首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the maternal protection of gruntlings derived from wild sows vaccinated orally against classical swine fever (CSF) using C‐strain vaccine. Three vaccinated sows and one unvaccinated control sow were included. Challenge infection of the progeny was carried out either intranasally or by contact at the beginning of the third month of life (61–65 days post‐natum). Whereas, two of three litters had maternal antibodies, the progeny of one vaccinated sow was seronegative at challenge. The progeny of the control sow, which was challenged by contact infection, developed moderate clinical signs except for one animal which became ill and died. Two gruntlings derived from the vaccinated sows also died of CSF, although one of them had a relatively high maternal antibody titre (128 ND50). The transient infection and partial virus shedding observed in a small number of gruntlings with maternal antibodies and the fact that one animal with maternal antibodies became ill and died confirm the incomplete maternal protection at this age. The reason for this incomplete protection is discussed. As none of the surviving gruntlings could be shown to carry CSFV or viral RNA at the end of the experiment (36 or 70 d.p.i.), it may be concluded that these animals do not represent a potential CSFV reservoir.  相似文献   

2.
The efficacy of the classical swine fever (CSF) subunit marker vaccine Porcilis Pesti based on baculovirus expressed envelope glycoprotein E2 of CSF virus (CSFV) was evaluated in pregnant sows. Ten gilts were vaccinated with one dose of marker vaccine, followed by a second dose 4 weeks later. Four gilts remained unvaccinated and received a placebo at the same times. Thirty-three days after the second vaccination all animals were artificially inseminated. Neither local or systemic reactions nor an increase of body temperature were observed after vaccinations. All gilts showed a normal course of pregnancy. Thirty-five days after first vaccination all animals developed E2 specific neutralising antibodies with titres in the range of 5.0 and 7.5 log(2). No antibodies to CSFV-E(rns) were found in ELISA.On day 65 of gestation (126 days after the first immunisation) all sows were infected intranasally using 2ml (10(6.6) TCID(50)/ml) of the low virulent CSFV strain "Glentorf". After challenge in two of the unvaccinated control sows a slight transient increase of body temperature was observed, whereas leukopenia was demonstrated in all control animals. In addition all controls became viraemic. Vaccinations with the CSFV subunit vaccine protected the animals from clinical symptoms of CSF. In two sows a moderate decrease of leukocyte counts was detected on day 5 post infection. In contrast to the unvaccinated control sows in none of the vaccinated animals virus was isolated from the nasal swabs or the blood.Approximately 40 days after challenge all sows were killed and necropsy was done. The sows and their offspring were examined for the presence of CSFV in blood, bone marrow and different organs. No virus was found in any of the sows. In contrast, in all litters of the control sows CSFV was found in the blood as well as in the organ samples. Nine out of 10 litters of the vaccinated sows were protected from CSFV infection. Blood samples, lymphatic organs and bone marrow of these animals were all virologically negative. When sera were tested for CSFV-antibodies all sows had developed E(rns)-specific antibodies but no CSFV-specific antibodies were found in any of the progeny.It was concluded that vaccination with CSF subunit marker vaccine Porcilis((R)) Pesti protected 90% of the litters from viral infection when sows were challenged mid-gestation using the CSFV-strain "Glentorf".  相似文献   

