首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X. L. Li    L. K. Liu    N. Hou    G. Q. Liu  C. G. Liu 《Plant Breeding》2005,124(4):413-415
‘Yi 4060’ is an elite restorer line of a non‐photoperiod‐sensitive D2‐type cytoplasmic male‐sterile (CMS) line of wheat. Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were employed to map one major fertility‐restoring gene (D2Rf1) in ‘Yi 4060′. The sterile and fertile DNA pools were established from individuals in BC6, based on bulked segregant analysis. One RAPD marker E09, linked to D2Rf1, was converted to a SCAR marker and designated as E09‐SCAR865. The genetic distance between E09‐SCAR865 and D2Rf1 is 9.5 cM. Two SSR markers, Xgwm11 and Xgwm18, were also linked to a D2Rf1 and co‐segregated with E09‐SCAR865. The three molecular markers are useful in marker‐assisted breeding of the elite restorer lines for D2 ‐type CMS lines in wheat.  相似文献   

2.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

3.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

4.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

5.
Eighteen genotypes of Brassica napus were crossed to a cytoplasmic male sterile (CMS) line of B. napus BO 15 carrying B. tournefortii cytoplasm (‘tour’ cytoplasm). Fourteen genotypes were found to be stable maintainers of the ‘tour’ CMS. Of the remaining four genotypes, GSL-1 and ‘Asahi-natane’ were found to be heterozygous and ‘Mangun’ and ‘Yudal’ were homozygous for the restorer gene. Analysis of the F1 and F2 progenies of (CMS) BO 15 בMangun’ and (CMS) BO 15 בYudal’ showed that fertility restoration is controlled by a single dominant gene. The availability of a number of stable maintainer lines and the simple inheritance pattern of fertility restorer gene makes ‘tour’ CMS a useful system for hybrid seed production in rapeseed.  相似文献   

6.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

7.
Development of cytoplasmic-genic male sterility in safflower   总被引:1,自引:0,他引:1  
K. Anhani 《Plant Breeding》2005,124(3):310-312
An interspecific cross was made between Carthamaus oxyacantha and the cultivated species C. tinctorius to develop a cytoplasmic‐genic male sterility (CMS) system in safflower. C. oxyacantha was the donor of sterile cytoplasm. The 3: 1 segregation pattern observed in BC1F2 suggested single gene control with dominance of male‐fertility over male‐sterility. The information obtained from crossing male sterile X male fertile plants in BC1F3 and BC1F4 generations showed statistically significant single gene (1: 1) segregation for male sterility vs. male fertility. The results demonstrated that C. tinctorius possesses a nuclear fertility restorer gene and that a single dominant allele restored fertility (Rf) in progeny carrying CMS cytoplasm of C. oxyacantha. Male sterility occurred with the homozygous recessive condition (rfrf) in a sterile C. oxyacantha cytoplasm background and not in the normal cytoplasm of C. tinctorius. The genetic background of different restorer lines of C. tinctorius having normal cytoplasm did not effect fertility restoration. The absence of male sterile plants in C. tinctorius populations ruled out the possibility of genetic male sterility. Normal meiosis in F1 and BC1F2 ruled out a cytogenetic basis for the occurrence of male sterility.  相似文献   

8.
The cytoplasmic male sterility (CMS) system msm1 in barley is known to be thermosensitive, sometimes resulting in spontaneous fertility restoration in the absence of the corresponding restorer gene Rfm1. Here, we investigated genotypic differences concerning temperature sensitivity and the plant developmental stage at which elevated temperature induces spontaneous fertility restoration in three CMS mother lines. While one line stayed completely male sterile, a significantly higher fertility was observed in two lines after treatment from growth stage DC 41 until maturation. Microscopic analysis revealed that sterile anthers contained neither intact pollen, nor remains of aborted pollen grains, whereas pollen was visible in anthers of potentially fertile plants. We conclude that the barley CMS system affects anther and pollen development prior to meiosis. Elevated temperature during heading and flowering can lead to a spontaneous fertility restoration by reactivating pollen growth. Nevertheless, genotypic variation exists enabling the selection for stable CMS mother lines and the development of F1 hybrids with high hybridity. As spontaneous fertility restoration due to environmental effects is difficult to phenotype, further investigations will focus on the development of molecular markers for marker‐assisted selection.  相似文献   

