首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Ralstonia solanacearum is currently one of the most important plant pathogenic bacteria worldwide, with a wide geographical distribution and host diversity. The pathogen infects more than 200 plant species belonging to approximately 50 plant families, including Eucalyptus spp. Although, high losses have been reported in nurseries, little is known on the negative impact of the disease in the field. In this study, we evaluated the incidence of R. solanacearum and its effect on volumetric growth and cellulose yield of discoloured wood chips obtained from infected trees of one clone of Eucalyptus urophylla and two hybrid clones of Eucalyptus urophylla × E. grandis. The average incidence of bacterial wilt ranged between 60.6% and 72.4%. Volumetric growth of infected trees disease decreased 78.6% and 81.7% at 18 and 30 months, respectively. The pulp screen yield of three clones decreased between 3.2 and 6.4%, with an average 4.3%. The results of this work provide useful information on the losses of volumetric growth and pulp yield of eucalypt caused by R. solanacearum.  相似文献   

2.
This article presents the first report of bacterial wilt on fig (Ficus carica) trees in China. In 2014, fig trees with typical bacterial wilt symptoms were observed for the first time in China. The causal pathogen was determined to be Ralstonia solanacearum. Identification was based on symptomatology, morphology, BioLog carbohydrate utilization, 16S rDNA sequence analyses and phylotype‐specific multiplex‐PCR assays.  相似文献   

3.
Among the bacterial pathogens of Eucalyptus in Brazil, Ralstonia solanacearum is considered one of the most important because of the characteristics of the pathogen, like the high diversity among the strains related to host range, high virulence, broad geographical distribution and its damage to the crop in recent years. Given its importance and the lack of research on this pathosystem, the present study aimed to perform a molecular characterization of different strains of infected Eucalyptus plants in Brazil. A total of 19 bacterial cultures isolated from Eucalyptus in different regions of Brazil were analysed. A 372‐bp product generated by multiplex‐PCR amplification using Nmult primers identified all the strains analysed as belonging to phylotype II. Eighteen strains were grouped into subclade IIA and one into subclade IIB. The phylogenetic tree generated from the gene sequences of endoglucanase (egl) confirmed the classification of the strains into phylotype II and separated the strains into sequevars. Strains AMC22, IBSBF2568 and IBSBF2576 were grouped into a single clade, as were strains UFV18 and UFV20, with 89% and 78% a posteriori probability, respectively, forming two new potential sequevars not yet defined. We also identified strains belonging to sequevars 41 (100% probability) and 37 (88% probability). However, most of the strains did not fit into any previously described sequevar and did not form distinct clades. The results of the analysis of fragments amplified using the ERIC‐PCR technique indicated the existence of genetic diversity among the strains studied, with a generally high correlation between similarity and the geographical origin of the strains.  相似文献   

4.
A new disease of unknown bacterial aetiology has been observed in eucalyptus stands since 2009. It is characterized by die‐back, wilting and lesions on the branches, petiole and midrib in association with macroscopic and microscopic bacterial ooze. To date, this disease has been observed in stands of clonal Eucalyptus saligna, E. grandis and E. urophylla x E. grandis hybrids and in E. dunnii seedling plantations in the states of São Paulo, Rio Grande do Sul and Mato Grosso do Sul. Considering the economic importance of eucalyptus plantations and the potential losses caused by this disease, this study aimed to identify and characterize the causal agent. Thirty‐four strains were obtained from infected plants, which were collected in the field from four locations. The inoculation of detached leaves and intact rooted cuttings supported pathogenicity in eucalyptus. The phylogenetic analysis of four housekeeping genes (16S rDNA, gapA, recA and rpoB) as well as biochemical tests confirmed the identity of strains belonging to the species Erwinia psidii. This is the first report of E. psidii as the cause of wilt and die‐back in Eucalyptus spp. in Brazil.  相似文献   