3.
The use of a vaccine against classical swine fever virus (CSFV) during an outbreak of CSF should lead to a reduction in the horizontal or vertical transmission of CSFV. The reduction of vertical, i.e. transplacental, transmission of a moderate-virulent strain of CSFV from the sow to its offspring was studied in sows vaccinated once or twice with a CSFV E2 subunit vaccine. Two groups of nine sows were vaccinated with one PD95 dose of the E2 subunit vaccine, approximately four weeks before insemination. A third group of nine inseminated sows served as controls. One group of nine sows were vaccinated again at two weeks after insemination. At ten weeks after the primary vaccination, approximately six weeks after insemination, all 27 sows were challenged intranasally with 10(5) TCID50 of a moderate-virulent strain of CSFV, the Van Zoelen strain. The sows were euthanized at five weeks after challenge, and samples from the sows and fetuses were collected for detection of CSFV. All 27 sows were in gestation at the time of slaughter, CSFV was detected in the fetuses of all unvaccinated sows but it was not detected in any of the samples collected from fetuses of the double-vaccinated sows. Virus was however recovered from the fetuses of one out of nine sows vaccinated once. All the sows, except four double-vaccinated sows, developed CSFV Erns antibodies. Transplacental transmission of CSFV was reduced significantly (p <0.001) in all vaccinated sows. When the results from the experiment were extrapolated to a herd level, it could be concluded that, with 95% certainty, approximately 11% (single vaccination) or 0% (double vaccination), confidence intervals of 0.01-0.44 and 0.0-0.30 respectively, of the pregnant sows would still not be protected against vertical transmission of moderate-virulent CSFV. We conclude that vaccination with the CSFV E2 subunit vaccine can reduce the transmission of moderate-virulent strain of CSFV from the sow to its offspring significantly.  相似文献   

4.
The development of a classical swine fever (CSF) subunit marker vaccine, based on viral envelope glycoprotein E2, and a companion diagnostic test, based on a second viral envelope glycoprotein E(RNS), will be described. Important properties of the vaccine, such as onset and duration of immunity, and prevention of horizontal and vertical transmission of virus were evaluated. A single dose of the vaccine protected pigs against clinical signs of CSF, following intranasal challenge with 100LD(50) of virulent classical swine fever virus (CSFV) at 2 weeks after vaccination. However, challenge virus transmission to unvaccinated sentinels was not always completely inhibited at this time point. From 3 weeks up to 6 months after vaccination, pigs were protected against clinical signs of CSF, and no longer transmitted challenge virus to unvaccinated sentinels. In contrast, unvaccinated control pigs died within 2 weeks after challenge. We also evaluated transmission of challenge virus in a setup enabling determination of the reproduction ratio (R value) of the virus. In such an experiment, transmission of challenge virus is determined in a fully vaccinated population at different time points after vaccination. Pigs challenged at 1 week after immunization died of CSF, whereas the vaccinated sentinels became infected, seroconverted for E(RNS) antibodies, but survived. At 2 weeks after vaccination, the challenged pigs seroconverted for E(RNS) antibodies, but none of the vaccinated sentinels did. Thus, at 1 week after vaccination, R1, and at 2 weeks, R=0, implying no control or control of an outbreak, respectively. Vertical transmission of CSFV to the immune-incompetent fetus may lead to the birth of highly viraemic, persistently infected piglets which are one of the major sources of virus spread. Protection against transplacental transmission of CSFV in vaccinated sows was, therefore, tested in once and twice vaccinated sows. Only one out of nine once-vaccinated sows transmitted challenge virus to the fetus, whereas none of the nine twice-vaccinated sows did. Finally, our data show that the E(RNS) test detects CSFV-specific antibodies in vaccinated or unvaccinated pigs as early as 14 days after infection with a virulent CSF strain. This indicates that the E2 vaccine and companion test fully comply with the marker vaccine concept. This concept implies the possibility of detecting infected animals within a vaccinated population.  相似文献   

5.
Thirty-four pregnant wild sows and their unborn progeny derived from an endemically infected population in the district of Nordvorpommern (Mecklenburg-Western Pomerania) were investigated for classical swine fever virus (CSFV) and antibodies. During the last 2.5 years of the epidemic, 20 out of 34 pregnant wild sows investigated were serologically positive. No CSFV or viral RNA was detected in organs derived from these animals and their progeny. This indicates that young wild boars persistently infected by transplacental virus transmission do not play a crucial role in the perpetuation of CSFV in wild boar. Other factors seem to be more important for the establishment of CSF as well as for virus perpetuation in the population.  相似文献   

