首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in plant antioxidant enzymes (AOEs) in response to cadmium (Cd) pollution are an important mechanism for plant growth and tolerance to Cd-induced stress. The main objective of this greenhouse study was to determine the combined influence of earthworm and arbuscular mycorrhiza (AM) fungal inoculation and their interactions with Cd on AOEs and proline accumulation in leaves of two major crops under Cd stress. Maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were exposed to Cd stress (10 and 20 mg kg−1 soil), inoculated with either earthworm (Lumbricus rubellus L.) or AM fungi (Glomus intraradices and Glomus mosseae species) in a pot experiment for three months. Exposure to Cd decreased shoot dry weights, increased shoot Cd and P concentrations, leaf proline accumulation and the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO) in both mycorrhizal and non-mycorrhizal plants and both in the presence and absence of earthworms. Inoculation of both model plants with earthworms and AM fungi decreased shoot Cd concentrations and the activity of all AOEs, except PPO. Although earthworm activity enhanced the proline content of sunflower in Cd-polluted soils, the proline level of both plants remained unaffected by AM fungi. AM fungi and earthworms may decrease the activity of AOEs through a decline in shoot Cd toxicity and concentration, confirming that plant inoculation with these soil organisms improves maize and sunflower tolerance and protection against Cd toxicity. Generally, the effect of AM fungal inoculation on plant responses to Cd addition was greater than that of earthworm activity. Nonetheless, the interactive effect of AM fungus and earthworm is of minor importance for most of the plant AOEs in Cd-polluted soils.  相似文献   

2.
In this paper, the effects of arbuscular mycorrhizal (AM) fungi and phosphate amendments on protection of the tropical grass Brachiaria decumbens Stapf. against metal toxicity caused by Zn, Cd, Cu, and Pb were studied in a sterilized soil. Plants inoculated with a mixture of AM fungi (Acaulospora morrowiae, Gigaspora albida, and Glomus clarum) isolated from a heavy-metal-contaminated site or amended with P (added as triple superphosphate) exhibited marked positive growth responses, indicating the ameliorating effects of these two factors. Soil metal concentrations needed to inhibit plant growth by 50% were around twofold higher for AM plants as compared to those for non-inoculated ones. Similarly, phosphate showed ameliorating effects for B. decumbens, but its effects were not related to mycorrhizal conditions. Although mycorrhiza and phosphate act independently, their protecting effects were additive. Metal bioaccumulation factor of B. decumbens is high, especially for Cd; but AM inoculation prevents metal transference from roots to shoots, retaining these metals in the roots. AM fungus and phosphate represent a promising tool for enhancing ground vegetation in heavy-metal-contaminated sites.  相似文献   

3.
We investigated the influence of arbuscular mycorrhizae (AM) and dark septate fungi (DSF) colonisation on cadmium (Cd) accumulation in Arrhenatherum elatius from heavy metal-contaminated sites. AM colonisation disappeared when Cd concentrations in soil increased, while DSF infection was weak but constant throughout the experiment indicating that soil heavy metals are toxic to AM but not to DSF. AM colonisation was greatest when plant Cd concentrations were highest providing evidence that AM colonisation may influence Cd accumulation. In addition, the disappearance of AM and the concomitant reduction of Cd in shoots during seed maturation result in our suggestion that seasonal variation in AM may play a role in protecting developing seeds from soil pollution.  相似文献   

