首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sows of differing parities and genetics were used at different locations to determine the effects of feeding added L-carnitine during lactation on sow and litter performance. In Exp. 1, sows (n = 50 PIC C15) were fed a lactation diet (1.0% total lysine, .9% Ca, and .8% P) with or without 50 ppm of added L-carnitine from d 108 of gestation until weaning (d 21). No differences in litter weaning weight, survivability, sow ADFI, or sow weight and last rib fat depth change were observed. Number of pigs born alive in the subsequent farrowing were not different (P>.10). In Exp. 2, parity-three and -four sows (n = 115 Large White cross) were used to determine the effect of feeding 0, 50, 100, or 200 ppm of added L-carnitine during lactation (diet containing .9% total lysine, 1.0% Ca, and .8% P) on sow and litter performance. No improvements in the number of pigs or litter weights at weaning were observed (P>.10). Sows fed added L-carnitine had increased weight loss (linear; P<.04), but no differences (P>.10) were observed in last rib fat depth change or subsequent reproductive performance. In Exp. 3, first-parity sows (n = 107 PIC C15) were fed a diet with or without 50 ppm of added L-carnitine during lactation (diet containing 1.0% total lysine). Sows fed added L-carnitine tended (P<.10) to have fewer stillborn and mummified pigs than controls (.42 vs .81 pigs). No differences were observed for litter weaning weight, survivability, or subsequent farrowing performance. Feeding 50 to 200 ppm of added L-carnitine during lactation had little effect on sow and litter performance.  相似文献   

2.
Pregnant gilts (n = 126) were assigned randomly to 12 0.4-ha old world-spar bluestem (Bothriochloa ischaemum) pastures in an outdoor swine (Sus scrofa) production system to examine effects of stocking rates (17.5 or 35 gilts/ha; 7 or 14 gilts per pasture) and dietary N on percentage of ground cover, soil nitrate (NO3-) concentration, and reproductive performance. Treatments were arranged factorially with two stocking rates and two diets equivalent in dietary lysine but different in CP (control = 14.7% CP vs experimental = 12.6% CP) with three pastures per treatment. The experiment was repeated during a second parity with the same animals on the same treatments. Each triangular gestation pasture was subdivided into three regions: 1) near the point or radial center; 2) the middle region that contained a hut and a wallow area; and 3) the outer section where gilts were fed each day. Soil samples (15 cm deep) were taken at the beginning and end of the 306-d study, and soil nitrate-N concentrations were determined. Percentage of ground cover was visually estimated initially and every 30 d thereafter through d 306. Before farrowing, gilts were moved to identical pastures for farrowing and were fed a common 16% CP sorghum (Sorghum bicolor)-based lactation diet beginning at the time of movement to the farrowing pasture. Pregnant gilts were weighed at the time of assignment to treatments in the gestation pastures, when they were moved to farrowing pastures, and at weaning. Production data included total number of pigs born per sow, number of pigs born alive or dead, average birth weight, number of pigs weaned, average weaning weight, and mortality. No differences (P > 0.05) were observed between treatments in soil NO3- concentrations. Percentage of ground cover was decreased (P < 0.01) by the higher stocking rate when grazing was initiated in March/April but recovered rapidly after removal of pigs. More (P < 0.01) pigs were weaned per sow (8.4 vs 7.1+/-0.34) from higher gestation-stocking rate groups. Pig mortality in farrowing was greater (P < 0.05) for lower gestation-stocking rates (25.7% vs. 18.1+/-1.9%). A stocking rate of 35 sows/ha might have increased production potential but was associated with a rapid loss of ground cover during spring.  相似文献   

3.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

4.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

5.
A cooperative research study involving 1,080 litters was conducted at eight stations to determine the effects of additional feed during the last 23 d of gestation on reproductive performance of sows and on preweaning performance of their pigs. Primiparous and multiparous sows were fed fortified corn- or sorghum-soybean meal diets (14% crude protein). Control sows received 1.82 kg/d from March through November and 2.27 kg/d from December through February. Treated sows were fed an additional 1.36 kg of feed/d from d 90 of gestation to farrowing. Sows were allowed to consume the same diet ad libitum during a 21-d lactation. Additional feed in late gestation resulted in greater (P less than .001) sow weight gain from d 90 to d 110 of gestation (16.8 vs 9.0 kg) and greater (P less than .001) parturition-lactation weight loss (21.3 vs 16.4 kg). Total weight gain from breeding to 21 d of lactation favored sows that received extra feed (27.5 vs 22.7 kg; P less than .001). Sows receiving extra feed had more live pigs at farrowing (10.05 vs 9.71, P = .06) and at 21 d postpartum (8.35 vs 8.06, P = .09), and the pigs were heavier at birth (1.48 vs 1.44 kg, P = .003) and at 21 d (5.37 vs 5.20 kg, P = .006). Lactation feed intake and number of days from weaning to estrus were not affected by treatment. The results indicate that additional feed in late gestation improves reproductive performance in sows. In this study, the cost of an additional 31 kg of feed/sow was more than offset by the value of the additional sow weight gain (approximately 5 kg), the additional .3 of a pig/litter at weaning and the additional 2.6 kg of total litter weaning weight.  相似文献   