6.
The aim of this study was to evaluate if oral immunisation of wild sows protects the fetuses from transplacental infection. Two experiments were carried out with gilts vaccinated orally with C-strain virus approximately 5 weeks after insemination. They were challenged at mid-gestation with highly virulent classical swine fever virus (CSFV) or moderately virulent field virus. The results revealed that oral vaccination has no negative impact on the pregnancy, and all vaccinated sows developed neutralising antibodies. After infection no symptoms were detected in the six vaccinated-infected sows. Challenge virus could neither be found in blood, nasal and fecal swabs or saliva nor in organs sampled at necropsy. Likewise, all fetuses originating from vaccinated sows were virologically and serologically negative. In contrast, the controls developed a short viremia and as a result of the transplacental infection all fetuses were CSFV positive. In addition, 22 serologically positive wild sows of an endemically infected area, where oral vaccination had also been carried out, and their offspring were free from CSFV or viral RNA. Our results confirm that oral immunisation of pregnant wild sows with C-strain vaccine may protect the fetuses against CSF.  相似文献   

7.
A classical swine fever virus (CSFV) field isolate originating from wild boar was investigated on its virulence in domestic pigs and wild boar. Three weaner pigs and two wild boars (yearlings) were intranasally inoculated with the isolate "Spante" and tested for clinical, virological, hematological and serological findings until day 31 after infection (p. i.). One day p. i. the piglets were put in contact to three sentinel pigs. During a period of 31 d neither the domestic pigs nor the wild boars showed clinical signs specific for CSF. Two infected weaner pigs became transiently viraemic, transmitted CSFV in nasal secretions, showed a slight leukopenia and reacted serologically positive. The contact infection resulted in a viraemia in two sentinel piglets on day 30. Only one contact animal developed antibodies. None of the wild boars became viraemic, excreted CSFV in nasal secretions or developed antibodies. The CSFV isolate "Spante" represents a low virulent virus. Referring to a significant higher percentage of virologically positive tissue samples after nested PCR compared with the virus isolation, persistence of CSFV is discussed.  相似文献   

8.
The aim of the studies was to fathom the duration and the role of maternal immunity for Aujeszky's disease (AD) and classical swine fever (CSF) in wild boar offspring. In one experiment, two wild boar sows were infected with a low pathogenic pseudorabies virus (PRV) in 1999. A total of 51 offspring was born between 1999 and 2002 and was monitored for PRV maternal antibodies. In a second experiment, the maternal immunity for CSF was analysed. Therefore, a sow was orally vaccinated against CSF using vaccine baits containing the live-attenuated C-strain vaccine. The vaccination took place in January 1999. The sow gave birth to four piglets in 2001 and to two piglets in 2002. With respect to maternal immunity for AD, some piglets reacted positive in the ELISA up to 27-week post-partum while in the neutralization test antibodies were detected up to 15-week post-partum. The calculated half-life of neutralizing antibodies was 21 days. Regarding CSF, the neutralization titres of maternal antibodies dropped continuously reaching values of < or =10 ND50 20-week post-partum. After the 12th week post-partum, most of the sera reacted negative in the ELISA. However, after the third month, low levels of neutralization titres were still detectable. The results are discussed with respect to the epidemiology and control of both diseases in wild boar populations.  相似文献   

9.
为制订合理的猪瘟免疫程序,本研究采用正向间接血凝试验(IHA)对某规模化猪场进行猪瘟免疫监测和分析。结果表明:猪瘟母源抗体的合格率、抗体效价平均值均存在随着仔猪日龄的增长而呈逐渐下降的趋势;35 d~40 d仔猪母源抗体的合格率达78.79%、抗体平均效价为5.97 Log2;仔猪35 d~40 d实施猪瘟首免,其一免抗体合格率和抗体效价均比20 d首免有所提高;同一窝仔猪的猪瘟母源抗体,有11%窝次的猪差距在3个~8个滴度;母猪猪瘟免疫抗体的合格率,一胎母猪稍低,其它经产母猪基本接近;猪瘟抗体效价的平均值随胎龄增加而升高,并且抗体的离散度则随胎龄增加而缩小。因此,在母猪实施与仔猪同时免疫的猪场,40日龄左右是较佳的首免日期。  相似文献   