5.
Dieback and wilt, caused by Erwinia psidii (Ep), is one of the most important emergent diseases of Eucalyptus spp. in Brazil. Currently, pathogen detection relies on isolation of bacteria from infected plant tissue and either identification based on morphological, physiological and biochemical tests or DNA amplification using the polymerase chain reaction (PCR), which in many cases is laborious and cumbersome. Considering the need for a simpler and more rapid, yet reliable, method for detecting the pathogen, we obtained a polyclonal antibody (anti‐Ep) and developed an agglutination test for specific detection of E. psidii. The antiserum was produced against the E. psidii strain LPF534 and tested against 101 E. psidii isolates from Eucalyptus spp.; three E. psidii isolates from Psidium guajava; 23 Ralstonia solanacearum and 18 Xanthomonas axonopodis isolates pathogenic to Eucalyptus spp.; and seven endophytic isolates from Eucalyptus spp., three of which are phylogenetically related to the genus Erwinia. Results of direct ELISA indicated that a concentration as low as 3.5 µg/ml of the anti‐Ep antibody was able to detect the E. psidii antigen and that the antibody did not cross‐reacted with other bacteria pathogenic and non‐pathogenic to Eucalyptus spp. In the agglutination test, the anti‐Ep antibody showed positive reaction with all strains of E. psidii tested whereas cross‐reaction with none of the strains that belong to other taxonomic groups was observed. The agglutination test showed a detection limit of 105 colony‐forming units (CFU)/ml, and its specificity was the same as that obtained by PCR amplification using E. psidii‐specific primers. These results demonstrate that the agglutination test developed here is a useful tool for specific, fast and inexpensive detection of E. psidii although only operational on pure bacterial suspensions and not yet directly from infected tissues.  相似文献   

6.
Bacterial leaf blight of eucalypt, caused by Xanthomonas axonopodis, occurs mainly in forest nurseries, but also affects young plants in the field. Avoidance of leaf wetness for long periods of time over the whole nursery and using drip irrigation for clonal hedges are, currently, the most effective measures for controlling bacterial leaf blight on eucalypt. However, as these techniques are very costly, alternative management measures are required. We hypothesized that the management of mineral nutrients could reduce disease severity on eucalypts. To examine this hypothesis, rooted cuttings of Eucalyptus urophylla × E. grandis were irrigated with nutrient solutions containing different concentrations of copper (Cu), boron (Bo), potassium (K), calcium (Ca) and nitrogen (N) before inoculation with X. axonopodis 30 days after starting the nutrient solution treatments. Concentration of K higher than that recommended, commonly used in miniclonal hedges, reduced the severity of bacterial leaf blight. However, disease severity increased with an increasing of N/K ratio. The management of mineral nutrition solution, especially K, has great potential for integrated disease management of X. axonopodis in eucalypt nurseries.  相似文献   

7.
Ralstonia solanacearum, the causal agent of bacterial wilt, has one of the widest host ranges of all phytopathogenic bacteria. This pathogen was first reported on Eucalyptus spp. in the late 1980s in Brazil. Since then, there have been reports of its occurrence on this host in Australia, China and Venezuela. Early in 1997, an 18‐month‐old clonally propagated Eucalyptus grandis × Eucalyptus camaldulensis (GC) hybrid in Zululand, KwaZulu/Natal, showed signs of wilting. The vascular tissue of infected trees was dicoloured and bacterial exudation was produced from cut surfaces. The bacterium was consistently isolated from diseased tissue, purified and identified as R. solanacearum biovar 3 race 1, using the BioLog bacterial identification system. Inoculation trials were conducted on three E. grandis × E. camaldulensis clones (GC515, GC550 and GC505). Clone GC550 displayed wilting after 3 days and all cuttings subsequently died. Clones GC515 and GC505 appeared to be less susceptible with cuttings not showing signs of disease until 7 days after inoculation. After 14 days, 90 and 80%, respectively, of cuttings of these two clones had died. This is the first report of bacterial wilt on Eucalyptus in South Africa.  相似文献   

