首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study was conducted to assess the suitability of sewage-sludge amendment in soil for Triticum aestivum (wheat) by evaluating the heavy-metal accumulation and physiological responses of plants grown at 10, 25, and 50% sewage sludge amendment rate. Sewage sludge amendment modified the physicochemical properties of soil, thus increasing the availability of heavy metals in soil and consequently greater accumulation in plant parts. The chlorophyll contents generally increased after the sewage sludge treatments. Heavy-metal accumulation in the soil after the treatments did not exceed the limits for land application of sewage sludge recommended by the U.S. Environmental Protection Agency. Recycling sewage sludge as fertilizer will generate economical profits. However, the use of sewage sludge amendment in the soil for growing wheat may not be a good option due to risk of contamination of some heavy metals.  相似文献   

2.
污泥与施污土壤重金属生物活性及生态风险评价   总被引:3,自引:0,他引:3  
将城市污泥以不同质量比施于土壤中构成污泥混合土壤,研究各污泥配比土壤中重金属的生物活性,并采用三种重金属评价方法(地累积指数法、潜在生态风险指数法、综合毒性指数模型)和黑麦草对重金属的吸收富集效果来对施污土壤中重金属具有的生态风险性进行评价。结果表明:污泥的添加使土壤中生物活性态Cd、Cu和Zn含量显著增加,对三种重金属具有活化作用,但对Pb却起到钝化作用。生态风险评价结果表明:污泥的添加使土壤中Pb呈现无污染和低生态风险;Cu和Zn呈现中度污染和低生态风险;Cd达到强度污染和重度生态风险,重金属潜在生态风险(RI)总体处于强度生态风险水平。当污泥添加比例大于6:10(污泥S3处理)时,施污土壤中重金属的综合毒性指数高于土壤对照。黑麦草对Cd、Pb、Cu和Zn的富集浓度与施污土壤中对应重金属的生物活性态含量存在显著正幂指数关系,同时黑麦草对施污土壤中Cd、Cu和Pb的富集能力大小与地累积指数法和潜在生态风险指数法对三种重金属具有的生态风险性的评价结果具有一致性。  相似文献   

3.
Wong  J. W. C.  Lai  K. M.  Su  D. S.  Fang  M. 《Water, air, and soil pollution》2001,128(3-4):339-353
The use of sewage sludge on agriculture provides an alternativefor sewage sludge disposal. Therefore, it was the aim of thepresent study to evaluate the feasibility of using a domestic(Tai Po sludge) and an industrial (Yuen Long sludge) sewagesludge produced in Hong Kong for the growth of vegetable crops.The acidic loamy soil with or without lime treatment was amendedseparately with each sludge at application rates of 0, 5, 10, 25and 50% (v/v) for the growth of a common local vegetable crop,Brassica chinensis. The plant available metal contents, asindicated by the DTPA extraction, increased with an increase insludge amendment, but decreased with lime amendment at eachsludge application rate due to the reduced metal availabilityat a higher pH. Sludge amendment enhanced the dry weight yieldof B. chinensis and the increase was more obvious for thesoil with lime treatment. The industrial sludge caused a loweryield than that of the domestic sludge amendment and asignificant reduction in yield at high application rates of YuenLong sludge was also noted. Tissue heavy metal contents, exceptfor Fe, increased as the sludge amendment rate increased whileplant grown in Yuen Long sludge amended soil contained higher Crand Zn contents at each sludge application rate. Liming the soilreduced the heavy metal contents in the plant tissues, exceptfor Fe, which were all below the allowable levels for vegetablecrops. The present experiment demonstrates that liming wasimportant in facilitating the growth of B. chinensis in sludge amended soil. The optimal sludge amendment rate for thesoil with lime amendment was 25% Tai Po sludge and 10% YuenLong sludge, while for the soil without lime amendment was 10% and5%, respectively.  相似文献   