10.
The neonatal requirements for maternal passive immunity and the lactation immunobiology with regard to sow immunisation for neonatal protection are reviewed. A vaccination protocol which combines oral and parenteral antigen administration to produce antibody activity mediated mainly by IgM is described. Its efficacy in affording protection to neonatal piglets was tested against a lethal oral infection with a virulent strain of Escherichia coli "Abbottstown". Piglets suckled on vaccinated or non-vaccinated sows were exposed to an infective challenge in the gastrointestinal tract and the relative pathology in test and control groups observed over the neonatal period. Death ensued in 76 per cent of piglets suckled on control sows and 26 per cent of piglets suckled on sows vaccinated by two intramuscular injections. Litters suckled on orally vaccinated sows were able to resist a similar infective challenge, there being only one fatality out of 42 piglets.  相似文献   

11.
The virulence of two isolates of the classical swine fever virus (CSFV) was studied in experimentally infected wild boars of different ages. The isolates, originating from wild boars shot in Mecklenburg-Western Pomerania (isolate '1829-NVP') and in Rhineland-Palatinate (isolate '11722-WIL'), belong to the genetic subgroup 2.3 Rostock. Clinical picture, transient viraemia, virus excretion and gross lesions at necropsy as well as a failure of virus detection at the end of the experiment revealed that this virus subtype was only moderately virulent. Whereas one subadult wild boar and both 7-week-old wild boar piglets infected intranasally became sick and died, only one of three 8-week-old animals which survived after contact infection remained CSFV positive until the end of the experiment [34 days post infection (dpi)], although neutralizing antibodies were present. This underlines the role of young boars in CSF epidemics. The isolate '11722-WIL' was shed by an infected adult wild boar and was transmitted to susceptible piglets. Interestingly, all animals which became sick and died also were found to be infected with a secondary pathogen. Therefore, we assume that after infection with moderately virulent CSFV simultaneous infections with other pathogens may be important for the clinical course and the outcome of the disease as well as for a spread of the virus in field.  相似文献   

12.
The period during which pigs are protected after vaccination is important for the successful usage of a marker vaccine against classical swine fever virus (CSFV) in an eradication programme. In four animal experiments with different vaccination-challenge intervals we determined the duration of protection of an E2 subunit marker vaccine in pigs after a single vaccination. Unvaccinated pigs were included in each group to detect transmission of the challenge virus.Three groups of six pigs were vaccinated once and subsequently inoculated with the virulent CSFV strain Brescia after a vaccination-challenge interval of 3, 51/2, 6 or 13 months. All vaccinated pigs, 16 out of 18, with neutralising antibodies against CSFV at the moment of challenge, 3, 51/2, 6 or 13 months later, survived, whereas unvaccinated control pigs died from acute CSF or were killed being moribund. A proportion of the vaccinated pigs did however develop fever or cytopenia after challenge and two vaccinated pigs were viremic after challenge. Virus transmission of vaccinated and challenged pigs to unvaccinated sentinel pigs did not occur in groups of pigs which were challenged 3 or 6 months after a single vaccination. Two out of eight vaccinated pigs that were found negative for CSFV neutralising antibody at 13 months after vaccination died after subsequent challenge.The findings in this study demonstrate that pigs can be protected against a lethal challenge of CSFV for up to 13 months after a single vaccination with an E2 subunit marker vaccine.  相似文献   

