首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have reported that the injection of an expression vector containing Herpes simplex virus (HSV) Glycoprotein D-1 (gD-1) generated a significant antibody response in mice and protected them against HSV lethal challenge. We tested its potential to induce antibody and cell mediated immune responses in latently infected mice. Positive control group (KOS) and HSV gD-1 vaccinated mice demonstrated protection against a lethal ocularly challenge of 10(5.5) plaque-forming units (pfu)/eye of wild HSV-1 versus negative control groups. For neutralizing antibody titers, delayed-type hypersensitivity (DTH), lymphocyte proliferation responses, clinical evaluation and survival following lethal challenge, no considerable difference was observed between mice vaccinated with DNA plasmid and those vaccinated with KOS. KOS-vaccinated mice demonstrated the ability to completely prevent latency whereas DNA vaccinated group showed some degree of protection and displayed less latency than negative control groups and had considerably high levels of IFN-gamma and strong CTL responses versus negative control groups. It can be concluded that although immunization with the DNA vaccine is more effective in both protecting mice and induction of immune response, however it could not completely block the latent infection in sensory nerves.  相似文献   

2.
Intradermal vaccination with plasmid DNA encoding envelope glycoprotein C (gC) of pseudorabies virus (PrV) conferred protection of pigs against Aujeszky's disease when challenged with strain 75V19, but proved to be inadequate for protection against the highly virulent strain NIA-3. To improve the performance of the DNA vaccine, animals were vaccinated intradermally with a combination of plasmids expressing PrV glycoproteins gB, gC, gD, or gE under control of the major immediate-early promotor/enhancer of human cytomegalovirus. 12.5 microg per plasmid were used per immunization of 5-week old piglets which were injected three times at biweekly intervals. Five out of six animals survived a lethal challenge with strain NIA-3 without exhibiting central nervous signs, whereas all the control animals succumbed to the disease. This result shows the increased protection afforded by administration of the plasmid mixture over vaccination with a gC expressing plasmid alone. A comparative trial was performed using commercially available inactivated and modified-live vaccines and a mixture of plasmids expressing gB, gC, and gD. gE was omitted to conform with current eradication strategies based on gE-deleted vaccines. All six animals vaccinated with the live vaccine survived the lethal NIA-3 challenge without showing severe clinical signs. In contrast, five of six animals immunized with the inactivated vaccine died, as did two non-vaccinated controls. In this test, three of six animals vaccinated with the DNA vaccine survived without severe clinical signs, whereas three succumbed to the disease. Comparing weight reduction and virus excretion, the DNA vaccine also ranged between the inactivated and modified-live vaccines. Thus, administration of DNA constructs expressing different PrV glycoproteins was superior to an adjuvanted inactivated vaccine but less effective than an attenuated live vaccine in protection of pigs against PrV infection. Our data suggest a potential use of DNA vaccination in circumstances which do not allow administration of live attenuated vaccines.  相似文献   

3.
Although DNA vaccines have several advantages over conventional vaccines, antibody production and protection are often not adequate, particularly in single plasmid vaccine formulations. Here we assessed the potential for a combined vaccine based on plasmids encoding the membrane-anchored or secreted forms of bovine herpesvirus type 1 (BHV-1) glycoprotein B and D (gB and gD) to induce neutralizing and cell mediated immune responses in mice. Animals were injected by intramuscular, subcutaneous and intranasal routes. Mice immunized with the combined vaccine containing the secreted forms of BHV-1 glycoproteins developed higher titers of anti-BHV-1 neutralizing antibodies, compared to wild type gB/gD combined plasmids and to single plasmid injected groups. Cellular immunity was also developed in mice immunized with combined vaccines, whereas low or no response were observed in single plasmid injected animals. The data suggest the potential use of this combined vaccine in in vivo trials of calves, in order to evaluate its protective efficacy.  相似文献   

4.
Li J  Han Q  Gong P  Yang T  Ren B  Li S  Zhang X 《Veterinary parasitology》2012,184(2-4):154-160
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. The rhomboid proteins which are responsible for adhesion and invasion of host cells have been suggested as vaccine candidates against toxoplasmosis. A DNA vaccine (pVAX-ROM1) encoding T. gondii rhomboid protein 1 (TgROM1) gene was constructed and the immune response and protective efficacy of this vaccine against lethal challenge in BALB/c mice were evaluated. The results indicated that specific antibody and lymphocyte proliferative responses were elicited in mice receiving pVAX-ROM1. The production levels of IFN-γ, IL-2, IL-4, and IL-10, as well as the percentage of CD4(+) cells in mice vaccinated with pVAX-ROM1 were significantly increased respectively, compared to controls receiving either pVAX1 alone or PBS. After lethal challenge, the mice immunized with pVAX-ROM1 showed an increased survival time compared with the mice in the controls. Our data suggested that a DNA vaccine pVAX-ROM1 encoding T. gondii rhomboid protein 1 triggered strong humoral and cellular responses, and prolonged survival time against T. gondii infection in BALB/c mice.  相似文献   