4.
The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.  相似文献   

5.
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about the utility of this organic amendment in the reclamation of soil polluted with heavy metals. We studied the effects of adding sewage sludge on enzymatic activities of a semi-arid soil contaminated with Cd or Ni in the laboratory. The activities of urease, phosphatase, β-glucosidase and protease-BAA were measured in soil containing concentrations of Cd or Ni in the range 0–8000 mg kg−1 soil, and their inhibition was compared with those of the enzymatic activities in the same soil amended with sewage sludge and containing similar concentrations of the heavy metals. The inhibition was tested for three different incubation times to determine changes in the effect of the heavy metals on hydrolase activity with the time elapsed after contamination. Ecological dose (ED) values of Cd and Ni were calculated from three mathematical models which described the inhibition of the enzymatic activities with increasing concentrations of heavy metal in the soil. For urease and phosphatase activities, the ED values for Cd and Ni increased after application of sewage sludge to soil, indicating a decrease in Cd and Ni toxicity. The other two enzymes (β-glucosidase and protease-BAA) were less sensitive to Cd or Ni contamination, and it was more difficult to determine whether addition of sewage sludge had affected the inhibition of these enzymes by the heavy metals.  相似文献   

6.
污泥农用对土壤和作物重金属累积及作物产量的影响   总被引:22,自引:2,他引:20  
以3 a定位试验为基础,比较3种不同处理的污泥肥料(消化污泥、污泥堆肥及污泥复混肥)农田施用下土壤养分、土壤和作物籽粒中Mn、Cu、Zn、Pb、Cd 5种重金属的积累以及作物产量的变化情况,以阐明污泥农用对土壤及作物的影响。研究表明,3种污泥肥料提高了土壤中氮素和有机质的含量;与空白和普通化肥处理相比,3种污泥肥料增加了土壤中Mn和Cu的含量,而对土壤交换态重金属含量没有显著影响;3种污泥处理均增加了小麦籽粒中Zn的含量;相对普通化肥处理,3种污泥肥料处理对小麦和玉米产量均无显著影响。合理施用污泥肥料可以有效地提高作物产量;污泥肥料施用对土壤重金属有一定累积效应,但短期施用对土壤比较安全。  相似文献   

7.
To elucidate the mechanism of transfer of heavy metals into the food chain, an experiment was carried out with a calcareous soil, to which two different doses of a sewage sludge compost contaminated with either Cd or Zn, Cd, Cu, and Ni were applied. A crop of lettuce was then grown in the amended soils. The application of sewage sludge composts to a calcareous soil lowered the soil's pH, although the value was always around 8 at the end of the experiment. Electric conductivity rose with organic amendment. As anticipated, such an amendment improved the nutritional level of the soils, particularly Nand P, both total and available. Plant yields were negatively affected by organic amendments contaminated with heavy metals, the most dangerous in our experiment being Cd and Zn since this metals easily taken up by plants. As Ni and Cu form insoluble complexes with the organic matter of the sewage sludge composts they are not readily absorbed. Of the metals studied, Cd and Zn showed the highest bioavailability index.  相似文献   

8.
A glasshouse study was undertaken to evaluate the effect of lime-treated (0, 0.5, and 1%) industrial sludge amendments (10 and 20%) on wheat (Triticum aestivum L.) seedling growth and heavy metal accumulation in soils as well as in wheat seedlings. Industrial sludge–amended soil samples were filled in earthen pots (2 kg pot?1) one week before planting and 7-day-old seedlings were transplanted in pots (3/pot) and were kept in a glasshouse. Diethylenetriamine pentaacetic acid (DTPA)-extractable metals and metals in seedlings increase with increasing doses of industrial sludge. Biomass and growth have been found to increase with increasing rates of sludge. It also enhanced heavy metal concentrations in wheat seedlings and followed the trend zinc (Zn) > lead (Pb) > copper (Cu) > cadmium (Cd). Lime enhanced the biomass and reduced the heavy metal concentrations in wheat seedlings. Although 20% treatments in both soils showed a significant enhancement in shoot length, metals like Pb reached beyond permissible limits.  相似文献   

