (SSR) genetic linkage maps on chro.D8 were constructed using 907 individuals in (7TR-133 × TM-1)F2 (Pop A), 670 in (7TR-132 × TM-1)F2 (Pop B), and 940 in (7TR-214 × TM-1)F2 (Pop C). Three stable QTLs for boll size, two for lint percentage and one for boll number per plant,were detected on chro.D8 following analysis of three RIL backcrossed F2/F2:3 progeny at JES/NAU and BES/XJ although their cultivation practices differ greatly between these two cotton-growing regions. One QTL for boll number per plant exhibited a phenotypic variance (PV) of 5.6–10.1%, three QTLs for boll size exhibited 15.0–35.5% PV and two lint percentage QTLs exhibited 10.9–19.3% PV. Negative correlation between lint yield and fiber strength was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号