首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption and photocatalytic degradation of methyl orange (MO) aqueous solution under visible light illumination by polythiophene/titanium dioxide (PTh/TiO2) composite particles were studied. The experimental observations from UV–vis spectrophotometer indicate that MO molecules were degraded in a different degree during the visible light-induced photocatalysis reaction. We propose a new degradation mechanism of MO during the photocatalytic reaction, based on blue shift of UV–vis absorption spectra of MO solution and other researches. The data from total organic carbon analyzer definitely prove that MO can be mineralized to CO2 and H2O, and some intermediate products are generated during the photocatalysis degradation of MO.  相似文献   

2.
该文对TiO2纳米粒子气固光催化降解果蔬贮藏环境乙烯技术进行了初步研究。采用溶胶-凝胶法制备的纳米TiO2薄膜作光催化剂,利用自行设计的气固光催化实验系统,研究了乙烯浓度、紫外光作用时间对光催化降解反应的影响,探讨了乙烯的光催化降解的动力学。结果显示:该研究所制备的TiO2锐钛矿型含量为48.766%,比表面积为47.186 m2/g,具有良好的光催化性能;光催化降解乙烯比直接紫外线光降解效果显著,光照10 min时光催化乙烯降解率比直接紫外线光降解提高23.76%;乙烯的降解率随着其浓度的增加而降低;乙烯的光催化降解的动力学可以用Langmuir-Hinshelwood动力学方程加以描述。  相似文献   

3.
In this work, photocatalytic degradation of two reactive dyes, Reactive Yellow 84 (RY 84) and Reactive Black 5 (RB 5), on FeTiO3/TiO2 heterojunction in the presence of UV–visible radiation and H2O2 has been reported. FeTiO3/TiO2 heterojunction has been prepared from ilmenite FeTiO3 and anatase TiO2 by employing oxalic acid as an organic linker. FeTiO3/TiO2 ratios have been varied from 1 to 5 wt.%, and the materials were characterized by X-ray diffraction, scanning electron microscope and diffused reflectance UV–visible spectroscopic analysis. The photocatalytic activity of FeTiO3/TiO2 heterojunction for the degradation of the organic dyes RY 84 and RB 5 in the presence of UV–visible light was found to be higher than that of pure TiO2. The addition of H2O2 increases the rate of degradation of both dyes on FeTiO3/TiO2 heterojunction. It facilitates the fast degradation of dye solutions even when their concentration was above 100 mg/l, which is otherwise very slow due to the low transmittance of light by the dye solution. The extent of mineralisation of the reactive dye during photocatalytic degradation was estimated from chemical oxygen demand analysis. FeTiO3/TiO2 heterojunction photocatalyst was also found to have good photostability; the material retains almost 97 % of its initial activity even in the fifth cycle.  相似文献   

4.

Purpose  

TiO2 photocatalytic degradation of 4-chlorobiphenyl (PCB3) in aqueous solution under UV irradiation was investigated as affected by different environmental factors, including initial PCB3 concentration, TiO2 content, UV intensity, H2O2 concentration, cosolvents, and surfactants.  相似文献   

5.
The present study focused on the degradation of mixed pesticides using UV-induced photocatalytic degradation of lindane (1α,2α,3β,4α,5α,6β-hexachlorocyclohexane), methyl parathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate), and dichlorvos (2,2-dichlorovinyl-O-O-dimethyl phosphate). Different grades of TiO2 were prepared through the acid route (AR), alcohol route (AlR), and surfactant route (SR) and their photocatalytic activity were compared with commercially available Degussa P-25 TiO2. The rate of degradation of pesticides was high for TiO2 prepared through the SR compared to the other three catalysts. The crystalline structure and morphology of SR TiO2 was identified with scanning electron microscope, energy dispersive X-ray analyzer, UV, and transmission electron microscope analyses and was compared with that of Degussa P-25 TiO2. Degradation studies of individual as well as mixed pesticides were carried out. The intermediate formed during the photodegradation of methyl parathion, lindane, and dichlorvos were identified by gas chromatography–mass spectrometry analysis.  相似文献   