9.
Soil application of sewage sludge as an amendment in crop plants has became a popular method of municipal sewage-sludge disposal in many countries. However, the presence of heavy metals in untreated sewage sludge has raised concerns of adverse effects on crop growth, quality of product, and environmental health. Gamma irradiation is one of the treatments for hygienization of sewage sludge before use as fertilizer. To evaluate the potential of gamma-irradiated sewage sludge as fertilizer in vegetable crops, the field investigation was conducted in a root crop, radish (Raphanus sativus L.), during the 2005–06 and 2006–07 growing seasons in a sandy loam soil. Treatments consisted of three source of fertilizers [farmyard manure (FYM), gamma-irradiated sewage sludge (GISS), and nonirradiated sewage sludge (NISS)]; each were compared at six application levels (1, 3, 6, 7, 9, and 11 t ha?1). The physicochemical properties of all the three fertilizers used in this study were compared. Growth parameters and yields of radish were not significantly influenced by source of fertilizers or their application levels, except plant stand, which was influenced by type of fertilizers used. There was no significant difference observed between source of fertilizer treatments with respect to any of the measured soil properties, including major nutrients [nitrogen (N), phosphorus (P), and potassium (K)], metallic micronutrients [copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)], and heavy metals [nickel (Ni), lead (Pb), cadmium (Cd), and cobalt (Co)]. Soil P and Zn were influenced by the various level of fertilizers. However, the interaction effect of source and level of fertilizer was absent for all the measured parameters. The maximum pollutant limits in sewage sludge and soil for agricultural use in different countries were compared. The concentration of metallic micronutrients and heavy metals in soil were less than the prescribed limit of the United States Environmental Protection Agency (USEPA), and no significant accumulation was noted after 2 years of application of GISS and NISS even at higher application rates.  相似文献   

10.
采用田间小区试验,探讨了城市污泥与湖泊底泥土地利用对土壤-植物系统中养分及重金属Cd、Pb的影响。结果表明,城市污泥与湖泊底泥能有效增加土壤养分含量;重金属Cd、Pb仅累积在土壤耕层,难以向下迁移;随施用量的增加,小麦籽粒产量及其对养分的吸收量均随之增加,但仍有大量养分存留在土壤中;植株对重金属的富集顺序表现为根系〉茎叶〉籽粒,Cd〉Pb,其中,籽粒中重金属Cd、Pb含量均未超出我国食品中重金属限量的卫生标准;如果该污泥、底泥分别以100,200t/hm^2的施用量施入土壤,可以连续施月5a和6a  相似文献   

11.
Preliminary leaching column and greenhouse plant uptake studies were conducted in two soils with contrasting characteristics amended with varying rates (0 to 148.3 Mg ha?1) of incinerated sewage sludge (ISS) and weathered sewage sludge (WISS) to estimate the leaching losses of trace elements from the soils amended with incinerated sewage sludge by products and to evaluate the uptake and accumulation of these elements in various parts of Sorghum vulgaris var. sudanense Hitche. (“Sorgrass''), a Sorghum-Sudan grass hybrid. Results of this study indicated that leaching of Cr, Cd, Zn, Cu, Ni, Fe and Mn from soils amended with ISS and WISS increased with increasing rates of amendment. Results of the leaching column study further revealed greater leaching losses from coarse-textured soil compared to medium-textured soil and also from ISS amended soils than with WISS amended soils. Results further suggested that the type of element and the interaction between the element and soil properties affected the leachability of various trace elements. The uptake study indicated uptake and accumulation of trace elements by plant parts increased with increasing rates of amendments. Greater plant uptake and accumulation of trace elements were observed in plant parts grown in soils amended with ISS compared to that of WISS. Results also indicated a greater accumulation of trace elements in below ground part of the plants (roots) compared to that was observed in above ground parts (shoots). Limited data obtained from this one season preliminary studies demonstrated that incinerated sewage sludge products from wastewater treatment plants could be used as soil amendments at low application (no more than 24.7 Mg ha?1) for optimum plant growth, and dry matter yield without resulting in substantial accumulation of metals in plant parts at concentrations above the recommended critical limits and without causing significant leaching losses of various trace elements. It is imperative that long-term field studies are necessary to evaluate the long-term impact of using these new products in leaching and accumulation of various trace elements in plants and soils.  相似文献   

12.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

13.
采用塑料温棚内垄式堆积污泥培养蚯蚓方式,研究了蚯蚓处理对污泥重金属的影响。结果表明,污泥经蚯蚓处理后,理化性质发生了显著的变化,污泥的pH值、有机质、总氮和总磷都有不同程度的降低;蚯蚓能吸收富集污泥中的重金属,其中对重金属Cd有较强的富集能力;蚯蚓处理使污泥中重金属含量均出现不同程度的下降,重金属Cr、Zn、Pb、Cd、Cu、Ni分别减少27.98%、31.46%、32.81%、13.85%、23.86%和22.92%。利用盆栽试验,研究了污泥施用于土壤后生菜体内重金属积累的情况,结果表明,生菜体内重金属Zn、Cu、Pb和Ni的含量为污泥处理高于蚓粪处理;Cr和Cd则分别为差异不显著和略有降低。  相似文献   