9.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

10.
The genetic relationship among three cytoplasmic male sterility (CMS) systems, consisting of WA, Dissi, and Gambiaca, was studied. The results showed that the maintainers of one CMS system can also maintain sterility in other cytoplasmic backgrounds. The F1 plants derived from crosses involving A and R lines of the respective cytoplasm and their cross-combination with other CMS systems showed similar pollen and spikelet fertility values, indicating that similar biological processes govern fertility restoration in these three CMS systems. The results from an inheritance study showed that the pollen fertility restoration in all three CMS systems was governed by two independent and dominant genes with classical duplicate gene action. Three F2 populations, generated from the crosses between the parents of good-performing rice hybrids, that possess WA, Dissi, and Gambiaca CMS cytoplasm, were used to map the Rf genes. For the WA-CMS system, Rf3 was located at a distance of 2.8 cM from RM490 on chromosome 1 and Rf4 was located at 1.6 cM from RM1108 on chromosome 10. For the Dissi-CMS system, Rf3 was located on chromosome 1 at 1.9 cM from RM7466 and Rf4 on chromosome 10 was located at 2.3 cM from RM6100. The effect of Rf3 on pollen fertility appeared to be stronger than the effect of Rf4. In the Gambiaca-CMS system, only one major locus was mapped on chromosome 1 at 2.1 cM from RM576. These studies have led to the development of marker-assisted selection (MAS) for selecting putative restorer lines, new approaches to alloplasmic line breeding, and the transfer of Rf genes into adapted cultivars through a backcrossing program in an active hybrid rice breeding program.  相似文献   

11.
P. B. Kirti    A. Baldev    K. Gaikwad    S. R. Bhat    V. Dinesh  Kumar  S. Prakash  V. L. Chopra 《Plant Breeding》1997,116(3):259-262
A dominant gene restoring fertility to a cytoplasmic male sterile (CMS) line of Brassica juncea was derived from the somatic hybrid Trachystoma ballii+B. juncea. Its introgression resulted from forced pairing between chromosomes of the cultivar ‘Pusa Bold’ and chromosomes of the fusion hybrid. Segregation ratios of this fertility restorer gene followed a monogenic pattern. The introgression of the fertility restorer gene did not cause any abnormalities, such as reduced fertility; pollen and seed fertilities of the restored plants were over 90%. Restored fertile and CMS plants exhibited similar Southern hybridization patterns when probed with the mitochondrial probe atp6.  相似文献   

12.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

13.
The fertile pure line R3‐37 of common wheat with cytoplasm of Triticum timopheevii Zhuk. is an R‐line (restorer) that can restore the male fertility of A‐lines (male sterile lines) with T. timopheevii cytoplasm. In breeding hybrid wheat, the hybrid of the cross R3‐37/ Baimian3 was found to be completely male sterile, indicating that Baimian3 has some genes that are epistatic to the Rf genes in R3‐37. In order to elucidate the essence of this phenomenon, the male fertilities of the hybrids of 27 crosses including R3‐37 and/or Baimian3 were studied. The results show that inheritance of male fertility of the hybrid R3‐37/Baimian3 involves interactions among Rf alleles, male fertility‐inhibiting genes and genetic background. Although more than 70 different kinds of male sterile cytoplasm to common wheat have been discovered, the systems of hybrid wheat production based on male sterile cytoplasm are all the A‐line/R‐line type and all have similar problems of hybrid fertility restoration. This study confirmed that there is a new model (A‐line/R*‐line//R‐line) for producing hybrid wheat with high fertility restoration. In the new model, the completely male sterile hybrids of A‐line/R*‐line can act as common A‐line.  相似文献   

14.
Male fertility restoration in new types of sorghum cytoplasmic male sterility‐inducing cytoplasms (A4, ‘9E’, ‘M35’), characterized by the formation of non‐dehiscent anthers, is difficult. Lines with fertility‐restorer genes for these unique cytoplasms do occur, but rarely, and when found tend to be unstable in their inheritance and expression. The aim of this research was to explore reasons for this instability. Seven lines in three unique cytoplasms, ‘9E’, A4 and ‘M35’, and six lines that restore with these cytoplasms were grown at the Agricultural Research Institute for South‐East Region in Saratov, Russia from 1993 to 2004. Levels of male fertility restoration and various environmental factors were recorded. It is reported that for sorghum hybrids in the A4, ‘9E’ and ‘M35’ male‐sterile cytoplasms, the level of plant male fertility is determined by the level of water available to plants during anther and pollen formation that which ‘switches on’ the expression of fertility‐restoring genes, and is possibly involved in an unusual type of male fertility inheritance in these cytoplasms. The creation of reliable line‐fertility restorers capable of the restoration of male fertility of F1 hybrids in ‘M35’ cytoplasm under conditions of water stress is also reported. Current research explore mechanisms involved possible in responses to water levels at various growth stages and their influence on fertility within these cytoplasms.  相似文献   

15.
A total of sixty‐six germplasm lines were crossed with five CMS lines, where two belong to A4 cytoplasm, while other three belong to A2 cytoplasm. On the basis of pollen fertility test as well as good pod setting, of 330 hybrids, 34 restorer lines were observed in ICPA 2043 and 19 in ICPA 2092. Thirteen germplasm lines restored fertility in both the A4 CMS lines, viz. ICPA 2043 and ICPA 2092; however, none of the lines restored fertility in A2 CMS lines. For confirmation of result, restoration competence of identified lines tested subsequently 2 years at two different temperatures. The segregation patterns for fertility restoration studied in F2 and BC1F1 generations of selected ten crosses. Six crosses indicated the involvement of two major genes with recessive epistasis, three crosses confirmed dominant epistasis, and one cross indicated the involvement of duplicate recessive epistasis. The obtained results from this study will hasten the future three‐line breeding programme and lead the hybrid technology to the farmers' field with the better exploitation of CMS lines.  相似文献   

