首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The ability of fly ash to remove fluoride from water and wastewaters has been studied at different concentrations, times, temperatures and pH of the solution. The rate constants of adsorption, intraparticle transport, mass transfer coefficients and thermodynamic parameters have been calculated at 30, 40, and 50 °C. The empirical model has been tested at various concentration for the present system. The removal of fluoride is favorable at low concentration, high temperature and acidic pH.

  相似文献   

2.
A two-parameter mathematical model based on some physical assumptions was developed for the adsorption of water vapor by soils: W = W mh[(p/p 0) − (p/p 0)3 + (p/p 0)6] + W res. It was shown that one of the model’s parameters is close to a conventional soil-hydrological constant, namely, the maximum hygroscopic moisture, or maximum hygroscopicity W mh. The second parameter reflects the residual water content W res as the content of immobilized water, which is bound to the most active part of the adsorbing surface, is adsorbed at the initial stage of adsorption (0 ≤ p/p 0 ≤ 0.05), and later does not participate in the adsorption processes. Methods were proposed for the differential calculation of singular points and parameters of the model corresponding to the characteristic physical phenomena of water vapor adsorption in soils. The model was tested for the quantitative assessment of the interaction between the soil solid phase and the water vapor in different soils (a soddy-strongly podzolic soil, an ordinary chernozem, a chestnut soil, and a medium-columnar solonetz). A method was proposed for calculating the integral adsorption energy E max of the soil solid phase-water vapor interaction. It was shown that the E max values are determined by the physicochemical properties of the soils and characterize the capacity of the separate soil horizons for adsorbing water vapor. The relationship of the integral adsorption energy of the soils with the relative pressure of the water vapor and the water content was studied.  相似文献   

3.
Water soluble plasma proteins were fractionated from hen's egg yolk, and the molecular weight and pI of the most abundant protein species were characterized with gel electrophoresis. The proteins were identified by mass spectrometry. The protein fraction was used to produce oil-in-water emulsions, both at various protein concentrations and at various pH values, and the surface load was determined through serum depletion. The competitive adsorption was studied through the determination of nonadsorbing species with gel electrophoresis. The results show that it was possible to form an oil-in-water emulsion for which droplet size and maximum surface load depended on the protein concentration and pH. Serum albumin and YGP40 adsorbed selectively at the oil/water interface throughout the pH range investigated, and for albumin the selectivity increased close to its pI. It is suggested that this selective adsorption is due to long hydrophobic stretches in the polypeptide chain, which are present in the selectively adsorbing species but absent in less adsorbing species.  相似文献   

4.
Virus adsorption and inactivation in soil matrix are crucial processes controlling the potential of viruses to contaminate water resources. These two processes behave interactively and are controlled by various factors. In this study, batch and incubation experiments were conducted at 4 °C to compare the adsorption of bacteriophage MS2 in different soils, and to examine its inactivation behavior at different soil water content. Soils with presence/absence of autochthonous microorganisms were used. The interactive effects of sterilization and soil water content on virus inactivation were also evaluated. The Ustisandic Primosols showed no virus adsorption and minimal differences in activation regardless of the presence or absence of soil autochthonous microorganisms. For the Ferriudic Cambosols, however, sterilization increased adsorption and enhanced inactivation, and inactivation was accentuated by decreasing soil water content. The results indicate that soil water content and sterilization had additive effects on virus inactivation, and reveal that the enhanced “adsorption” by sterilization was mainly due to greater die-off in the Ferriudic Cambosols. The greater inactivation observed in the Ferriudic Cambosols, which has relative high contents of Fe- and Al-oxides and low pH, resulting from the additive effect of sterilization and decreasing soil water content was mainly due to increased reactions at the solid–water interface. We conclude that the effect of sterilization and soil water content on virus inactivation depends on soil type, and the extent of inactivation is likely controlled by the content of metal oxides.  相似文献   