6.
Titania and TiO2/fish scale composites at different mass ratios (90:10, 70:30, and 50:50) were prepared by sol?Cgel method for application as photocatalysts in this study. Fish scale, synthesized TiO2, and TiO2/fish scale composites were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen sorption. Their photocatalytic activities were evaluated through the degradation of Reactive Black 5 (RB 5) under solar light irradiation. The effects of irradiation time, catalyst loading, and mass ratios of TiO2/fish scale composites on the photocatalytic degradation of RB 5 were investigated. The results revealed that the photocatalytic activity of TiO2/fish scale composites showed compatible and enhanced degradation compared to the synthesized titania.  相似文献   

7.
Titanium dioxide (TiO2)–silicon dioxide (SiO2) thin films were synthesized using the peroxo titanic acid approach (PTA) combined with the sol–gel method at low temperature around 100°C. The effects of type and amount of dopants of ferric (Fe3+) or thiourea (N-S) and co-dopants of Fe3+ and N-S on the films physicochemical properties and on the photocatalytic degradation of the methylene blue and formaldehyde under UV and visible light irradiation were investigated. Physicochemical properties of photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–Vis spectroscopy. The results showed that the TiO2 crystal phases obtained from this method were exclusively anatase and the needle-like crystals have an average diameter of 10–25 nm. Compared with the single dopant of 1.0 wt.% Fe3+ or 0.125 wt.% N-S that was the optimal concentration for photocatalytic degradation of methylene blue and formaldehyde, the co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ furthermore increased the degradation efficiency. Co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ in TiO2–SiO2 films were considered to play synergistic roles in narrowing TiO2 band gap resulting in the higher methylene blue and formaldehyde degradation efficiency. Since the crystal grain size of TiO2–SiO2 films synthesized by the PTA method is small, in the visible light region, the high transmittance was attainable to 80% with no-doped and dropped to 50–60% with doped thin films.  相似文献   

8.
Bisphenol A (BPA) and reactive black 5 (RB5) dye are among the most persistent and non-biodegradable contaminants in water which require an urgent need for the development of effective removal method. The ubiquitous existence of both contaminants could interfere with the human health and aquatic environmental balance. Photocatalytic process as one of advanced oxidation processes (AOPs) has shown high performance for degradation of organic compounds to the harmless materials under sensible condition. Therefore, this study aims to develop a visible-light-driven photocatalyst that can efficiently degrade BPA and RB5 present in household water. N-doped TiO2 were successfully synthesized via simple and direct sol–gel method. The prepared TiO2 nanoparticles were characterized by field emission scanning microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauere Emmette Teller (BET) analysis. The incorporation of nitrogen in TiO2 lattice exhibited excellent optical responses to visible region as revealed by UV–Vis–NIR spectroscopy absorption capability at 400–600 nm. The photocatalytic activity of the N-doped TiO2 nanoparticles was measured by photocatalytic degradation of BPA and RB5 in an aqueous solution under visible-light irradiations. Degradation of BPA and RB5 was 91.3% and 89.1%, respectively after 360 min illumination. The degradation of BPA and RB5 by N-doped TiO2 was increased up to 89.8% and 88.4%, respectively under visible-light irradiation as compared to commercial TiO2 P25. This finding clearly shows that N-doped TiO2 exhibits excellent photocatalytic degradation of BPA and RB5 under visible irradiation, hence have a promising potential in removing various recalcitrant contaminants for water treatment to fulfill the public need to consume clean water.
Graphical Abstract ?
  相似文献   

9.

Purpose

An efficient method was developed for treating polychlorinated biphenyl (PCB)-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation, and the photocatalytic degradation mechanism of PCBs was explored.

Materials and methods

Hydroxypropyl-??-cyclodextrin (HP??CD) and polyoxyethylene lauryl ether (Brij35) were used to extract PCBs from contaminated soil at first, and then the degradation of PCBs in the soil extracts was performed by TiO2 photocatalysis under UV irradiation.

Results and discussion

Washing conditions including washing time, the concentration of HP??CD/Brij35, and the ratio of soil mass to solution volume for extracting 2,4,4??-trichlorobiphenyl (PCB28) from a PCB28-spiked soil were investigated at first. The results indicated that both HP??CD and Brij35 exhibited good performance. The intermediates of photocatalytic degradation of PCB28 were from its dechlorination and hydroxylation in the HPCD and aqueous solutions, respectively. A field PCB-contaminated soil from e-waste recycling sites was treated by this method. The results showed that the extracting percentage was significantly affected by the chlorination degree of PCBs, and HP??CD slowed down the photocatalytic degradation efficiency of overall PCBs.