16.
Summary Fertility restoration in the cross between a cytoplasmic male sterile line, 2 cm 183, and the restorer line, BCZ 111, (both obtained from France) was dominant in F1 and segregated in a 9:7 ratio in the F2 generation and thus suggested the action of two independent, complementary dominant genes controlling restoration. The behaviour of F3 families broadly confirmed the F2 ratio. The reasons underlying this pattern of inheritance has been discussed and the genetic symbols rf 1 rf 1 rf2 rf2and Rf 1 Rf 1 Rf 2 Rf 2 have been suggested for the male sterile and the restorer parents respectively.  相似文献   

17.
Z. Liu    C. Guan    F. Zhao  S. Chen 《Plant Breeding》2005,124(1):5-8
A novel cytoplasmic male sterility‐fertility restoration system has been developed in rapeseed (Brassica napus). The cytoplasmic male sterile line 681A was derived from a spontaneous male sterile mutant in a newly released double‐low rapeseed cultivar ‘Xiangyou 13′. The restorer line 714R was identified in the interspecific progeny from a B. napus×B. juncea‐cross. Genetic analysis showed that fertility restoration for 681A cytoplasmic male sterility was controlled by a single dominant nuclear gene which might originate from B. juncea. The RAPD marker S1039‐520 was found to be linked to the restorer gene in F2 progeny of 681A × 714R with a recombination frequency of 5.45%.  相似文献   

18.
We have established marker-aided selection strategies for the two major Rf genes (Rf3 and Rf4) governing fertility restoration of␣cytoplasmic-genetic male sterility (CMS) in rice. Polymorphisms between restorer and non-restorer␣lines were observed using RG140/PvuII for Rf3 located on chromosome 1 and S10019/BstUI for Rf4 located on chromosome 10. DNA polymorphisms associated with these two loci in restorer lines of wild abortive (WA), Dissi, and Gambiaca cytoplasm are conserved, suggesting that similar biological processes control pollen fertility in this diverse cytoplasm. Because of their close linkage to Rf genes and distinct banding patterns, STS markers RG140/PvuII and S10019/BstUI are well suited for marker-aided selection, enhanced backcross procedures, and pyramiding of Rf genes in agronomically superior non-restorer lines. The combined use of markers associated with these two loci improved the efficiency of screening for putative restorer lines from a set of elite lines. Positional analyses of Rf4 and the inheritance pattern of the polymorphism in S10019/BstUI suggest that Rf4, governing fertility restoration in WA-CMS in rice, is likely to be the same gene governing fertility restoration in BT- and HL-CMS that has a gametophytic effect, which explains why 100% pollen fertility in hybrids is impossible to attain.  相似文献   

19.
A germplasm collection of 152 diverse rapeseed accessions from Canada, China, France, India, Poland and South Korea was assayed for identifying new fertility restorers and sterility maintainers for a Tournefortii (tour) cytoplasmic male sterility (CMS) system in rape‐seed. Only 16 (10.5%) genotypes showed complete fertility restoration following hybridization with tour CMS line NE 409A. Notable among these were GSL 8851, GSL 8953, Mokpo # 9, Mali, Buk‐wuk‐13, Kuju‐27 and Mokpo # 84. As many as 78 (51.3%) genotypes were perfect maintainers of sterility, the remaining 58 (38.2%) genotypes were classified as partial maintainers. To study the inheritance of fertility restoration, 20 CMS (tour) rapeseed lines were crossed with the four best fertility restorers, namely GSL 8851, GSL 8953, Kuju‐27 and Mokpo # 9, to obtain F2 and test cross populations. Segregation data indicated that fertility restoration for tour CMS was governed by two genes, of which, one is stronger than the other (χ212:3:1). Differences in gene interactions were also observed (χ29:3:4) which could be explained on the basis of influence of female parent genotypes/or modified expression of the restorer gene(s) in different genetic backgrounds. Tests of allelism indicated that the restorer genes present in the four restorers evaluated were allelic.  相似文献   

20.
Summary It is shown that the restorer gene Rf j extracted from the Japanese rice variety Akebono is effective on pollen restoration in the cytoplasm substitution line having the nucleus of Oryza glaberrima and japonica or indica cytoplasm of O. sativa, and is of the sporophytic type.The Asian perennial type of the wild rice species O. rufipogon is considered to be the progenitor of O. sativa. Two substitution lines having the cytoplasm of a perennial strain of O. rufipogon from Sri Lanka and the nucleus of O. glaberrima with or without the gene Rf j in homozygous condition have been bred by means of successive backcrosses. These lines have now reached the BC5 generation. Plants of the lines resemble morphologically the recurrent parent, but do not show pollen restoration, indicating that the cytoplasm of the rufipogon strain induced male sterility and that the gene Rf j does not act as the restorer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号