8.
9.
Bacterial wilt (caused by Ralstonia spp.) is one of the most damaging diseases of Eucalyptus species, and is responsible for substantial losses to producers. For efficient, scientifically-based management of this disease, it is necessary to understand the various factors involved in its development, including greater knowledge of the epidemiology of the pathogen on Eucalyptus spp. This study aimed to determine the spatialtemporal dynamics of bacterial wilt in Eucalyptus under natural infection conditions. An experiment was conducted in a commercial plantation in the municipality of Itinga, state of Maranhão, Brazil, using the clone FGCA0385 (Eucalyptus urophylla var. platyphylla). The study comprised of four plots composed of 450 plants each, subdivided into nine rows with 50 plants per row with a spacing of 3 × 3 m. Disease incidence was quantified over 1 year. The spatial dynamics of the disease was determined using the dispersion index, a modified Taylor law, and the analysis of the dynamics and structure of foci. For temporal dynamics, the curve of the disease incidence progress was plotted, and the data were analysed by simple linear regression analysis fitted to three empirical models: logistic, monomolecular, and Gompertz. The distribution pattern of Eucalyptus bacterial wilt was random, as confirmed by the Index of dispersion. Analysis of the dynamics and structure of the foci, showed that 69 disease foci occurred, 44 of which were unitary, with an average number of plants per focus of 1.63. Foci had greater length in the direction of the planting line. The epidemics were best described by the monomolecular model, with an estimated incidence of Eucalyptus bacterial wilt of 27.77% in the fourth year of the study. According to the spatiotemporal dynamics of this work, management strategies such as eliminating symptomatic plants and crop renovation can be used based on economic viability.  相似文献   

10.

Coppicing is a widely adopted management system for forest plantations; however, little information is available pertaining to responses to fertilizer application. Our objective was therefore to assess the effect of individual and conjunct omissions of N, P, K, Ca, Mg, B, and Cu on the growth of a highly productive Eucalyptus urophylla?×?E. grandis hybrid clone, managed for coppicing at the second rotation, in two soils of contrasting fertility in southeastern Brazil. Two commercial sites of approximately 7 years of age, one in an Arenosol and the other in a Ferralsol, were harvested and the experiments installed. At the Arenosol site, the yield from the fertilizer treatment in the coppice system (R2) was the same as determined for the first rotation (high forest; R1), at approximately 40 m3 ha?1 year?1 at 6 years old. In contrast, the yield from the fertilizer treatment in R2 at the Ferralsol site was 11% lower compared with R1. Despite some alterations in leaf nutrient concentrations, other than for K at the Arenosol site (where the K omission treatment reduced wood volume at 6 years by 21%), no yield reduction was found for any no-fertilizer treatments. Due to the widely distributed root system already established in coppiced plantations, ensuring a large volume of soil exploration, coppiced eucalypts only responded to K application. This is due to low soil K availability and the high K demand in eucalypt plantations.

  相似文献   

11.
12.
Sound absorption property of wood for five eucalypt species   总被引:1,自引:0,他引:1  
The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Eucalyptus urophylla x E. grandis, Eucalyptus urophylla x E. tereticornis, Eucalyptus urophylla x E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with standing wave method and their sound absorption properties were also compared. The results showed that the sound absorption coefficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200–2000 Hz), but the sound absorption property ofEucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant. Fundation item This study is Part of 2000-4-13 in “948” Project from the State Forestry Administration of P.R. China Biography: JIANG Ze-hui (1939-), female, Professor in Research Institute of Wood Industry in Chinese Academy of Forestry. Responsible editor: Chai Ruihai  相似文献   

13.
The dieback and wilting caused by Erwinia psidii are emerging eucalypt diseases that have been observed since 2014 in the south and central‐south regions of Brazil. Field observations have shown variability in disease severity resistance among Eucalyptus spp. clones and species. It is hypothesized that this variability is due to genetic resistance. To confirm this hypothesis, inoculations in genetically distinct eucalypt plants are necessary. However, lack of an inoculation method and disease assessment makes difficult to select resistant genotypes for use in commercial plantations or genetic breeding programmes. Three inoculation methods were tested on eight clones of Eucalyptus spp. Among them, inoculum deposition with bacteria‐impregnated toothpick on the axillary buds was the simplest and most effective, capable to reproduce the disease symptoms observed under conditions of natural infection. We also developed a rating scale for disease assessment. Among eight clones tested, only Clone 1 (Eucalyptus saligna) and Clone 2 (Eucalyptus urophylla) were resistant.  相似文献   

