首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humic acids (HA) are known as the precursors of carcinogenic compounds formed by the disinfection of drinking water. While conventional treatments were found to be inefficient HA removal processes in drinking water, advanced oxidation processes have been proven to have a significant effect in the treatment of HA. The degradation of HA was investigated using nano-sized zinc oxide (ZnO)/laponite composite (NZLC). The reactions occurred in a UVC reactor by considering following variables: pH, initial HA concentration, catalyst loading, addition of hydrogen peroxide (H2O2), and catalyst reuse. Water samples containing HA were analysed by ultraviolet/visible spectrophotometer and high-performance size-exclusion chromatography. Initial HA concentrations were tested by the Langmuir–Hinshelwood model with k and K ads values, determined to be 0.126 mg/L.min and 0.0257 L/mg, respectively. The change in pH affected the HA degradation efficiency by the photocatalytic activity where it was higher under acidic conditions rather than alkaline ones. Optimal catalyst loading was proved to be a constrained factor in influencing the photocatalytic efficiency: the increase of catalyst concentration enhanced the HA decomposition efficiency up to an optimum value of 20 g/L, where there was no further degradation with excess loading. The addition of H2O2 was investigated through homogenous and heterogeneous photocatalysis, and, heterogeneous photocatalysis showed higher removal efficiency due to the combined effect of both catalysts and H2O2. Finally, NZLC was effective for reuse and exhibited an excellent stability after six times of usage.  相似文献   

2.
The present work focused on treatment of eosin (EO) by photocatalysis (PC) combined with electrocatalysis (EC) process. Bismuth oxychloride/titanium dioxide (BiOCl/TiO2) hybrid particles, which were used as new heterogeneous photocatalysts, were exploited in a reverse microemulsion approach and were characterized by XRD, UV?CVis diffuse spectra, BET, and SEM technologies. All degradation experiments were performed using a self-assemble experimental setup, in which PC and EC could be carried out simultaneously or individually. The results indicated that BiOCl/TiO2 showed enhanced photocatalytic performance under UV irradiation, and 50% BiOCl/TiO2 exhibited the best photoactivity due to its high degree of crystallization, the mesoporous structure and corresponding large special surface area, improved absorption ability in UV region, and the heterojunction formed between two coupling particles. The combined degradation process displayed synergistic effect on the degradation of EO owing to the generation of H2O2 at graphite cathode. The parameters such as, pH, reaction current, and initial concentration of EO were monitored in order to optimize the operating conditions. Pseudo-first-order kinetics was proposed and roughly fitted the combined degradation of EO. The combined system in this work suggested a new research idea for the degradation of dye wastewater.  相似文献   

3.
该文对TiO2纳米粒子气固光催化降解果蔬贮藏环境乙烯技术进行了初步研究。采用溶胶-凝胶法制备的纳米TiO2薄膜作光催化剂,利用自行设计的气固光催化实验系统,研究了乙烯浓度、紫外光作用时间对光催化降解反应的影响,探讨了乙烯的光催化降解的动力学。结果显示:该研究所制备的TiO2锐钛矿型含量为48.766%,比表面积为47.186 m2/g,具有良好的光催化性能;光催化降解乙烯比直接紫外线光降解效果显著,光照10 min时光催化乙烯降解率比直接紫外线光降解提高23.76%;乙烯的降解率随着其浓度的增加而降低;乙烯的光催化降解的动力学可以用Langmuir-Hinshelwood动力学方程加以描述。  相似文献   

4.
Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis   总被引:1,自引:0,他引:1  
The photocatalytic degradation of di-(2-ethylhexyl) phthalate (DEHP) in solution using titanium dioxide (TiO2) was analyzed in this study. It was found that DEHP was completely removed in the solution after 150 min irradiation. The effect of different factors, such as photocatalyst amount, DEHP concentration, light intensity, pH, and temperature on photocatalytic degradation was investigated. The degradation mechanism of DEHP with proton and hydroxyl radicals oxidation were also studied. It is suggested that either ethylhexyl or ester chain scissions of the aliphatic part of DEHP was the dominant degradation mechanism of the process. The photocatalytic degradation process was well described by first-order reaction. The final mineralization product was carbon dioxide and the intermediate products were identified by GC-MS. Thus, the photocatalytic degradation treatment of DEHP in wastewater is a relative simple and fast method.  相似文献   