5.
A recombinant bovine herpesvirus type 1 (BHV-1), designated BHV-1/TF17-1, which expresses pseudorabies virus (PrV) glycoproteins gB, gC, gD, gE and gI in combination was constructed. To test the protective immunity, 10 mice were inoculated with BHV-1/TF17-1 and three weeks later 10 mice were intraperitoneally (i.p.) challenged with 20 LD50 virulent PrV (YS-81). BHV-1/TF17-1 protected all the mice from the PrV lethal challenge while all the control mice died in around 3 days. Mice vaccinated with BHV-1/TF17-1 acquired high PrV-neutralizing antibody titers and demonstrated strong delayed type hypersensitivity responses and moderate in vitro lymphocyte proliferative responses to PrV antigen. Since the major PrV glycoproteins were integrated into virions (probably into viral envelope), BHV-1/17-1 was neutralized with anti-PrV antiserum. However, the susceptibility of BHV-1/TF17-1 to anti-PrV antiserum is 2- to 4-fold lower than that of PrV vaccine lines. Our results demonstrated the possibility of BHV-1/17-1 as a vaccine to protect piglets from Audjesky's disease where maternal antibodies against PrV interfere attenuated live PrV vaccines.  相似文献   

6.
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease.  相似文献   

7.
This study was conducted to investigate whether the co-delivery of DNA encoding porcine cytokines would enhance a protective immune response in pigs to a Pseudorabies virus (PRV; or Aujeszky’s disease virus) DNA vaccine. Aujeszky’s disease in pigs results in respiratory and nervous symptoms with important economic losses. To evaluate cytokine effects, eukaryotic expression vectors were constructed for porcine GM-CSF, IL-2 and IFN-γ. cDNA for each of these cytokines was inserted under the control of a CMV promoter in the pcDNA3 plasmid and cytokine expression was confirmed after DNA transfection in various mammalian cell cultures by bioassays (GM-CSF and IL2) and ELISA (IFN-γ). Pigs were vaccinated by single intramuscular injection with plasmid DNA encoding PRV gB and gD along with various combinations of cytokine plasmid constructs. Pig serum was tested for the production of antibody by isotype specific anti-PRV ELISA. Pigs were then challenged with the highly virulent PRV strain NIA3 on day 21 after vaccination. The survival and growth rate of pigs were monitored for seven days after the viral challenge. The co-administration of GM-CSF plasmid increased the immune response induced by gB and gD PRV DNA vaccine. This immune response was characterized by an earlier appearance of anti-PRV IgG2, a significantly enhanced anti-PRV IgG1 and IgG2 antibody response, a significantly decreased and shortened viral excretion in nasal swabs and an improved protection to the viral challenge. In contrast, the co-administration of porcine IL-2 or IFN-γ had no adjuvant effects. Our results thus demonstrate for the first time that the application of porcine GM-CSF gene in a DNA vaccine formulation can exert immuno-adjuvant and protective effects with single vaccination in the natural host pig against Aujeszky’s disease.  相似文献   

8.
This study investigated the efficacy of a bivalent swine influenza virus (SIV) vaccine in piglets challenged with a heterologous H1N1 SIV isolate. The ability of maternally derived antibodies (MDA) to provide protection against a heterologous challenge and the impact MDA have on vaccine efficacy were also evaluated. Forty-eight MDA(+) pigs and 48 MDA(-) pigs were assigned to 8 different groups. Vaccinated pigs received two doses of a bivalent SIV vaccine at 3 and 5 weeks of age. The infected pigs were challenged at 7 weeks of age with an H1N1 SIV strain heterologous to the H1N1 vaccine strain. Clinical signs, rectal temperature, macroscopic and microscopic lesions, virus excretion, serum and local antibody responses, and influenza-specific T-cell responses were measured. The bivalent SIV vaccine induced a high serum hemagglutination-inhibition (HI) antibody titer against the vaccine virus, but antibodies cross-reacted at a lower level to the challenge virus. This study determined that low serum HI antibodies to a challenge virus induced by vaccination with a heterologous virus provided protection demonstrated by clinical protection and reduced pneumonia and viral excretion. The vaccine was able to prime the local SIV-specific antibody response in the lower respiratory tract as well as inducing a systemic SIV-specific memory T-cell response. MDA alone were capable of suppressing fever subsequent to infection, but other parameters showed reduced protection against infection compared to vaccination. The presence of MDA at vaccination negatively impacted vaccine efficacy as fever and clinical signs were prolonged, and unexpectedly, SIV-induced pneumonia was increased compared to pigs vaccinated in the absence of MDA. MDA also suppressed the serum antibody response and the induction of SIV-specific memory T-cells following vaccination. The results of this study question the effectiveness of the current practice of generating increased MDA levels through sow vaccination in protecting piglets against disease.  相似文献   