5.
香蕉皮改性材料对废水中二价Cd离子的吸附特性与机理   总被引:3,自引:3,他引:0  
为探究农业生物质制备绿色吸附材料处理含Cd~(2+)废水方法,以香蕉皮为原料,制备改性吸附材料。采用单因素试验,优化了改性工艺条件。通过静态吸附试验,结合等温模型和吸附动力学模型探讨了其对Cd~(2+)吸附过程。利用比表面及孔径分析(brunner-emmet-teller)、扫描电镜(scanning electron microscope)、能谱仪(energy disperse spectroscopy)、元素分析仪、傅里叶变换红外光谱(Fourier transform infrared spectroscopy)等手段对改性前后材料的表面形态和结构进行表征,并分析了改性和吸附过程的机理。结果表明:改性较佳工艺条件为Na OH浓度为0.25 mol/L,改性时间为30 min。在此条件下香蕉皮改性后,对水中Cd~(2+)的理论饱和吸附量由37.61 mg/g提高到87.15 mg/g,平衡时间由60 min缩短到45 min。吸附符合Langmuir等温模型(R~2=0.998)和准二级动力学模型(R2=0.999)。改性后的香蕉皮对水中Cd~(2+)的吸附以离子交换吸附为主。研究结果可为木质纤维素生物质改性制备绿色吸附材料处理含重金属废水提供理论依据。  相似文献   

6.
An experiment to evaluate the impact of water erosion and cultivation on the soil carbon dynamic and carbon stock in a semiarid area of South-East Spain was carried out. The study was performed under three different land use scenarios: (1) forest; (2) abandoned agricultural field; and (3) non-irrigated olive grove. Experimental erosion plots (in olive grove and forest) and sediment traps (in the abandoned area) were used to determine the carbon pools associated with sediments and runoff after each event occurring between September 2005 and November 2006.

Change in land use from forest to cultivated enhanced the risk of erosion (total soil loss in olive cropland seven-fold higher than in the forest area) and reduced the soil carbon stock (in the top 5 cm) by about 50%. Mineral-associated organic carbon (MOC) represented the main C pool in the three study areas although its contribution to soil organic carbon (SOC) was significantly higher in the disturbed areas (78.91 ± 1.81% and 77.29 ± 1.21% for abandoned and olive area, respectively) than in the forest area (66.05 ± 3.11%). In both, the olive and abandoned soils, the reduction in particulate organic carbon (POC) was proportionally greater than the decline in MOC.

The higher degree of sediment production in the olive cropland had an important consequence in terms of the carbon losses induced by erosion compared to the abandoned and forest plots. Thus, the total OC lost by erosion in the sediments was around three times higher in the cultivated (5.12 g C m−2) than the forest plot (1.77 g C m−2). The abandoned area displayed similar OC losses as a result of erosion as the forest plot (in the measurement period: 2.07 g C m−2, 0.63 g C m−2 and 0.65 g C m−2 for olive, forest and abandoned area, respectively). MOC represented the highest percentage of contribution to total sediment OC for all the events analysed and in all uses being, in general these values higher in Olive (74–90%) than in the other two areas (55–80%). The organic carbon lost was basically linked to the solid phase in the three land uses, although the contribution of DOC to total carbon loss by erosion varied widely with each event.

Data from this study show that the more labile OC fraction (POC) lost in soil in the cultivated area was mainly due to the effect of cultivation (low overall biomass production and residue return together with high C mineralization) rather than to water erosion, given that the major part of the OC lost in sediments was in the form of MOC.  相似文献   


7.
Pb adsorption for 12 soils from Tuscany was studied. The data fitted the Langmuir and the Freundlich isotherms over a large range of concentrations. Results showed that organic matter and clay content were responsible for adsorption maxima. The effect of Mn oxides, explained independently of organic matter and clay, was negligible. The adsorption maxima were generally found to be greater than CEC; the possible mechanisms are discussed.  相似文献   