14.
Wilt disease caused by Fusarium solani is a serious constraint to Dalbergia sissoo (shisham) plantations in northern India. In this study, the antagonistic potential of 40 bacterial isolates recovered from rhizophere soil of healthy shisham trees, and a well‐characterized Trichoderma species (Trichoderma virens) were tested for their possibility as biocontrol agents for F. solani. Two promising isolates (S1 and S15) were identified which inhibited pathogen growth, caused chitin degradation, produced siderophores and solubilized phosphate in vitro. Isolate S15 scored highest for hydrogen cyanide (HCN) production while isolate S1 was a non‐HCN producer. These two isolates were identified as Serratia marcescens (S1) and Pseudomonas azotoformans (S15) following sequence analysis of 16S rDNA. In dual culture assays, T. virens caused 80% inhibition of mycelial growth of the test fungus. The three selected antagonists when tested in planta in the glasshouse completely suppressed production of wilt symptoms on 12‐month‐old shisham plants. Further work is needed to ascertain the potential of these isolates to be used as biocontrol agents to manage shisham wilt under field conditions.  相似文献   

15.
Melia dubia, a multipurpose tree species, is gaining importance to meet the demand supply gap of timber, plywood and pulpwood . In June 2016, a serious outbreak of wilt disease was observed in M. dubia seedlings planted in the Central Nursery of Forest Research Institute (FRI), Dehradun, India. The disease led to the destruction of one hundred thousand (100,000) seedlings. Earlier in June 2012, serious wilting of M. dubia seedlings was observed in Haryana, India. The pathogen was identified as Fusarium solani following standard laboratory procedures and sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA). The pathogenicity of three isolates has been proved under greenhouse conditions. This is the first report of F. solani causing wilt of M. dubia.  相似文献   

16.
Decline diseases of forest trees are complex syndromes not attributable to single causal factors. In Iran, symptoms of decline disease have been observed in a number of native forest species including Quercus castaneifolia (chestnut‐leaved oak), Q. brantii (Persian oak) and Carpinus betulus (hornbeam). The symptoms are prevalent in the northern forests and the Zagros mountain forests. There are parallels between the disease in Iran and acute oak decline (AOD) reported in the UK, specifically the presence of weeping cankers, which have been attributed to a polybacterial complex wherein Brenneria goodwinii is considered a key necrogen. Based on the AOD symptomatology, and as a first step towards discovering potential causal agents of the stem weeping symptoms of affected trees in Iran, necrotic tissues were tested primarily for the presence of B. goodwinii. Symptomatic Q. castaneifolia and C. betulus from the Mazandaran Province and symptomatic Q. brantii from Kohgiluyeh and Boyerahmad Province were sampled. Isolation and culture on a selective medium yielded uniform bacterial colonies. Isolates were characterized using phenotypic and genotypic (DNA sequencing) tests. The isolates were phenotypically identical to members of Pectobacteriaceae and Yersiniaceae, specifically Brenneria and Rahnella spp. The nucleotide sequences of the 16S rRNA and housekeeping genes gyrB, infB and atpD (MLSA) amplified via PCR demonstrated that the isolates from the trees in Iran were indeed B. goodwinii, B. roseae subsp. roseae, Rahnella victoriana and an unknown species of Brenneria. Most bacteria isolated from non‐symptomatic trees were Gram‐positive, and Pseudomonas spp. were dominant, but bacterial species isolated from the diseased trees were not detected in healthy trees. Hypersensitivity response tests were positive, but inoculation on saplings was more variable with internal necrosis developing only once in the test period. Therefore, further testing is required. This is the first report of the incidence of B. goodwinii, B. roseae subsp. roseae, R. victoriana and Brenneria sp. associated with acute oak decline‐like symptoms on Q. castaneifolia, Q. brantii and C. betulus across the western forests of Iran and in the world.  相似文献   