9.
The objective of this work was to explore whether a plasmid expressing CCL20 chemokine could improve the immune response against CSFV in co-administration with a DNA vaccine expressing the E2 protein. The immunization of pigs with the DNA vaccine formulation, that contains swine CCL20 chemokine, resulted in the homogenous induction of detectable levels of CSFV antibodies at 36 days after the first injection. Remarkably, immunized animals with E2 DNA vaccine in co-administration with the plasmid containing swine CCL20 developed high titers of neutralizing antibodies against homologous and heterologous CSFV strains and were totally protected upon a lethal viral challenge (sterilizing protection). Our results confirm the role of CCL20 to increase antibody-mediated responses. At the same time suggest the ability of CCL20 to enhance the T helper cell response associated with the induction of neutralizing antibodies against CSFV in pigs previously reported. Systemic replication of virulent CSFV in vivo during the acute phase of infection induces type I IFN. Lower average values of IFN alpha were detected in the serum of pigs immunized with pE2 and pCCL20 at 3 days after challenge. The levels of IFN-alpha detected in pigs immunized with pE2 and principally in non-vaccinated challenged animals can be related to viral load in serum at 3 and 7 days post infection and the clinical signs observed. Our results emphasized the capacity of swine CCL20 chemokine to enhance cellular, humoral and anti viral response with an adjuvant effect in the immune response elicited by E2-DNA vaccination against CSFV. To our knowledge, this is the first report demonstrating the adjuvant effect of swine CCL20 to effectively enhance the potential of DNA vaccine in the immune induction and protection against virus challenge in swine infection model.  相似文献   

10.
Efficacy of DNA vaccination by different routes of immunisation in sheep   总被引:4,自引:0,他引:4  
DNA vaccination, delivered through various routes, has been used extensively in laboratory animals. Few studies have focused on veterinary species and while results obtained in laboratory animals can often be extrapolated to veterinary species this is not always the case. In this study we have compared the effect of the route of immunisation with DNA on the induction of immune responses and protection of sheep to challenge with live Corynebacterium pseudotuberculosis. Intramuscular injection of plasmid DNA encoding an inactivated form of the phospholipase D (PLD) antigen linked to CTLA4-Ig resulted in the induction of a strong memory response and sterile immunity following challenge in 45% of the animals. In contrast, gene gun delivery or subcutaneous (SC) injection of the DNA vaccine induced comparatively poor responses and insignificant levels of protection. Thus, DNA vaccine efficacy in sheep is strongly influenced by the route of vaccination. Amongst intramuscular vaccinates, protected sheep had significantly elevated IgG2 responses compared to unprotected animals, while both subgroups had equivalent IgG1 levels. This suggests that the presence of IgG2 antibodies and hence a Th1-like response, induced by the DNA vaccine gave rise to protective immunity against C. pseudotuberculosis.  相似文献   

11.
Vaccine delivery using microneedle (MN) patches is an easy, safe and painless alternative to traditional needle injections. In this study, we examined whether MN patches can enhance the efficacy of a Streptococcus suis serotype 2 (S. suis 2) vaccine in a mouse model. Results showed that MNs can reach 200–250 μm into the skin, a depth beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. Vaccination with prime-boost of MN induced higher levels of IgG2a antibody titer, T cell proliferation, and TH1 cytokines (IFN-γ and IL-12) as compared to intramuscular (IM) injection. In addition, single dose MN vaccination better protected mice against lethal challenge than IM vaccination. MN vaccination also conferred long-term IgG2a antibody against S. suis 2 bacteria presence for up to 7 months. Taken together, these data showed that vaccine delivery by MNs results in superior immune response and protection rate when compared to IM injections.  相似文献   