14.
Abstract

The amelioration of acid unproductive soils with various amendments may improve soil properties and increase crop yield. In this paper, the influence of several soil amendments (refuse sugar beet lime, calcium hydroxide, and municipal sewage sludge) on wheat yield and gross margin were studied in a three‐year (1995, 1996, 1997) field experiment, conducted in western Thessaly (Elassona area), central Greece. In order to evaluate soil amelioration from an economic point of view we estimated the profit that derives from soil amelioration for each year separately as well as for the whole period of the experiment. The results showed that sugar beet lime and sewage sludge at the rate 15 ton ha?1 are preferable from an economic point of view compared to calcium hydroxide. This fact is supportive of all the efforts made to diffuse the use of quality by‐products for soil amelioration.  相似文献   

15.
兰州市城市污泥施用对小麦生长和重金属富集的影响   总被引:4,自引:0,他引:4  
戴亮  任珺  陶玲  未碧贵 《土壤通报》2012,(5):1257-1263
以兰州市安宁区污水处理厂污泥为研究对象,采用盆栽的方法研究污泥土地利用后对土壤中重金属含量以及对3种小麦生长和重金属富集的影响。结果表明,污泥施用后使污泥混合土壤中重金属Pb、Cu、Zn含量显著增加,但3种重金属含量均未超过我国土壤环境质量二级标准(GB15618-1995)中的限制性标准值。污泥土地施用后,小麦获得了良好的生长响应。污泥低施入量(污泥在混配土壤中的干重比为5%、10%、15%)时不同程度的促进了小麦的生长发育,使3种小麦出苗率提高,植株更高,生物量增加。污泥高施入量(污泥在混配土壤中的干重比为25%、35%)时,小麦的出苗率和根长受抑制明显。污泥的施用使小麦籽实中的Pb、Cu、Zn的含量显著升高,呈现递增趋势,污泥在混配土壤中的干重比超过25%时,籽实中Cu和Pb含量相对国家无公害食品标准有超标现象。综合考虑污泥对小麦生长和重金属富集的影响及土壤中重金属含量的变化,对小麦的耕种土壤中一次性施用污泥时,污泥在混配土壤中的干重比应限量在25%以下。  相似文献   

16.
Current UK legislation permits the application of sewage sludge to agricultural land provided concentrations of heavy metals in soil do not increase above maximum permissible limits. However, even within the defined limits, we do not know how an increase in soil heavy metal concentrations is likely to affect biological diversity and activity. Here we report on the effects of sewage sludge addition, including sludge rich in the metals cadmium, copper and zinc, on soil fungal community composition using both an rDNA and rRNA DGGE approach. Sewage sludge addition altered fungal ITS-DGGE banding patterns, however, there were no additional effects of an increase in soil heavy metal concentrations. Similar results were obtained for the full range of copper rich sludge treatments even when copper concentrations were well above the maximum permissible limits. Our data therefore demonstrate that although an increase in soil organic matter content alters soil fungal community diversity and composition, increasing soil concentrations of cadmium, copper and zinc up to current legislative limits had little additional effect regardless of whether rRNA or rDNA was analysed. This suggests that current UK limits for these three heavy metals are within a concentration range that the dominant soil fungi at this field site can tolerate.  相似文献   

17.
上海市浦东新区土壤及蔬菜重金属现状调查及评价   总被引:22,自引:0,他引:22  
对上海市浦东新区非污灌区的4个蔬菜园艺场和张江镇2个污灌区的土壤及其对应生长的蔬菜中的7种重金属进行检测。结果表明4个蔬菜园艺场符合无公害食品生产的园艺场环境要求,而张江镇污灌区的土壤Cd污染严重,其次是Cu、Zn和Hg污染,其上生长的蔬菜中Cr和Cd100%超标,属轻度污染。张江镇污灌区土壤和蔬菜的污染主要是由于上世纪70年代应用黄浦江疏浚底泥吹泥和污水灌溉等因素,致使土壤及农产品中重金属遭受污染。  相似文献   