Conclusions

Soil washing and subsequent TiO2 photocatalytic degradation was successfully applied for treating PCB-contaminated soil, and HP??CD strongly altered the pathways of the photocatalytic degradation of PCBs.  相似文献   

10.
The partial phase transformation of nanometer TiO2 powder from anatase phase to rutile phase was realized by heat-treatment and a new TiO2 photocatalyst which could be excited by visible light was obtained. The heat-treated TiO2 powder at different stage of transition crystal was characterized and monitored by XRD, TEM, FT-IR and UV–vis DRS methods. The test of photocatalytic activity of the heat-treated TiO2 powder was carried out by the photocatalytic degradation of rhodamine B and acid orange II dyes, respectively, in aqueous solution under visible light irradiation. The results indicate that the nanometer TiO2 photocatalyst heat-treated at 500°C for 60 min shows the highest photocatalytic activity, that is, it can effectively degrade the rhodamine B and acid orange II under visible light irradiation. The remarkable improvement of photocatalytic activity of heat-treated TiO2 powder at 500°C for 60 min was mainly illustrated by the formation of special interphase between rutile and anatase phases, which not only restrains the recombination of photogenerated electrons and holes, but also reduces the adsorbability of nanometer anatase TiO2 powder properly for various dyes. Additionally, the effects of dye-assisting chemicals such as Na2CO3 and NaCl on the photocatalytic degradation were also studied.  相似文献   

11.
The aim of the present study was to establish the photocatalytic efficiency of Fe-doped TiO2 nanocatalysts toward polycyclic aromatic hydrocarbons (PAHs), which were phenanthrene, anthracene, and fluoranthene, contaminated soil under visible irradiation. The morphology, phase, and particle size of the prepared nanocatalyst have been studied as a first mention in literature. The photoresponse of the TiO2 extends from UV region to the visible region was proved by the diffuse reflectance spectrophotometry (DRS). The surface area is greatly increased though the Fe-doped TiO2 compared with the bare TiO2. The pH value of the media showed the beneficial to PAH absorption on the Fe-doped TiO2 under the alkaline condition due to the surface catalyst possesses much negative charge, which is increase in percentage of PAH degradation. Based on GC-MS study, the mechanism of photoactivity of the selected PAHs involves hydroxylation, ring opening, and rearrangement reactions. The main intermediates of PAH photodegradation were found to be 9-octadecanoic acid, heptadecane, octadecane, cyclohexane (1-hexadecylheptadecyl), and 15-hydroxypentadecanoic acid.  相似文献   

12.
The oxidation of di-(2-ethylhexyl) phthalate (DEHP) in solution using UV/H2O2 and direct UV photolysis are analyzed in this study. It was found that DEHP was 100% removal in the solution by 180-min UV/H2O2 treatment and 73.5% removal by 180-min direct UV photolysis. The effect of different factors, such as DEHP concentration, H2O2 concentration, and UV light intensity, on photochemical degradation was investigated. The degradation mechanism of DEHP and the acute toxicity of intermediates were also studied. The photochemical degradation process was found to follow pseudo-first-order kinetics. The results of our study suggested that the concentration with 40 mg/L H2O2 and 5 μg/mL DEHP in the solution at pH 7 with 10.0?×?10?6 Einstein l?1?s?1 UV was the optimal condition for the photochemical degradation of DEHP. The photochemical degradation with UV/H2O2 can be an efficient method to remove DEHP in wastewater.  相似文献   

13.
The objective of this study was to investigate and compare the kinetic photocatalytic degradation of mono azo dyes Acid Orange 7 (AO7) and Methyl Orange (MO) under solar light irradiation with titanium dioxide (TiO2) as a photocatalyst. Several operational parameters affecting the photocatalytic degradation of dye were evaluated such as different azo dyes, initial dye concentration, TiO2 dosage, with and without aeration and sunlight irradiation. The data obtained was well fitted with the Langmuir?CHinshelwood kinetic model. It was observed that the pseudo-first-order rate constants for AO7 were higher than MO in all cases, indicating that the photocatalytic degradation of AO7 was easier and more rapid than MO. The analysis of chemical oxygen demand and UV?CVis spectra shows the AO7 and MO not only being decolorized due to the breakdown of azo bond but also being mineralized if the azo dye solutions were continually exposed to solar light irradiation after the decolorization process.  相似文献   