17.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

18.
Laurel wilt, caused by Raffaelea lauricola, is responsible for extensive mortality of redbay and other American members of the Lauraceae in the southeastern United States. Raffaelea lauricola is a mycangial symbiont of the redbay ambrosia beetle (Xyleborus glabratus), and the beetle and fungus were accidentally introduced from Asia. Branch dieback of camphortree (Cinnamomum camphora), an Asian member of the Lauraceae, has been occasionally observed in areas where laurel wilt has decimated redbay populations, and R. lauricola was isolated from such camphortrees. However, the role of X. glabratus and R. lauricola in this branch dieback remains unclear. Examination of camphortrees on Jekyll Island, Georgia showed that healthy‐appearing trees and those with branch dieback had been attacked by X. glabratus, but the trees with branch dieback had four times as many beetle attacks. Raffaelea lauricola was routinely isolated from discoloured xylem near beetle tunnels in healthy trees and those with dieback. Single‐point inoculations with R. lauricola on stems of mature, healthy camphortree trees failed to induce wilt‐like symptoms or branch dieback, although areas of discoloration were scattered throughout the xylem, and R. lauricola was reisolated irregularly at various heights in some inoculated trees. In growth chamber experiments, single‐point inoculations with R. lauricola resulted in systemic colonization but no wilt symptoms or branch dieback in camphortree saplings. In contrast, inoculations at multiple points along the stem (simulating multiple attacks by the vector) caused branch dieback and wilt‐like symptoms, including a brownish, diffuse discoloration of the xylem. Camphortree appears to be more resistant than American species of Lauraceae to the vascular wilt caused by R. lauricola. The fungus does colonize camphortrees systemically, however, and can apparently cause branch dieback. This suggests that the fungus may provide brood material for X. glabratus in Asia as it does in the southeastern United States.  相似文献   

19.
Since the myrtle rust pathogen (Austropuccinia psidii) was first reported (as Puccinia psidii) in Brazil on guava (Psidium guajava) in 1884, it has been found infecting diverse myrtaceous species. Because Apsidii has recently spread rapidly worldwide with an extensive host range, genetic and genotypic diversities were evaluated within and among Apsidii populations in its putative native range and other areas of myrtle rust emergence in the Americas and Hawaii. Microsatellite markers revealed several unique multilocus genotypes (MLGs), which grouped isolates into nine distinct genetic clusters [C1–C9 comprising C1: from diverse hosts from Costa Rica, Jamaica, Mexico, Puerto Rico, and USA‐Hawaii, and USA‐California; C2: from eucalypts (Eucalyptus spp.) in Brazil/Uruguay and rose apple (Syzygium jambos) in Brazil; C3: from eucalypts in Brazil; C4: from diverse hosts in USA‐Florida; C5: from Java plum (Syzygium cumini) in Brazil; C6: from guava and Brazilian guava (Psidium guineense) in Brazil; C7: from pitanga (Eugenia uniflora) in Brazil; C8: from allspice (Pimenta dioica) in Jamaica and sweet flower (Myrrhinium atropurpureum) in Uruguay; C9: from jabuticaba (Myrciaria cauliflora) in Brazil]. The C1 cluster, which included a single MLG infecting diverse host in many geographic regions, and the closely related C4 cluster are considered as a “Pandemic biotype,” associated with myrtle rust emergence in Central America, the Caribbean, USA‐Florida, USA‐Hawaii, Australia, China‐Hainan, New Caledonia, Indonesia and Colombia. Based on 19 bioclimatic variables and documented occurrences of Apsidii contrasted with reduced sets of specific genetic clusters (subnetworks, considered as biotypes), maximum entropy bioclimatic modelling was used to predict geographic locations with suitable climate for A. psidii which are at risk from invasion. The genetic diversity of Apsidii throughout the Americas and Hawaii demonstrates the importance of recognizing biotypes when assessing the invasive threats posed by Apsidii around the globe.  相似文献   

20.
In order to devise a method for rapid detection of ‘Candidatus (Ca.) Phytoplasma pini’ and for distinguishing it rapidly from other phytoplasmas, we carried out preliminary sequencing of Lithuanian ‘Ca. Phytoplasma pini’ strain PineBL2 using Illumina (NGS) technology and targeted sequencing employing universal phytoplasma primers. We focused on two resulting chromosomal segments that contained a 16S rRNA gene and a translation elongation factor EF‐TU gene (tuf), respectively. Based on alignments of the ‘Ca. Phytoplasma pini’ gene sequences with the corresponding sequences of other phytoplasmas, we designed new primer pairs for PCR‐based detection of ‘Ca. Phytoplasma pini’. Because ‘Ca. Phytoplasma pini’ strains are expected to reside in the pine phloem in a very low titre, one might expect that they could be detected only by nested PCR. By contrast, the primers and PCR protocols designed in the current work enabled rapid direct PCR detection and identification of ‘Ca. Phytoplasma pini ’ by amplifying a 484 bp 16S rDNA segment and a 513 bp tuf gene fragment that contain regions unique to this phytoplasma .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号