18.
 Sludge amendments increase the input of carbon and nutrients to the soil. However, the soil concentrations of heavy metals and xenobiotica can also increase due to sludge amendments, with possible effects on soil microorganisms and soil fertility. Therefore, we studied the effects on soil microorganisms and soil chemistry in two arable soils after 12 and 16 years of sewage sludge amendment (0, 1 and 3 dry matter ha–1 year–1). The sludge amendments were combined with nitrogen addition at three rates according to crop requirements, and all combinations were replicated 4 times, giving a total number of 36 parcels at each experimental site in a non-randomised block design. Univariate data evaluation as well as principal component analysis and discriminant function analysis (DFA) were used to identify differences between treatments in microbial and chemical parameters. The DFA showed that acid and alkaline phosphatase, potential ammonium oxidation and total nitrogen were the most important parameters to discriminate between a priori defined groups of sludge treatments. Among the heavy metals, copper showed the highest increase in soil concentration with sludge amendments, but this increase was still not high enough to have a significant influence on the measured parameters. None of the xenobiotica investigated was found in high soil concentrations. In conclusion, the present study showed that the sewage sludge affected several of the biological and chemical parameters investigated. However, no severe negative effects on soil microorganisms were detected at these moderate levels of sludge amendment. Received: 3 December 1998  相似文献   

19.

Purpose

Two contrasting soils receiving long-term application of commercial sewage sludge fertilizers in China were investigated to determine the concentrations of selected nutrients, heavy metals (HMs) and polybrominated diphenyl ethers (PBDEs) present to evaluate the impact of sewage sludge fertilizer on soil fertility and environmental risk.

Materials and methods

Soil samples were collected from Tangshan City, Hebei province and Ningbo City, Zhejiang province and divided into two portions, one of which was air-dried and sieved through 2-, 0.25- and 0.149-mm nylon mesh for determination of nutrients and heavy metals. The other portion was frozen at ?20°C, freeze-dried and sieved through 2-mm nylon mesh for PBDE analysis. The concentrations of nutrients, heavy metals and PBDEs were determined in all samples.

Results and discussion

Concentrations of nutrients and heavy metals in soils amended with low rates of sewage sludge fertilizer (SSF) and conventional fertilizer were compared. After long-term excessive amendment with SSF from Ningbo City (SSF-N), the concentrations of soil total N, P, aqua regia-extractable HMs and DTPA extractable HMs were higher than the control, especially in the arable layer. Moreover, the concentration of aqua regia-extractable Zn (457 mg kg?1) exceeded the recommended China Environmental Quality Standard for soils (GB15618-1995). All 8 target PBDE congeners were found in fertilizer SSF-N and soil with excessive amendment with SSF-N for 12 years, but the concentrations of 8 different PBDEs in SSF-N-amended soil were not significantly different from control soil.

Conclusions

Both economic and environmental benefits can be obtained by careful application of sewage sludge fertilizer to recycle plant nutrients. Repeated and excessive application rates of sewage sludge fertilizer may pose environmental risk, especially in respect of soil heavy metal and PBDE contamination, and high concentrations of phosphorus may also be environmentally detrimental.
  相似文献   

20.
滩涂盐土农业利用的主要障碍是盐分含量过高和缺乏有机质。施用生活污泥可快速提高滩涂土壤有机质含量,加快土壤熟化,但由于担心污泥含有一定量的重金属,其施用受到一定的限制。采用盆栽苏丹草的试验方法,研究滩涂盐土施用不同量的生活污泥后对土壤性质、植物生长和对重金属累积的影响。结果表明,生活污泥施用于滩涂盐土后降低了土壤pH值,提高了EC值和总盐含量;苏丹草的出苗率、株高和鲜重增加;施用污泥提高了苏丹草植株中全氮、全磷及叶绿素的含量,且随施用量的增加而增大,但对植株中全钾的含量无显著影响;苏丹草中Zn、Cd含量随着污泥施用量增加呈增长的趋势,但Pb、Ni、Cu含量变化不大。在试验条件下,所施用污泥中重金属向苏丹草体内转移的比例介于0.13%-13.44%之间。就该种土壤而言,要更为注意含Pb量较高的污泥施用,而Cu则是最为安全的。总体考虑,一次性施用干污泥应控制在8t·667m^-2以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号