8.
Long‐term monitoring is needed for direct assessment of soil organic carbon (SOC), soil, and nutrient loss by water erosion on a watershed scale. However, labor and capital requirements preclude implementation of such monitoring at many locations representing principal soils and ecoregions. These considerations warrant the development of diagnostic models to assess erosional SOC loss from more readily obtained data. The same factors affect transport of SOC and mineral soil fraction, suggesting that given the gain or loss of soil minerals, it may be possible to estimate the SOC flux from the data on erosion and deposition. One possible approach to parameterization is the use of the revised universal soil loss equation (RUSLE) to predict soil loss and this multiplied by the per cent of SOC in the near‐surface soil and an enrichment factor to obtain SOC loss. The data obtained from two watersheds in Ohio indicate that a power law relationship between soil loss and SOC loss may be more appropriate. When measured SOC loss from individual events over a 12‐year period was plotted against measured soil loss the data were logarithmically linear (R2=0·75) with a slope (or exponent in the power law) slightly less than would be expected for a RUSLE type model. The stable aggregate size distribution in runoff from a plot scale may be used to estimate the fate of size pools of SOC by comparing size distributions in the runoff plot scale and river watershed scales. Based upon this comparison, a minimum of 73 per cent of material from runoff plots is deposited on the landscape and the most stable carbon pool is lost from watershed soils to aquatic ecosystems and atmospheric carbon dioxide. Implicit in these models is the supposition that water stable soil aggregates and primary particles can be viewed as a tracer for SOC. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The precipitation and adsorption of pentachlorophenol (PCP) on allophane was confirmed by adsorption experiments carried out at various pll values. The precipitation of PCP took place around base-unsaturated clay particles when the concentration of PCP exceeded solubility. The adsorption of PCP involves anion exchange reaction as well as physical adsorption due to van der Waals' force, and the PCP adsorbed as anions is released with greater when washed with deionized water.

Allopbane of Andosols appears to adsorb PCP largely as anions, while humus, balloysite, and allophane (molar SiO2/Al2O3 ratio about 2) seem to adsorb PCP mostly as molecules. The precipitation of PCP in mlcell might participate in the adsorption. PCP mixed with layer silicate day minerals such as illite, montmorillonite, and kaolinite sublimated by about 200°C. In contrast to this, PCP mixed or adsorbed on allophane did not sublimate by 200°C but burnt out between 250 and 500°C showing a strong exothermic reaction.  相似文献   

11.
12.
棉秆和油菜秆热解焦炭的燃烧与吸附特性   总被引:2,自引:2,他引:0  
为了研究生物质热解多联产焦炭产品的应用特性,采用棉秆和油菜秆作为热解原料制备了不同温度(350、550、750和950℃)下的焦炭样品。分析了不同焦样的燃烧特性、水分吸收和保持特性、CO2吸附特性、苯酚吸附特性和抗环境氧化能力。研究结果表明550℃热解棉秆焦炭和750℃热解油菜秆焦炭燃烧特性好,热值高,燃烧快速剧烈,容易燃尽,适宜作为燃料炭;而综合焦样的吸水能力和保水特性,350℃热解棉秆焦炭和550℃热解油菜秆焦炭的吸水量大,保水能力强,适宜用作生物炭。高温下制备的棉秆焦炭和油菜秆焦炭吸附CO2和苯酚的能力更强,其吸附量跟焦炭微孔容积正相关;同时高温热解焦炭具有更好的碳汇效应,相同热解温度下制备的棉秆焦炭比油菜秆焦炭抗环境氧化能力更强。根据不同焦样的燃烧和吸附特性,选择性的制备目标焦炭,将其运用于工农业生产,有利于提升热解多联产的经济效益,保证多联产系统的稳定运营。  相似文献   

13.
A study was conducted to examine the adsorption and interaction mechanism of pirimicarb with smectites and soils. Studies were carried out in pesticide-smectite or soil-water systems and in pesticide-smectite-organic solvent systems, using homoionic samples of montmorillonite, smectites of different layer charge and soils with smectite in their clay fraction. The adsorption isotherms obtained at 30° and 45°C follow the empirical equation of Freundlich. In the adsorption of the pesticide by soils a highly significant correlation was seen between adsorption (distribution coefficient) and the content of smectite in them. In the studies in organic medium the formation of a smectite-pirimicarb bilayer complex with a basal d001 spacing of 18.55 Å was observed; the formation of this is also related to the nature of the interlayer cation and the layer charge of the smectite. According to the I.R. results, the interlayer cations of the silicate and the oxygen atom of the C–O group of the pesticide molecule are involved in the interaction mechanism.  相似文献   

14.
In a previous communication we1) reported the adsorption and subsequent release of adsorbed Cu++ by two soils and a compost sample using fairly high concentrations of Cu++ ions in the form of copper sulphate solution.  相似文献   