5.
The adsorption and photocatalytic degradation of methyl orange (MO) aqueous solution under visible light illumination by polythiophene/titanium dioxide (PTh/TiO2) composite particles were studied. The experimental observations from UV–vis spectrophotometer indicate that MO molecules were degraded in a different degree during the visible light-induced photocatalysis reaction. We propose a new degradation mechanism of MO during the photocatalytic reaction, based on blue shift of UV–vis absorption spectra of MO solution and other researches. The data from total organic carbon analyzer definitely prove that MO can be mineralized to CO2 and H2O, and some intermediate products are generated during the photocatalysis degradation of MO.  相似文献   

6.
The present study focused on the degradation of mixed pesticides using UV-induced photocatalytic degradation of lindane (1α,2α,3β,4α,5α,6β-hexachlorocyclohexane), methyl parathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate), and dichlorvos (2,2-dichlorovinyl-O-O-dimethyl phosphate). Different grades of TiO2 were prepared through the acid route (AR), alcohol route (AlR), and surfactant route (SR) and their photocatalytic activity were compared with commercially available Degussa P-25 TiO2. The rate of degradation of pesticides was high for TiO2 prepared through the SR compared to the other three catalysts. The crystalline structure and morphology of SR TiO2 was identified with scanning electron microscope, energy dispersive X-ray analyzer, UV, and transmission electron microscope analyses and was compared with that of Degussa P-25 TiO2. Degradation studies of individual as well as mixed pesticides were carried out. The intermediate formed during the photodegradation of methyl parathion, lindane, and dichlorvos were identified by gas chromatography–mass spectrometry analysis.  相似文献   

7.
In this work, photocatalytic degradation of two reactive dyes, Reactive Yellow 84 (RY 84) and Reactive Black 5 (RB 5), on FeTiO3/TiO2 heterojunction in the presence of UV–visible radiation and H2O2 has been reported. FeTiO3/TiO2 heterojunction has been prepared from ilmenite FeTiO3 and anatase TiO2 by employing oxalic acid as an organic linker. FeTiO3/TiO2 ratios have been varied from 1 to 5 wt.%, and the materials were characterized by X-ray diffraction, scanning electron microscope and diffused reflectance UV–visible spectroscopic analysis. The photocatalytic activity of FeTiO3/TiO2 heterojunction for the degradation of the organic dyes RY 84 and RB 5 in the presence of UV–visible light was found to be higher than that of pure TiO2. The addition of H2O2 increases the rate of degradation of both dyes on FeTiO3/TiO2 heterojunction. It facilitates the fast degradation of dye solutions even when their concentration was above 100 mg/l, which is otherwise very slow due to the low transmittance of light by the dye solution. The extent of mineralisation of the reactive dye during photocatalytic degradation was estimated from chemical oxygen demand analysis. FeTiO3/TiO2 heterojunction photocatalyst was also found to have good photostability; the material retains almost 97 % of its initial activity even in the fifth cycle.  相似文献   

8.
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in wastewater effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatalytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal, and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.  相似文献   

9.
In this study, photocatalytic degradation of bisphenol A (BPA) was investigated using two types of catalysts (TiO2 and ZnO) with various metal ion concentrations and amounts of added H2O2. A kinetic test was performed to observe the changes of BPA over time under UV irradiation in a photocatalytic reactor. Experimental results demonstrated that degradation efficiency of ZnO was higher than that of TiO2. The degradation rate increased as catalyst dosage increased until reaching optimum dosage, after which degradation rate decreased. The addition of H2O2 improved the degradation efficiency of BPA, with the degradation efficiency increasing with the amount of H2O2. All metal ions, including Fe2+, Ni2+, and Cu2+, inhibited the degradation of BPA by ZnO at natural pH, whereas Fe2+ and Ni2+ enhanced degradation efficiency of BPA at acidic pH. Comparison of BPA degradation with H2O2 only, ZnO/H2O2, Fe2+/H2O2, and ZnO/Fe2+/H2O2 revealed that Fe2+/H2O2 was more efficient than other processes at lower pH (pH?=?3.44), whereas ZnO/H2O2 the most efficient at higher pH (pH?=?6.44). These results indicate that ZnO/H2O2 process was observed to be the most efficient of all processes. Degradation efficiency of BPA by ZnO was also influenced by additional parameters, including H2O2 concentration, metal ions, and solution pH.  相似文献   