13.
The aim of the studies was to fathom the duration and the role of maternal immunity for Aujeszky's disease (AD) and classical swine fever (CSF) in wild boar offspring. In one experiment, two wild boar sows were infected with a low pathogenic pseudorabies virus (PRV) in 1999. A total of 51 offspring was born between 1999 and 2002 and was monitored for PRV maternal antibodies. In a second experiment, the maternal immunity for CSF was analysed. Therefore, a sow was orally vaccinated against CSF using vaccine baits containing the live‐attenuated C‐strain vaccine. The vaccination took place in January 1999. The sow gave birth to four piglets in 2001 and to two piglets in 2002. With respect to maternal immunity for AD, some piglets reacted positive in the ELISA up to 27‐week post‐partum while in the neutralization test antibodies were detected up to 15‐week post‐partum. The calculated half‐life of neutralizing antibodies was 21 days. Regarding CSF, the neutralization titres of maternal antibodies dropped continuously reaching values of ≤10 ND50 20‐week post‐partum. After the 12th week post‐partum, most of the sera reacted negative in the ELISA. However, after the third month, low levels of neutralization titres were still detectable. The results are discussed with respect to the epidemiology and control of both diseases in wild boar populations.  相似文献   

14.
Two commercial marker vaccines against classical swine fever virus (CSFV) and companion diagnostic tests were examined in 160 conventional pigs. To test the vaccines in a "worst case scenario", group of 10 weaners were vaccinated using a single dose of an E2 (gp55) based vaccine at days -21, -14, -10 or -7, and subsequently challenged at day 0. The challenge virus was CSFV 277, originating from a recent outbreak of classical swine fever (CSF) in Germany. In all groups, only 5 out of 10 pigs were challenged; the remaining 5 pigs served as vaccinated contact controls. Also, three control groups, each consisting of 10 non-vaccinated pigs, were challenged in parallel to the vaccinated animals. CSFV could be isolated from all non-vaccinated pigs. Among these pigs 40% displayed a chronic course of the infection (virus positive for more than 10 days). Pigs vaccinated 21 or 14 days before challenge displayed no clinical signs of CSFV after challenge. However, they were still able to replicate CSFV when challenged, as measured by reisolation of CSFV from leukocytes of the directly challenged pigs. CSFV could be isolated from the leucocytes of 25% of the pigs vaccinated 21 days before challenge and 50% of the pigs vaccinated 14 days before challenge. Chronic infection was not observed, but transmission to one vaccinated contact pig occurred. From all pigs vaccinated 10 or 7 days before challenge, CSFV could be reisolated. We observed a chronic course of infection in 5% of pigs vaccinated 10 days before challenge and in 30% of pigs vaccinated 7 days before challenge. The mortality rate was 20% in the pigs vaccinated 10 days before challenge, and varied between 20 and 80% in pigs vaccinated 7 days prior to challenge. The contact animals had lower mortality (0-20%) than directly challenged pigs, probably mirroring the delayed time point of infection. There was thus some protection against clinical illness by both marker vaccines, but not a solid protection against infection and virus shedding. The efficacy of the vaccine was best if used 3 weeks before challenge and a clear correlation between time interval from vaccination to challenge and the level of virus shedding was observed. Each vaccine had its own accompanying discriminatory ELISA, but 18% of the virus positive pigs never seroconverted in these tests.  相似文献   

15.
利用来源于同一猪场的2头猪瘟病毒(HCV)持续感染的带毒母猪及所产35头仔猪(包括13头死胎)和6头阴性对照猪,观察母猪的胎儿发育成活状况、仔猪HCV带毒率及HCV垂直传播对仔猪猪瘟兔化弱毒疫苗(HCLV)免疫效力的干扰作用,同时进行水平传播试验和观察HCV持续感染对母猪繁殖功能的影响。结果表明:HCV持续感染对其中1头母猪的胎儿发育和成活有明显影响,而对另1头母猪的胎儿发育没有明显影响;HCV持续感染母猪可经过胎盘垂直传播病毒给仔猪,传播率达45%~86%;吃初乳和接种HCLV不能阻止带毒仔猪的死亡,9头带毒仔猪在45d内死亡4头;免疫HCLV不能使带毒仔猪产生免疫保护力。5头猪在强毒攻击后死亡4头;HCV垂直传播的带毒猪可发生水平传播,并引起3/4感染猪死亡;HCV持续感染可引起母猪生殖系统病理变化。导致繁殖障碍。  相似文献   