4.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

5.
A greenhouse experiment was designed to determine the cadmium (Cd) and lead (Pb) distribution and accumulation in parsley plants grown on soil amended with Cd and Pb. The soil was amended with 0, 5, 10 20, 40, 60, 80, and 100 mg Cd kg?1 in the form of cadmium nitrate [Cd(NO3)2] and 0, 5, 10, 50 and 100 mg Pb kg?1 in the form of lead nitrate [Pb(NO3)2]. The main soil properties; concentrations of the diethylenetriaminepentaacetic acid (DTPA)–extractable metals lead (Pb), Cd, copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) in soil; plant growth; and total contents of metals in shoots and roots were measured. The DTPA-extractable Cd was increased significantly by the addition of Cd. Despite the fact that Pb was not applied, its availability was significantly greater in treatments 40–100 mg Cd kg?1 compared with the control. Fresh biomass was increased significantly in treatments of 5 and 10 mg Cd kg?1 as compared to the control. Further addition of Cd reduced fresh weight but not significantly, although Cd concentration in shoots reached 26.5 mg kg?1. Although Pb was not applied with Cd, its concentration in parsley increased significantly in treatments with 60, 80, and 100 mg Cd g?1 compared with the others. Available soil Pb was increased significantly with Pb levels; nevertheless, the increase was small compared to the additions of Pb to soil. There were no significant differences in shoot and root fresh weights between treatments, although metal contents reached 20.0 mg Pb kg?1 and 16.4 mg Pb kg?1 respectively. Lead accumulation was enhanced by Pb treatments, but the positive effect on its uptake was not relative to the increase of Pb rates. Cadmium was not applied, and yet considerable uptake of Cd by control plants was evident. The interactive effects of Pb and Cd on their availability in soil and plants and their relation to other metals are also discussed.  相似文献   

6.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

7.
The effects of increasing levels of metals (10 and 20 mg of Cr kg-1 and 25 and 50 mg of Cd, Pb, and Ni kg-1 soil) and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the yield, chemical composition of volatile oil, and metal accumulation in sweet basil (Ocimum basilicum L.) were investigated in a pot experiment. The shoot yield, content of essential oil, and root yield of sweet basil were increased by the application of low dose of Cd, Pb, and Ni as compared to control. The application of high level of metals had deleterious effect on the yield. In soil with low dose of metal applied, AM fungi inoculation significantly enhanced the metal concentration in shoots and had adverse effect on the yield, whereas in soil with high dose of metal applied, AM fungal inoculation reduced the metal concentration in shoot and had beneficial effect on the yield. The content of linalool in basil oil was decreased and that of methyl chavicol was increased by the application of Cr, Cd, and Pb in soil as compared to control. Similarly, the level of linalool and methyl chavicol was decreased and that of methyl eugenol was increased by the application of Ni as compared to control. However, AM fungal inoculation led to maintain the content of linalool, methyl chavicol, and methyl eugenol in volatile oil, which were either increased or decreased by the application of metals. We conclude that the AM–sweet basil symbiosis could be used as a novel approach to enhance the yield and maintain the quality of volatile oil of sweet basil under metal-contaminated soils.  相似文献   

8.
Adequate soil structural stability favours the establishment and viability of a stable plant cover, protecting the soil against water erosion in desertified Mediterranean environments. We studied the effect of soil drying-rewetting, inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on aggregate stabilisation of the rhizosphere soil of Juniperus oxycedrus. The AM fungi and composted residue produced similar increases in plant growth, independently of the water conditions. Under well-watered conditions, the highest percentages of stable aggregates were recorded in the amended soil, followed by the soil inoculated with AM fungi. Excepting microbial biomass C, the soil drying increased labile C fractions (water soluble C, water soluble and total carbohydrates), whereas the rewetting decreased significantly such C fractions. Desiccation caused a significant increase in aggregate stability of the rhizosphere soil of all plants, particularly in the amended and inoculated plants. In all treatments, the aggregates formed after soil drying were unstable, since, in the rewetting, they disappear, reaching the initial levels before soil drying. Our results suggest that the aggregation mechanisms developed by rhizosphere microbial community of the amended and inoculated plants under water stress can be particularly relevant in desertified soils exposed to long desiccation periods.  相似文献   

9.
污泥与施污土壤重金属生物活性及生态风险评价   总被引:3,自引:0,他引:3  
将城市污泥以不同质量比施于土壤中构成污泥混合土壤,研究各污泥配比土壤中重金属的生物活性,并采用三种重金属评价方法(地累积指数法、潜在生态风险指数法、综合毒性指数模型)和黑麦草对重金属的吸收富集效果来对施污土壤中重金属具有的生态风险性进行评价。结果表明:污泥的添加使土壤中生物活性态Cd、Cu和Zn含量显著增加,对三种重金属具有活化作用,但对Pb却起到钝化作用。生态风险评价结果表明:污泥的添加使土壤中Pb呈现无污染和低生态风险;Cu和Zn呈现中度污染和低生态风险;Cd达到强度污染和重度生态风险,重金属潜在生态风险(RI)总体处于强度生态风险水平。当污泥添加比例大于6:10(污泥S3处理)时,施污土壤中重金属的综合毒性指数高于土壤对照。黑麦草对Cd、Pb、Cu和Zn的富集浓度与施污土壤中对应重金属的生物活性态含量存在显著正幂指数关系,同时黑麦草对施污土壤中Cd、Cu和Pb的富集能力大小与地累积指数法和潜在生态风险指数法对三种重金属具有的生态风险性的评价结果具有一致性。  相似文献   