10.
Bisphenol A (BPA) and reactive black 5 (RB5) dye are among the most persistent and non-biodegradable contaminants in water which require an urgent need for the development of effective removal method. The ubiquitous existence of both contaminants could interfere with the human health and aquatic environmental balance. Photocatalytic process as one of advanced oxidation processes (AOPs) has shown high performance for degradation of organic compounds to the harmless materials under sensible condition. Therefore, this study aims to develop a visible-light-driven photocatalyst that can efficiently degrade BPA and RB5 present in household water. N-doped TiO2 were successfully synthesized via simple and direct sol–gel method. The prepared TiO2 nanoparticles were characterized by field emission scanning microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauere Emmette Teller (BET) analysis. The incorporation of nitrogen in TiO2 lattice exhibited excellent optical responses to visible region as revealed by UV–Vis–NIR spectroscopy absorption capability at 400–600 nm. The photocatalytic activity of the N-doped TiO2 nanoparticles was measured by photocatalytic degradation of BPA and RB5 in an aqueous solution under visible-light irradiations. Degradation of BPA and RB5 was 91.3% and 89.1%, respectively after 360 min illumination. The degradation of BPA and RB5 by N-doped TiO2 was increased up to 89.8% and 88.4%, respectively under visible-light irradiation as compared to commercial TiO2 P25. This finding clearly shows that N-doped TiO2 exhibits excellent photocatalytic degradation of BPA and RB5 under visible irradiation, hence have a promising potential in removing various recalcitrant contaminants for water treatment to fulfill the public need to consume clean water.
Graphical Abstract ?
  相似文献   

11.
In this study, the photocatalytic degradation of commercial azo dye (Remazol Red 133) in the presence of titanium dioxide (TiO2) suspensions as photocatalyst was investigated. The effect of various operational parameters, such as pH of dye solution and catalyst concentration on the photocatalytic degradation process, was examined. The mineralization of dye was also evaluated by measuring the chemical oxygen demand of the dye solutions. The extent of photocatalytic degradation was found to increase with increasing TiO2 concentration. For the Remazol Red dye solutions, a 120-min treatment resulted in 97.9% decolorization and 87.6% degradation at catalyst loading of 3 g/L. Experiments using real textile wastewater were also carried out. Textile wastewater degradation was enhanced at acidic conditions. The decolorization and degradation efficiencies for textile wastewater were 97.8% and 84.9% at pH 3.0, catalyst loading of 3 g/L, and treatment time of 120 min.  相似文献   

12.
Different from direct application of free nanoparticles (NPs) in water treatment, a composite material is used to reduce the release and potential toxic effects of NPs with maintained adsorption capacity and kinetics. Novel monolithic composites with TiO2 NPs incorporated into the walls of macroporous cryogels were synthesized and evaluated for material characteristics and their efficiency for removal of Pb(II) from aqueous solution in batch test and continuous mode. The uniformly distributed 6% TiO2-cryogel is shown to be optimal for minimizing TiO2 NP losses while maximizing Pb(II) removal. Under (25.0 ± 0.1) °C with the initial Pb(II) concentration of 10 mg/l, TiO2-cryogels exhibit excellent adsorption characteristic for Pb(II) removal with adsorption capacity up to 23.27 mg/g TiO2, which is even a little higher than that of TiO2 NPs (21.58 mg/g TiO2), and the results fit well with Langmuir–Freundlich isotherm. Both adsorbents work well in higher pH range with the highest removal rate at pH 6 for TiO2-cryogel, and the adsorption mechanism might be strong chemical interaction. Pseudo-second-order process can better describe the adsorption process rather than pseudo-first-order for both adsorbents. The external mass transfer process of Pb(II) on TiO2 NPs is much faster than that on TiO2-cryogel, and the ultimate equilibrium time is about the same (3 h) on both adsorbents. The synthesized composites could also withstand a continuous treatment, and the effect of competing and co-existing constituents such as Cd2+, SO4 2? and dissolved organic matter (DOM) is almost negligible. The composite design with small particles embedded into cryogels is proved to successfully keep the adsorption activity of TiO2 NPs and prevent them from releasing into the environment in engineering practice.  相似文献   