12.
Fang R  Feng H  Hu M  Khan MK  Wang L  Zhou Y  Zhao J 《Veterinary parasitology》2012,187(1-2):140-146
The aim of this study was to evaluate the immune responses of a SAG1 and MIC3 vaccine cocktail in BALB/c mice. Ninety-six BALB/c mice were randomly divided into eight groups, including three plasmid DNA vaccine groups (pcDNA-MIC3, pcDNA-SAG1, pcDNA-MIC3+pcDNA-SAG1), three recombinant pseudotype baculovirus vaccine groups (BV-G-MIC3, BV-G-SAG1, BV-G-SAG1+BV-G-MIC3) and two control groups (PBS and BV-G-EGFP). All groups were immunized intramuscularly twice at three-week intervals. The production of anti-Toxoplasma gondii lysate antigen (TLA) antibodies, lymphoproliferation, levels of IFN-γ, IL-4 and IL-10 and the survival time were monitored after vaccination. The results showed that immunization of BALB/c mice with MIC3 and SAG1 vaccines stimulated both the cellular and humoral immune responses with the production of anti-T. gondii TLA antibodies. The vaccine cocktails of pcDNA-MIC3+pcDNA-SAG1 or BV-G-SAG1+BV-G-MIC3 induced significantly higher immunogenicity than a single-gene vaccine (P<0.05). Splenocytes from the immunized mice significantly proliferated in response to the TLA and released interferon (IFN)-γ (P<0.05). However, the levels of IL-4 and IL-10 in the sera of the immunized mice were not significantly different from those of the controls (P>0.05). Immunization with the vaccine cocktail (BV-G-SAG1+BV-G-MIC3) in mice significantly prolonged survival (50%; P<0.05) against a lethal challenge of T. gondii (RH tachyzoites), while all mice in the other immunized groups and control groups died within 20 and 4 days post-infection, respectively. Furthermore, the recombinant pseudotype baculovirus vaccines induced better immunogenicity than the plasmid DNA vaccines (P<0.05). These results suggest that an excellent vector-mediated vaccine cocktail strategy might be used to develop a new generation of vaccines against T. gondii infection.  相似文献   

13.
Intratracheal inoculation of a field isolate of influenza A H1N1 caused high fever, anorexia and dyspnoea in unvaccinated pigs. In a limited study, it was shown that animals vaccinated once with an inactivated influenza A H1N1 strain showed partial protection at challenge, indicated by mild or absent clinical signs and by the suppression of viral replication. There appeared to be a correlation between the hemagglutination-inhibition titers of the serum of vaccinated pigs and the degree of protection. Animals vaccinated with two spaced injections were completely protected at challenge. Viral replication was inhibited in their respiratory tract since no virus was isolated from animals at slaughter and no increase in antibody titer was observed in challenged vaccinates followed serologically. It was concluded that vaccination of swine against influenza with an inactivated vaccine can result in a protective immunity in the respiratory tract. The New Jersey vaccine strain could protect against swine influenza strains (H1N1) currently prevalent in several European countries.  相似文献   

14.
The virus titers of seven commercial B1 strain Newcastle disease vaccines were evaluated. A 2 log difference in virus content was found between the vaccine with the highest titer (10(8.8) EID 50/ml) and the one with the lowest titer (10(6.8) EID 50/ml). Broiler chickens were vaccinated with the high- and low-titered vaccines to compare hemagglutination-inhibition (HI) antibody and challenge responses. The effect of vaccination at different ages on the HI titers was also examined. There were no significant differences between vaccine groups in HI antibody response or resistance to challenge. However, the high-titered vaccine may provide a margin of safety with the currently used methods of mass vaccination.  相似文献   

15.
This study examined the protection induced by oil adjuvant vaccine and broth bacterin in mice. Protective immunity was induced by both oil adjuvant and bacterin vaccination procedures. Oil adjuvant vaccination induced a 10(5)-fold increase for lethal challenge over control mice, while secondary vaccination induced a further 10-fold increase in resistance to lethal challenge. Broth bacterin induced a slightly weaker protective response with 10(4)- and 10(5)-fold increases in resistance to lethal challenge following primary and secondary vaccination, respectively. There was a significant relationship between IgG antibody levels and resistance to challenge (P = 0.026). Protection lasted for at least 20 weeks after a primary oil adjuvant vaccination. There was also a strong and significant relationship between IgG antibody levels and the passive protection afforded by serum transfer in each experiment within this study and the overall correlation was highly significant (P = 0.00001). There appeared to be a relationship between protection and the antibody response to major protein bands with the apparent molecular mass Mr. 94,000; 80,000; 67,000; 35,000 and 32,000 as well as to the bands in the region of the lipopolysaccharide components of P. multocida (approximately Mr, 14-15,000). Whether protection resulted from recognition of specific antigens or was a result of both antibody levels and antibody specificity remains to be defined.  相似文献   