16.
Excretion and transmission of CSFV after vaccination with the CSF subunit marker vaccine "Porcilis Pesti" have been studied using the following different vaccination schedules: Group A--two vaccinations with an interval of 28 d, challenge 14 d after second vaccination (p.v2.); group B--two vaccinations with an interval of 14 d, challenge 14 d later; group C--two vaccinations with an interval of 28 d, challenge at time of booster vaccination; group D--two vaccinations with an interval of 14 d, challenge 7 d p.v2.; group E--single vaccination and infection 14 d later. After infection one sentinel pig was added to the vaccinated and infected pigs of each group. A single vaccination did not induce protective immunity against a CSFV challenge. Double vaccination at a four-week interval protected piglets from clinical infection, and neither viraemia and leukopenia nor virus excretion were detected if infected 14 d p.v2. Two vaccinations at a two-week interval followed by a challenge 7 d p.v2. led to a short viraemia on day 5 p.i. but without excretion of CSFV. Though all other vaccination schedules induced a reduction in virus shedding and a decrease in CSFV replication, in all these cases in-contact controls became infected. The results of transmission of CSFV are discussed in relation to a potential use of subunit marker vaccines in CSF control.  相似文献   

17.
为了研究仔猪猪瘟病毒(CSFV)母源抗体的衰减规律,本研究随机选择36头待产母猪,产后采血,选择每头母猪对应的仔猪连续采血至8周龄,分离血清,通过ELISA方法检测CSFV抗体阻断率,所测结果利用EXCEL拟合指数曲线,计算分析母猪CSFV抗体水平与仔猪母源抗体衰减规律。结果显示,36头母猪中母猪抗体阻断率80%以上6头,母猪抗体阻断率70%~79%的11头,母猪抗体阻断率60%~69%的8头,母猪抗体阻断率50%~59%的5头,母猪抗体阻断率49%以下的6头。3周龄仔猪抗体阻断率整体与母猪抗体阻断率相近且高度相关,相关系数为99%。母猪抗体阻断率在80%以上时,母源抗体对所产仔猪8周龄时仍然具有保护力;母猪抗体阻断率在70%~79%时,母源抗体对所产仔猪7周龄时不再具有保护力;母猪抗体阻断率在60%~69%时,母源抗体对所产仔猪5周龄时不再具有保护力;母猪抗体阻断率在50%~59%时,母源抗体对所产仔猪4周龄时不再具有保护力;母猪抗体阻断率49%以下时,母源抗体对所产仔猪3周龄时不再具有保护力。以上结果表明仔猪母源CSFV抗体随着仔猪周龄的增加逐渐衰减,由试验得出仔猪猪瘟疫苗首免日龄的计算公式:y=1.19x-46.55(x为母猪CSFV抗体阻断率,y为首免日龄)。因此,母猪抗体阻断率在80%以上时,仔猪母源抗体在60日龄不再具有保护力,仔猪猪瘟疫苗首免为56日龄;母猪抗体阻断率在70%~79%时,母源抗体对仔猪的保护持续到50日龄,仔猪猪瘟疫苗首免为42日龄;母猪抗体阻断率在60%~69%时和50%~59%时,母源抗体对仔猪的保护持续至36日龄和29日龄,仔猪猪瘟疫苗首免分别为28日龄和21日龄。本研究中所得母猪CSFV抗体水平计算母源抗体衰减变化,为选择母猪首免日龄,提高仔猪猪瘟疫苗免疫效果提供了科学依据。  相似文献   