13.

Purpose

TiO2 photocatalytic degradation of tetracycline (TC) in aqueous solution under UV irradiation was investigated as affected by different environmental factors, including cations, anions, organic acids, and surfactants.

Materials and methods

The solution of TC with TiO2 was irradiated by medium mercury lamp. The concentrations of TC and metal ions were analyzed by HPLC and AAS, respectively. The degradation efficiency of TC was calculated based on TC disappearance.

Results and discussion

Photocatalysis was very effective for TC removal. The degradation efficiency of TC was significantly enhanced in the presence of Cu2+/Pb2+, SO4 2?/Cl?, and humic acid (HA) in the examined range, but did no change with Ni2+, Cd2+, or Zn2+. In addition, the results also showed that solution Cu2+ and Pb2+ ions could be reduced during the process, while Ni2+, Cd2+, and Zn2+ were still kept in the solution. However, tannic acid (TA), gallic acid (GA), citric acid (CA), salicylic acid (SA), hydroxypropyl-β-cyclodextrin (HPCD), polyoxyethylene lauryl ether (Brij35), or polyoxyethylenesorbitan monooleate (Tween80) significantly decreased the degradation efficiency of TC.

Conclusions

The photocatalytic approach could be successfully applied to remove TC, and environmental factors significantly influenced its degradation efficiency. It would be useful to understand the environmental behaviors of TC and for the implementation of remediation strategies of TC.  相似文献   

14.
The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSA?) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40?mA?cm?2 is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.  相似文献   

15.
Amine-functionalized SiO2/TiO2 photocatalytic films have been synthesized using the peroxo titanic acid (PTA) approach coupled with the sol-gel dip-coating method. The 3-aminopropyl-trimethoxysilane (APTMS) and methyltrimethoxysilane (MTMOS) were employed as the amine functional groups and silica precursor. The effects of the ratio of APTMS/MTMOS, PTA refluxed time, and pH of prepared sol on the characteristics and the formaldehyde degradation efficiency were investigated. Physicochemical properties of prepared photocatalysts were characterized with nitrogen adsorption–desorption isotherm measurement, SEM, X-ray diffraction (XRD), UV-vis spectrophotometer, and Fourier transform infrared (FTIR) spectroscopy. The XRD and FTIR results indicated that the obtained photocatalysts consisted of –NH2 groups, SiO2, and anatase TiO2. The photocatalytic films showed high transmittance of 80–90% in the visible light region. The obtained film prepared with the APTMS/MTMOS ratio of 0.03, pH of 1.8, and 10 h of refluxed time possessed high specific surface area (604.0 m2 g?1) and 85% formaldehyde degradation efficiency. The enhancement of formaldehyde degradation efficiency was observed when increasing the PTA refluxed time. The repeatability of photocatalytic film was also tested, and the degradation efficiency was 92.0% of initial efficiency after seven cycles.  相似文献   