14.
Fe3+ and Ce3+ codoped titanium dioxide films with high photocatalytic activity were successfully obtained via the improved sol?Cgel process. The as-prepared specimens were characterized using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FE-SEM), X-ray energy dispersive spectroscopy, Brunauer?CEmmett?CTeller (BET) surface area, X-ray photoelectron spectroscopy, photoluminescence (PL) spectra, and UV?CVis diffuse reflectance spectroscopy. The photocatalytic activities of the films were evaluated by degradation of various organic dyes in aqueous solutions. The results of XRD, FE-SEM, and BET analyses indicated that the TiO2 film had nanostructure. With the codoping of Fe3+ and Ce3+, TiO2 photocatalysts with smaller crystal size, larger surface area, and larger pore volume were obtained. Moreover, codoped ions could obviously not only suppress the formation of brookite phase but also inhibit the transformation of anatase to rutile at high temperature. Compared with pure TiO2 film, Fe3+ doped or Ce3+ doped TiO2 film, the Fe3+/Ce3+ codoped TiO2 film exhibited excellent photocatalytic activity. It is believed that the surface microstructure of the films and the doping methods of the ions are responsible for improving the photocatalytic activity.  相似文献   

15.
In this study, photocatalytic degradation of bisphenol A (BPA) was investigated using two types of catalysts (TiO2 and ZnO) with various metal ion concentrations and amounts of added H2O2. A kinetic test was performed to observe the changes of BPA over time under UV irradiation in a photocatalytic reactor. Experimental results demonstrated that degradation efficiency of ZnO was higher than that of TiO2. The degradation rate increased as catalyst dosage increased until reaching optimum dosage, after which degradation rate decreased. The addition of H2O2 improved the degradation efficiency of BPA, with the degradation efficiency increasing with the amount of H2O2. All metal ions, including Fe2+, Ni2+, and Cu2+, inhibited the degradation of BPA by ZnO at natural pH, whereas Fe2+ and Ni2+ enhanced degradation efficiency of BPA at acidic pH. Comparison of BPA degradation with H2O2 only, ZnO/H2O2, Fe2+/H2O2, and ZnO/Fe2+/H2O2 revealed that Fe2+/H2O2 was more efficient than other processes at lower pH (pH?=?3.44), whereas ZnO/H2O2 the most efficient at higher pH (pH?=?6.44). These results indicate that ZnO/H2O2 process was observed to be the most efficient of all processes. Degradation efficiency of BPA by ZnO was also influenced by additional parameters, including H2O2 concentration, metal ions, and solution pH.  相似文献   

16.
The efficiency of the photocatalytic degradation of the herbicide quinmerac in aqueous TiO2 suspensions was examined as a function of the type of light source, TiO2 loading, pH, temperature, electron acceptors, and hydroxyl radical (?OH) scavenger. The optimum loading of catalyst was found to be 0.25?mg?mL?1 under UV light at pH?7.2, with the apparent activation energy of the reaction being 13.7?kJ?mol?1. In the first stage of the reaction, the photocatalytic degradation of quinmerac (50???M) followed approximately a pseudo-first order kinetics. The most efficient electron acceptor appeared to be H2O2 along with molecular oxygen. By studying the effect of ethanol as an ?OH scavenger, it was shown that the heterogeneous catalysis takes place mainly via ?OH. The results also showed that the disappearance of quinmerac led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred in about 120?min. The reaction intermediates (7-chloro-3-methylquinoline-5,8-dione, three isomeric phenols hydroxy-7-chloro-3-methylquinoline-8-carboxylic acids, and 7-chloro-3-(hydroxymethyl)quinoline-8-carboxylic acid) were identified and the kinetics of their appearance/disappearance was followed by LC?CESI?CMS/MS. Tentative photodegradation pathways were proposed and discussed. The study also encompassed the effect of quality of natural water on the rate of removal of quinmerac.  相似文献   