10.
It has been previously indicated that arbuscular mycorrhizal (AM) fungi can enhance the bioremediation abilities of their host plant. Barley (Hordeum vulgare L.) is a crop plant with some unique physiological properties, such as tolerance to salinity. However, its tolerance to other stresses such as heavy metals must be tested. Accordingly, it was hypothesized that barley can be efficiently used to treat heavy metals in symbiotic and non-symbiotic association with AM fungi. In a greenhouse experiment barley plants were inoculated with the AM species Glomus mosseae and grown in a soil polluted with cadmium (Cd), cobalt (Co), and lead (Pb). Relative to Cd and Co, mycorrhizal barley absorbed significantly higher amounts of Pb. AM species also significantly decreased Cd and Co uptake by barley indicating the alleviating effects of G. mosseae on the stress of such heavy metals.  相似文献   

11.
Benítez  E.  Romero  E.  Gómez  M.  Gallardo-Lara  F.  Nogales  R. 《Water, air, and soil pollution》2001,132(1-2):75-87
Generally, the potential for biosolids (digested or composted)to contribute heavy metals to the soil-plant system has beencompared with commercial fertilizers and other organic wastesbut not with biosolids-ash. An column study was conducted in agreenhouse to determine the availability, extractability andleachability of metals in a degraded, non-calcareous soilamended with different biosolids (200 Mg ha-1). Thebiosolids investigated were dewatered, anaerobically digestedbiosolids, composted biosolids and biosolids-ash. The columns(26 cm) were planted with wheat (Triticum aestivum L. cvMexa). The addition of digested biosolids decreased the drymatter yield of wheat. Treatments including organic biosolidsincreased Cu and Zn concentrations in wheat roots, straw andgrain, whereas the addition of biosolids-ash did not affect theconcentrations of these metals in wheat. Concentrations of Ni,Co, Pb, Cr and Cd in wheat were below reliable detection limits(0.06, 0.05, 0.1, 0.06 and 0.02 mg kg-1, respectively).After harvesting, total and AB-DTPA extractable Cu, Zn and Pbincreased in the upper layer of the soil amended with thedifferent biosolids studied, whereas levels of AB-DTPAextractable Ni and Co were affected only when the soil wasamended with digested or composted biosolids. Total chromiumincreased only in treatments including organic biosolids. TheAB-DTPA extractable Cu, Zn and Pb in the lower layer of thesoil in treatments including biosolids evidenced downwardmovement of these metals. However, absence of these metals incolumn leachates indicates that this movement was gradual.  相似文献   

12.
A greenhouse pot experiment was conducted to study cadmium (Cd) and phosphorous (P) acquisition of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with arbuscular mycorrhizal (AM) fungi. There were four treatments, including monoculture of kangkong (control), intercropping with stonecrop (IS), and intercropping with stonecrop plus inoculation with Glomus caledonium (IS + Gc) or Glomus versiforme (IS + Gv). Both kangkong and stonecrop plants were harvested at week 8 after seeding or cutting. Compared with the control, IS tended to decrease Cd and P acquisition by neighboring kangkong via competition for phytoavailable Cd and P. The inoculation of Gc, but not Gv, significantly elevated Cd acquisition by stonecrop, and hence resulted in significantly lower Cd acquisition by kangkong and the subsequent Cd concentrations in both roots and shoots of kangkong. Both Gc and Gv significantly increased mycorrhizal colonization rates in stonecrop roots, as well as acid phosphatase activities and available P concentrations in the soil. However, only Gc significantly elevated P acquisition and shoot biomass of the host plant (stonecrop), while Gv significantly increased P acquisition and shoot biomass of neighboring kangkong rather than of stonecrop, causing a significant dilution effect on kangkong shoot Cd concentration. In addition, both Gc and Gv inoculation significantly decreased soil DTPA-extractable (phytoavailable) Cd concentrations by elevating soil pH. The results showed that Gc and Gv played totally different roles in the intercropping system for vegetable production and phytoremediation of Cd-contaminated soils.  相似文献   