18.
Seven experiments including a total of 47 pigs, 11 wild boars, 26 rabbits, 10 hares and 16 sheep were carried out to assess the efficacy, safety and transmission of the Chinese vaccine strain of the classical swine fever virus (CSFV) administrated by the oral route. Within 3 weeks after oral vaccination, a clear seroconversion occurred in the pigs. Six weeks after vaccination, vaccinated pigs were fully protected against a virulent challenge. The C-strain was not isolated from tonsils, spleen, lymph nodes, thymus, saliva, urine and faeces of pigs within 4 days after oral vaccination. In one experiment, susceptible pigs were placed in direct contact with vaccinated pigs. None of these contact-exposed pigs became serologically positive for CSFV antibodies. It is concluded that the C-strain induces protection in pigs when administrated by the oral route and is not shed by vaccinated pigs. Serum anti-CSFV antibodies developed in seven out of eight wild boars vaccinated by the oral route. No vaccine virus was detected in the spleen and tonsils of these animals. The results in wild boar were in accordance with those obtained in domestic pigs. Sheep did not show any clinical signs after oral vaccination while rabbits had moderate hyperthermia and growth retardation. No clinical response to oral immunisation in hares was detected. At the end of the experiment, no sheep had detectable serum antibodies against CSFV, whereas a few vaccinated rabbits and hares became seropositive. None of the contact-exposed rabbits and hares seroconverted. These data indicate that the C-strain is safe for sheep and as expected, moderately or not pathogenic for rabbits and hares. These efficacy and safety studies on oral vaccination with the C-strain under experimental conditions provide essential information for further studies in wild boars under experimental and field conditions, including assays with baits to control a CSF epidemic.  相似文献   

19.
猪圆环病毒2型感染对猪瘟疫苗体液免疫应答的影响   总被引:3,自引:0,他引:3  
采用ELISA方法对单独接种猪瘟疫苗组(CSFV组,n=3)、PCV2感染且出现病毒血症后接种猪瘟疫苗组(PCV2/CSFV组,n=3)及PCV2感染同时接种猪瘟疫苗组(CSFV/PCV2组,n=3)不同时相血清中的猪瘟抗体进行检测;并对PCV2感染对照组(PCV2组)及PCV2/CSFV和CSFV/PCV2组血清中PCV2特异的抗体和核酸分别进行ELISA和PCR检测.结果表明,在接种后52 d CSFV组血清中抗体的阻断值显著高于CSFV/PCV2组(P<0.05);接种后42 d和52 d CSFV组平均抗体效价明显高于PCV2/CSFV和CSFV/PCV2组,其中在52 d CSFV组抗体阳性率这100%(3/3)而PCV2/CSFV和CSFV/PCV2在相应时相抗体阳性率仅为67%(2/3).结果提示PCV2感染可在一定程度上抑制猪瘟疫苗特异性的抗体反应.  相似文献   

20.
The aim of the study was to investigate the serological reactions of pregnant sows to vaccination with Hyoresp. Further investigations were performed in the offspring of these sows to follow the dynamics of maternal antibodies and the reaction to vaccination at different points in time. The study was conducted in three farrow-to-finish herds endemically infected with M. hyopneumoniae. A total of 30 gilts and 31 sows were vaccinated 8 and 4 weeks ante partum with Hyoresp (Merial GmbH) or given phys. saline solution as a placebo. The offspring was divided into three groups receiving Hyoresp at 1 and 4 or at 4 and 8 weeks of age. The control group was treated with phys. saline solution at 1 and 4 weeks of age. Before vaccination, antibodies against M. hyopneumoniae were detected in 85% of the gilts and 68% of the sows, confirming the endemic infection of the herds. Vaccination of the sows induced a significant increase in the antibody concentration in serum within four weeks and enhanced the concentration of antibodies in the colostrum. As expected, significantly enhanced levels of antibodies were also detected during the first four weeks of life of the offspring of vaccinated sows. The piglets' serological reaction to vaccination at 1 and 4 weeks of age showed marked interferences with maternal antibodies, so that a reaction could be demonstrated only at 8 weeks of age. The serological reaction of piglets vaccinated at 4 and 8 weeks of age was much stronger than that of piglets vaccinated earlier. Surprisingly, the vaccination status of the sow had no effect on the serological response of the piglets in either vaccination scheme. Maternal antibodies are known to reduce the risk of M. hyopneumoniae infections in piglets. Vaccinating the sows against M. hyopneumoniae may thus be an option for farrowing-to-finish herds with an enhanced risk for infections due to ineffective separation of different age groups, poor gilt acclimatisation or high gilt replacement rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号