16.
Titanium dioxide (TiO2)–silicon dioxide (SiO2) thin films were synthesized using the peroxo titanic acid approach (PTA) combined with the sol–gel method at low temperature around 100°C. The effects of type and amount of dopants of ferric (Fe3+) or thiourea (N-S) and co-dopants of Fe3+ and N-S on the films physicochemical properties and on the photocatalytic degradation of the methylene blue and formaldehyde under UV and visible light irradiation were investigated. Physicochemical properties of photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–Vis spectroscopy. The results showed that the TiO2 crystal phases obtained from this method were exclusively anatase and the needle-like crystals have an average diameter of 10–25 nm. Compared with the single dopant of 1.0 wt.% Fe3+ or 0.125 wt.% N-S that was the optimal concentration for photocatalytic degradation of methylene blue and formaldehyde, the co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ furthermore increased the degradation efficiency. Co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ in TiO2–SiO2 films were considered to play synergistic roles in narrowing TiO2 band gap resulting in the higher methylene blue and formaldehyde degradation efficiency. Since the crystal grain size of TiO2–SiO2 films synthesized by the PTA method is small, in the visible light region, the high transmittance was attainable to 80% with no-doped and dropped to 50–60% with doped thin films.  相似文献   

17.
The aim of the present study was to establish the photocatalytic efficiency of Fe-doped TiO2 nanocatalysts toward polycyclic aromatic hydrocarbons (PAHs), which were phenanthrene, anthracene, and fluoranthene, contaminated soil under visible irradiation. The morphology, phase, and particle size of the prepared nanocatalyst have been studied as a first mention in literature. The photoresponse of the TiO2 extends from UV region to the visible region was proved by the diffuse reflectance spectrophotometry (DRS). The surface area is greatly increased though the Fe-doped TiO2 compared with the bare TiO2. The pH value of the media showed the beneficial to PAH absorption on the Fe-doped TiO2 under the alkaline condition due to the surface catalyst possesses much negative charge, which is increase in percentage of PAH degradation. Based on GC-MS study, the mechanism of photoactivity of the selected PAHs involves hydroxylation, ring opening, and rearrangement reactions. The main intermediates of PAH photodegradation were found to be 9-octadecanoic acid, heptadecane, octadecane, cyclohexane (1-hexadecylheptadecyl), and 15-hydroxypentadecanoic acid.  相似文献   

18.
Titania and TiO2/fish scale composites at different mass ratios (90:10, 70:30, and 50:50) were prepared by sol?Cgel method for application as photocatalysts in this study. Fish scale, synthesized TiO2, and TiO2/fish scale composites were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen sorption. Their photocatalytic activities were evaluated through the degradation of Reactive Black 5 (RB 5) under solar light irradiation. The effects of irradiation time, catalyst loading, and mass ratios of TiO2/fish scale composites on the photocatalytic degradation of RB 5 were investigated. The results revealed that the photocatalytic activity of TiO2/fish scale composites showed compatible and enhanced degradation compared to the synthesized titania.  相似文献   

19.
This study presents the main results about the removal of the antibiotic cefotaxime (CTX) under simulated sunlight radiation using heterogeneous photocatalysis with titanium dioxide (TiO2) and zinc oxide (ZnO) in aqueous solutions. The effects of pH and catalyst initial load on pollutant removal were assessed considering the response surface methodology and a central composite circumscribed experimental design, which allowed to determine the optimized conditions that lead to a higher substrate elimination. Experimental results indicated that evaluated parameters have a significant effect on antibiotic removal in both TiO2 and ZnO suspensions. In addition, the role of photogenerated holes, hydroxyl, and superoxide anion radicals on CTX degradation was evaluated to clarify the reaction mechanism. Finally, analysis of the dissolved organic carbon content in solutions and the antibacterial activity of treated samples showed that photocatalytic treatments were able to reduce a considerable portion of the organic matter present in the systems and its antimicrobial activity.  相似文献   

20.
The photocatalytic degradation of organic dyes using TiO2 andsilver-loaded TiO2 has beenstudied. The dyes which were chosen (methyl violet, a cationicdye; Cibacron Blue FMR, areactive dye; and Maxilon Red GRL, a mono azo basic dye)represent the major structuralfamilies of organic dyes. Ag-loading dramatically reduceddegradation time. While theundoped TiO2 degraded about 63% of the total amount ofmethyl violet within 4 min,degradation rose to 95% with Ag-loaded TiO2 within the sametime period. The photo-decomposition of dyes was monitored as a function of pH anddissolved organic and inorganic matters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号