16.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

17.
Porcine herpesvirus 1 (PHV-1) antigens were extracted from virus-infected cells using the nonionic detergent Triton X-100. A single vaccination with these viral antigens in Freund's incomplete adjuvant resulted in the production of neutralizing antibody and a cellular immune response in mice. An 87% rate of protection was observed in these mice upon challenge with a lethal dose of PHV-1. A second vaccination given at day 21 resulted in higher levels of neutrilizing antibody and 100% protection of vaccinated mice upon challenge with virulent PHV-1.  相似文献   

18.
Equine herpesvirus-1 (EHV-1) is the cause of serious disease with high economic impact on the horse industry, as outbreaks of EHV-1 disease occur every year despite the frequent use of vaccines. Cytotoxic T-lymphocytes (CTLs) are important for protection from primary and reactivating latent EHV-1 infection. DNA vaccination is a powerful technique for stimulating CTLs, and the aim of this study was to assess antibody and cellular immune responses and protection resulting from DNA vaccination of ponies with combinations of EHV-1 genes. Fifteen ponies were divided into three groups of five ponies each. Two vaccination groups were DNA vaccinated on four different occasions with combinations of plasmids encoding the gB, gC, and gD glycoproteins or plasmids encoding the immediate early (IE) and early proteins (UL5) of EHV-1, using the PowderJect XR research device. Total dose of DNA/plasmid/vaccination were 25 microg. A third group comprised unvaccinated control ponies. All ponies were challenge infected with EHV-1 6 weeks after the last vaccination, and protection from clinical disease, viral shedding, and viremia was determined. Virus neutralizing antibodies and isotype specific antibody responses against whole EHV-1 did not increase in either vaccination group in response to vaccination. However, glycoprotein gene vaccinated ponies showed gD and gC specific antibody responses. Vaccination did not affect EHV-1 specific lymphoproliferative or CTL responses. Following challenge infection with EHV-1, ponies in all three groups showed clinical signs of disease. EHV-1 specific CTLs, proliferative responses, and antibody responses increased significantly in all three groups following challenge infection. In summary, particle-mediated EHV-1 DNA vaccination induced limited immune responses and protection. Future vaccination strategies must focus on generating stronger CTL responses.  相似文献   

19.
The relationship between serum anti-Pasteurella multocida antibodies and survival rates after challenge was determined in turkeys vaccinated one or more times with the live avirulent Clemson University (CU) vaccine and then challenged with a virulent isolate (9481) of P. multocida in the drinking water. A microtiter agglutination test for assaying anti-P. multocida serum antibodies demonstrated a highly significant (P less than 0.001) correlation between the serum antibody titer 1 week after the initial or single vaccination and the survival rate after challenge, and a significant (P less than 0.01) correlation between the antibody titer immediately before challenge and the survival rate after challenge. A highly significant (P less than 0.0001) correlation was also observed between the antibody titer before vaccination and the survival rate after challenge. This relationship was considered the result of an anamnestic response by the CU vaccine to a previous sensitization by antigens of other microbial organisms, probably in the intestine and similar antigenically to P. multocida. In contrast, a significant (P less than 0.05) but negative correlation was seen between the antibody titer 1 week after challenge and the survival rate. This relationship was thought to be the result of a marked stimulation of the antibody titer by the systemic infection of P. multocida that subsequently killed the turkeys.  相似文献   

20.
A subunit vaccine in the form of immunostimulating complex (iscom) was prepared to contain the envelope glycoproteins of bovine herpesvirus type 1 (BHV-1). This iscom preparation was tested in a vaccination experiment on 4-month-old calves seronegative to BHV-1. In this experiment, four groups with three animals per group were used. Two groups were vaccinated with the iscom preparation twice, four weeks apart, one group with 50 micrograms and the other with 100 micrograms per calf. The third group received a commercial inactivated whole-virus vaccine applying the same vaccination program. The fourth group served as control. Two weeks after the second vaccination, all the animals were challenge-infected intranasally with a virulent BHV-1 strain and four days later with a virulent Pasteurella multocida--this in order to mimic hard field conditions. When exposed to challenge infection, all the animals vaccinated with the iscom were fully protected, i.e., no virus could be recovered from their nasal secretions and no clinical symptoms were recorded. In contrast, the animals vaccinated with the commercial vaccine, responded to challenge with moderate fever and loss of appetite, and virus was isolated from the nasal secretions. The animals in the control group developed severe clinical symptoms. In the sera of iscom-vaccinated animals, the virus neutralization titers reached levels of 1/3500 or higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号