13.
采用盆栽试验方法研究了不同盐分含量处理下番茄不同器官盐分离子(Na+、K+、Ca2+)和重金属离子(Cd2+、Pb2+、Cr2+、Zn2+、Cu2+、Ni2+)的分布特征,探讨盐分离子对番茄不同器官吸收重金属离子的影响机制,为重金属污染盐渍土壤的农业可利用性评价提供科学依据。结果表明,番茄根、茎、叶和果实Na+含量均随盐分含量增加而增加;番茄根K+含量随盐分含量增加小幅上升,茎K+含量则显著下降,叶K+含量无显著变化;番茄各器官Ca2+含量随盐分含量增加无明显变化。番茄根Cd、Pb、Cr、Zn和Cu含量以及番茄茎、叶Cd含量均随盐分含量增加而增加;番茄根Ni含量、番茄茎叶Pb、Cr、Ni、Zn和Cu含量以及番茄果实各重金属含量受盐分含量变化影响不大。因此,土壤盐分含量的增加对番茄根部吸收重金属(Ni除外)有促进作用。  相似文献   

14.
Ectomycorrhizal fungi have been shown to affect metal transfer from the soil to the host plant, but the use of these fungi for increased phytoextraction of heavy metals has been scarcely investigated. Therefore, a two‐factorial pot experiment was conducted with Salix × dasyclados and (1) two contaminated soils with different concentrations of NH4NO3‐extractable metals and (2) two strains of the ectomycorrhizal fungus Paxillus involutus (one strain originating from a noncontaminated site—Pax1, and another from a contaminated site—Pax2). The inoculation with Pax2 increased the phytoavailability of Cd in the soils. Inoculation with both fungal strains increased the stem and root biomass, but had no effect on metal concentrations in the stems. Decreased Cd and increased Cu concentrations were observed in the roots of inoculated willows. The inoculation with P. involutus increased Cd (up to 22%), Zn (up to 48%), and Cu content in the stems. Decreased Pb content (Cu and Pb content were always <1 mg per plant) occurred in the stems from plants at the soil with the higher concentration of NH4NO3‐extractable metals. Contrary to this, in the soil with lower concentrations of NH4NO3‐extractable metals, the inoculation had no significant effects on the total uptake of Zn and Cu and even caused decreased Cd (Pax2) and Pb (Pax1) contents in the stems. Strain Pax2 had higher colonization densities, but the plants had lower mycorrhizal dependencies in the contaminated soils than after inoculation with the strain Pax1. Generally, metal extractability in the soils substantially affected the mycorrhizal dependency and heavy‐metal uptake of the willows. We concluded, that the inoculation with P. involutus offers an opportunity to particularly increase the phytoextraction of Zn, but the metal extractability and fungal strain effects have to be tested.  相似文献   

15.
The bioavailability of heavy metals (Cd, Zn, Pb, Cu) and the abundance of arbuscular mycorrhiza (AM) were studied in two agricultural fields close to a Pb-Zn smelter and three fields outside the pollution zone all cultivated with maize (Zea mays L.). Metal extractability with ethylenediaminetetraacetic acid (EDTA)-NH4OAc and Ca(NO3)2, plant metal uptake, and mycorrhizal parameters (spore number, root colonization) were assessed at two growth stages (six-leaf and maturity). Despite regular liming, the availability of Cd, Zn, and Pb was markedly higher in the two metal-polluted fields than in the three uncontaminated fields. However, the AM abundance was not correlated with metal availability. Root colonization and spore numbers in the metal polluted fields were relatively high, though at plant maturity the former was significantly lower than in one of the uncontaminated fields. The very low AM abundance in the two other unpolluted fields was related to other factors, particular soil and plant P status and soil pH. AM root colonization did not substantially prevent plant metal accumulation, since the metal concentrations in maize grown on the polluted fields strongly exceeded normal values, and for Cd and Pb reached the limits of toxicity for animal feed.  相似文献   