17.
Biochemically, nonylphenol ethoxylates (NPnEOs) and its breakdown products nonylphenol (NP), NP monoethoxylate (NP1EO), and NP diethoxylate (NP2EO) are considered endocrine disrupting compounds. These NPnEOs have been detected in aquatic environments and are of concern. NP, NP1EO, and NP2EO were detected in water samples collected from the main watercourse and polluted tributaries of Kaoping River, Taiwan. Concentrations were below the detection limit (<LOD) to 310 μg/l for NP, from <LOD to 27.2 μg/l for NP1EO, and from <LOD to 27.5 μg/l for NP2EO. It was found that concentrations of the three compounds in a low flow period were significantly greater than in the high flow period due to the low dilution effect. The risk to aquatic organisms by NP, NP1EO, and NP2EO was expressed as hazard quotient and hazard index and simulated with the Monte Carlo method. Results from this study suggested an inadequately treated domestic wastewater caused high concentrations of NP, NP1EO, and NP2EO and a high risk to aquatic organisms.  相似文献   

18.
The photocatalytic degradation of organic dyes using TiO2 andsilver-loaded TiO2 has beenstudied. The dyes which were chosen (methyl violet, a cationicdye; Cibacron Blue FMR, areactive dye; and Maxilon Red GRL, a mono azo basic dye)represent the major structuralfamilies of organic dyes. Ag-loading dramatically reduceddegradation time. While theundoped TiO2 degraded about 63% of the total amount ofmethyl violet within 4 min,degradation rose to 95% with Ag-loaded TiO2 within the sametime period. The photo-decomposition of dyes was monitored as a function of pH anddissolved organic and inorganic matters.  相似文献   

19.
In the present study, a comparative assessment of 2,4,6-T (2,4,6-Trichlorophenol) degradation by different AOPs (Advanced Oxidation Processes – UV, UV/ H2O2, Fenton, UV/Fenton and UV/TiO2) in the laboratory scale is performed. The effects of different reactant concentrations and pH are assessed. 2,4,6-T removal, Total Organic Carbon mineralization (TOC) and dechlorination are monitored. Of all the AOPs, UV/Fenton process is more effective in degrading 2,4,6-T. The optimum conditions obtained for the best degradation with UV/Fenton are: pH?=?3, Fe+2 concentration of about 5 ppm, and peroxide concentration of 100 ppm for an initial 100 ppm of 2,4,6 T concentration at room temperature. In these conditions, a pseudo first-order rate constant is evaluated. The degradation rate of 2,4,6 T followed the order: $$ {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{Feton}}}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}}} \right. \kern-\nulldelimiterspace} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}} > {\text{UV}} $$   相似文献   

20.
The efficiency of UV- and VUV-based processes (UV, VUV, UV/H2O2, and VUV/H2O2) for removal of sulfamethoxazole (SMX) in Milli-Q water and sewage treatment plant (STP) effluent was investigated at 20??C. The investigated factors included initial pH, variety of inorganic anions (NO 3 ? and HCO 3 ? ), and humic acid (HA). The results showed that the degradation of SMX in Milli-Q water at both two pH (5.5 and 7.0) followed the order of VUV/H2O2 > VUV > UV/H2O2 > UV. All the experimental data well fitted the pseudo-first order kinetic model and the rate constant (k) and half-life time (t 1/2) were determined accordingly. Indirect oxidation of SMX by generated ?OH was the main degradation mechanism in UV/H2O2 and VUV/H2O2, while direct photolysis predominated in UV processes. The quenching tests showed that some other reactive species along with ?OH radicals were responsible to the SMX degradation under VUV process. The addition of 20?mg?L?1 HA significantly inhibited SMX degradation, whereas, the inhibitive effects of NO 3 ? and HCO 3 ? (0.1?mol?L?1) were observed as well in all processes except in UV irradiation for NO 3 ? . The removal rate decreased 1.7?C3.6 times when applying these processes to STP effluent due to the complex constituents, suggesting that from the application point of view the constituents of these complexes in real STP effluent should be considered carefully prior to the use of UV-based processes for SMX degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号