15.
Abstract

Selenite adsorption by a variety of oxides consisting of iron (Fe), aluminum (Al), titanium (Ti), manganes (Mn), and silicon (Si), and by two humic acids were investigated in order to grasp selenite behavior and fixation mechanisms in soil. It was found that selenite was apparently adsorbed even by the Mn oxides on which surface negative charge was dominant in normal pH range (pH <4). No selenite adsorption was observed in the silicon dioxide (SiO2) and the two humic acids. A sequential extraction of adsorbed selenite with competitive anions showed the differences of binding force or stability of adsorbed selenite among the minerals. While the goethite fixed selenite strongly, selenite adsorbed on the Mn oxide was easily released to the liquid phase with other anions, such as phosphate. Each mineral had its inherent characteristic in ligand exchange reactions accompanied with selenite sorption. Selenite sorption by the Mn and the Ti oxides resulted in large increase of surface negative charge, while only a little increase in the Fe and Al oxides. Proton consumption with selenite sorption was extremely smaller for the Mn oxide than for the others.  相似文献   

16.
Boron, a vital plant nutrient, possesses certain characteristics similar to phosphate ion. For this reason, some researchers believe that its absorption by plants is similar to phosphate ion absorption.  相似文献   

17.
土壤水分和植物残体对紫色水稻土有机碳矿化的影响   总被引:11,自引:3,他引:11  
采用为期62.d的实验室恒温(281)℃培养方法,研究了土壤水分和植物残体对紫色水稻土有机碳矿化的影响。结果表明,紫色水稻土有机碳矿化速率在培养30.d后基本达到稳定,好气条件下土壤有机碳累积矿化量高于淹水条件,且差异达到极显著水平。用一级动力学方程对植物残体的矿化速率进行拟合表明,好气条件下,植物残体的分解速率常数(k值)大小顺序为蚕豆秸秆玉米秸秆水稻秸秆,而淹水条件则为水稻秸秆蚕豆秸秆玉米秸秆。水分状况和植物残体化学组分的差异影响紫色水稻土中有机碳的动态变化,最终导致碳累积矿化量差异。  相似文献   

18.
为了探讨三峡库区不同森林植物群落土壤有机碳质量分数与土壤水分入渗的关系,将森林土壤有机碳质量分数设定为独立变量,引入土壤有机碳质量分数对Horton土壤水分入渗模型进行修正。结果表明:1)不同森林植被群落类型土壤有机碳质量分数不同,表现为阔叶混交林>针阔混交林>针叶混交林>乔灌混交林;2)初渗速率、初渗速率和稳渗速率的差分别与土壤下层土壤有机碳质量分数呈线性相关关系。研究还发现,Horton模型经引入土壤有机碳指标后,新模型的入渗速率与入渗量模拟值与实测值相关系数明显提高,模拟结果更逼近实测值。研究结果为同类地区森林土壤水分入渗过程预测与模拟提供了一种新方法。  相似文献   

19.
The retention properties of acidic and non-acidic lake sediments were determined in order to assess the effects of lake acidification on the immobilization of P from solution by sediments. The adsorption of P by solids was described by the Langmuir model which was used to determine the sorption parameters, e.g. sorption maxima and equilibrium constant of adsorption. The pH of solution and the chemical and mineralogical characteristics of sediments affect mainly the magnitude of adsorption maxima. The binding strength of the adsorbed complex is similar for all the investigated sediments (Δ=?25.3 to ?28.5 kJ mol?1) and it is affected little by variation in pH or by chemical and mineralogical composition of sediments. The results indicate that the magnitude of P removal is determined more by sediment chemistry and mineralogy (amorphous Al/Fe oxy-hydroxides, carbonate content) than by pH of the water.  相似文献   

20.
澳洲坚果果仁粉水分解吸-吸附等温线的测定与分析   总被引:1,自引:1,他引:0  
为给澳洲坚果果仁粉的干燥和贮藏条件的确定提供技术依据,试验测定了其在室温(25℃)下的水分解吸-吸附等温线。采用非线性回归的方法,应用常见的BET、GAB、Halsey、Henderson、Oswin和Smith模型对试验所得解吸-吸附等温线进行拟合分析,以确定最佳拟合模型及其参数。结果表明,其解吸等温线属于国际理论和应用化学联合会分类的第Ⅱ种类型,其吸附等温线属于第Ⅲ种类型,解吸-吸附滞后现象属于H3型;GAB模型是其最佳的解吸等温线拟合方程,Henderson模型是最佳的吸附等温线拟合方程;GAB模型拟合解吸等温线的参数A、B、C分别为8.2439、0.4815、1.3545。Henderson模型拟合吸附等温线的参数A、B分别为0.3006、0.8682。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号