16.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

17.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

18.
The goal of this study was to measure the As, Cu, Fe, Pb and Zn contents of soils amended with municipal solid waste (MSW) and MSW-biosolids compost and to determine the long-term transport of these metals to lower soil horizons. Lead, Cu, Cd and Zn contents in the composts were 3–20 times more concentrated in the compost compared to the soil at the Calverton, NY, U.S.A. farm. As a result, Pb, Cd, Cu and Zn were elevated in the upper 5 cm soil layer following compost application and the metal enrichment was proportional to the amount of compost applied (21–62 Mg ha-1). In addition, Pb, As and Cu contents of the non-compost amended Calverton soils were enriched above the tillage depth (20–25 cm). Cu, Pb and As enrichment was attributed to the historical use of sodium arsenite, lead arsenate and copper sulfate insecticides and fungicides. Results of the metal analyses of soil cores collected 16 and 52 months following compost application showed that Cu, Zn and Pb remained confined to the upper 5 cm soil layer. The low water extractable fraction of these metals in MSW and MSW-biosolids compost was a major factor limiting the transport of these metals to lower soil horizons. In contrast, Cd leaching from the upper 0–5 and 5–10 cm soil layers was continuous over the 52 month study period and was attributed primarily to the presence of soluble Cd in phosphate fertilizer initially applied to the Calverton farm soil.  相似文献   

19.
生物炭和AM真菌提高矿区土壤养分有效性的机理   总被引:1,自引:0,他引:1  
【目的】矿区土壤贫瘠、有效养分含量低,而生物炭和丛枝菌根(arbuscular mycorrhizal, AM)真菌能够改善土壤养分,提高植物对环境胁迫的抗性和养分的利用。因此探究生物炭和AM真菌对矿区土壤的改良效果,可为矿区污染土壤生态恢复和新型肥料的开发提供参考。【方法】温室盆栽试验的土壤采自河南省洛阳市新安县江春矿区,以玉米"弘单897"为试验材料。试验设计4个处理,分别为原状土壤对照(CK)、添加生物炭(B)、接种AM真菌(M)、添加生物炭和接种AM真菌(BM),每处理重复8次,完全随机区组设计,玉米于矿区土壤中培育2个月后收获,测定根系生长、生理特性和土壤养分含量。【结果】施用生物炭和接种AM真菌均能够促进玉米生长,提高玉米叶片的净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s)、叶色值(SPAD值)和抗氧化酶活性,提高土壤养分含量。接种AM真菌对促进玉米生长、改善生理特性和磷吸收的效果优于生物炭,而生物炭提高土壤pH值和玉米对钾吸收的效果较好。生物炭和AM真菌联合处理玉米的总根长、根部和地上部干重分别较CK增加了84.22%、176.67%和45.84%,玉米叶片的净光合速率、蒸腾速率、气孔导度分别较对照提高35.42%、56.44%和88.31%,叶色值比CK提高了22.77%,菌根侵染率较CK提高234.20%,菌丝密度可达到4.37 m/g,总球囊霉素和易提取球囊霉素分别达到4.32 g/kg和1.60 g/kg,有机质、碱解氮、有效磷、速效钾含量分别较对照提高24.23%、43.26%、98.63%和33.93%。【结论】生物炭和AM真菌单独或复合处理均能够促进玉米生长和提高土壤养分有效性,生物炭和AM真菌联合处理可促进玉米生长、改善生理特性、促进养分吸收、提高土壤养分效果,可作为退化土壤生态修复和农业生产安全的一项有效措施。  相似文献   

20.
[目的]丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)有利于作物对养分的吸收.在镉、铅污染的土壤中,作物常将镉、铅积累在秸秆中,随着秸秆的还田而释放回土壤.探究前茬蚕豆秸秆还田和丛枝菌根真菌单施或联合施用对土壤肥力、后茬玉米的矿质养分与镉、铅吸收的影响,为AMF在调控污染农田轮作体系矿...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号