6.
The objective of this study was to evaluate the effects of supplemental magnesium(Mg) on the performance of gilts and parity 3 sows and their piglets.Fifty-six gilts(Trial 1) and 56 sows(Trial 2) were assigned to one of 4treatments according to their mating weight,respectively.The treatments comprised corn-soybean meal based gestation and lactation diets(0.21%magnesium) supplemented with 0,0.015,0.03,or 0.045%Mg from mating until weaning.The results showed that magnesium supplementation significantly(P 0.05) reduced the weaning to estrus interval in both gilts and sows.There were significant effects(P 0.05) of supplemental magnesium on the total number of piglets born,born alive and weaned in sows.In late gestation and lactation,the digestibility of crude fiber(quadratic effects,P 0.05),and crude protein(P 0.05),were significantly influenced by magnesium in gilts and sows,respectively.There were differences among the 4 groups in terms of the apparent digestibility of dry matter and crude fiber in sows(P 0.05) during both early and late gestation.The apparent digestibility of gross energy was increased for sows in late gestation(P 0.05),and lactation(quadratic effects,P 0.05).At farrowing and weaning,serum prolactin levels and alkaline phosphate activities linearly increased in sows as the Mg supplementation increased(P 0.05).Serum Mg of sows at farrowing and serum urea nitrogen of sows at weaning was significantly influenced by Mg supplementation(P 0.05).The Mg concentration in sow colostrum and the serum of their piglets were increased by supplemental magnesium(P 0.05).In addition,growth hormone levels were linearly elevated(P 0.05) in the serum of piglets suckling sows.Our data demonstrated that supplemental magnesium has the potential to improve the reproduction performance of sows,and the suitable supplemental dose ranged from 0.015%to 0.03%.  相似文献   

7.
In a field trial conducted on a commercial swine farm, lean-genotype sows (n = 485) were fed diets containing 0 or 10% supplemental fat as either medium-chain triglyceride or choice white grease from d 90 of gestation until weaning (15.5 d). Effects on standard sow and litter production traits were examined together with assessment of sow body condition using live ultrasound. Daily feed intake during lactation was 10% higher in sows consuming diets without added fat (7.2 vs 6.5 kg; P < 0.01); however, lactation ME (23.9 Mcal/d) and digestible lysine (54 g/d) intakes were unaffected (P > 0.10). Sows supplemented with fat were 4 kg heavier on d 109 of gestation (220 vs 224 kg; P < or = 0.01), 1 d after farrowing (210 vs 214 kg; P < or = 0.01), and at weaning (210 vs 214 kg; P < or = 0.01). Expressed as overall gain, this amounted to a 23% increase (0.66 vs 0.86 kg/d; P < or = 0.01) and was accompanied by a 49% increase in backfat (0.82 vs 1.68 mm; P < or = 0.03) from d 90 to farrowing. Changes in sow weight (-0.01 kg/d) and backfat (+4.2 mm) over lactation were minimal and were not affected by fat supplementation (P > or = 0.10). Longissimus muscle area at weaning was slightly greater (44.96 vs 46.2 cm2) in sows consuming fat than in control sows (P < or = 0.05), but changes in longissimus muscle area were not significant from d 90 to weaning (P > or = 0.10). Gestation length, pigs born alive, average birth weight, survival (d 3 to weaning), and days to estrus were not affected by diet (P > 0.10). However, supplemental fat increased pig ADG (192 vs 203 g/d; P < 0.01) and average pig weaning weight (4.3 vs 4.5 kg) at 15.5 d (P < or = 0.02). No differences between the two fat sources were detected. This large-scale study demonstrated that supplemental fat during gestation and lactation effectively improved sow condition and improved suckling pig performance without affecting energy intake during lactation, implying improved efficiency of sow energy utilization.  相似文献   

8.
A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P 相似文献   

9.
A total of 684 sows from breeding groups over 6 wk was used to compare three methods of feeding during gestation on gestation and lactation performance. Control gilts and sows were fed according to body condition based on a scale of 1 to 5 (1 = thin, 5 = fat). Sows were visually assessed for body condition at breeding and were assigned a daily feed allowance to achieve a BCS of 3 at farrowing. Treatment 2 used feeding levels based on backfat thickness (measured between d 0 and 5 after breeding) and weight at weaning for sows or service for gilts. Feed allowance was calculated to achieve a target backfat of 19 mm at farrowing, and remained constant from d 0 to 101 of gestation. Feed allowances were based on modeled calculations of energy and nutrient requirements to achieve target sow maternal weight and backfat gains. Treatment 3 was identical to Treatment 2, except that feeding pattern was altered for thin sows and gilts (<15 mm at service) in an attempt to reach 19 mm by d 36 of gestation. Sows were weighed at the previous weaning, and gilts were weighed at service, with both weighed again between d 112 and 114 of gestation. Backfat was measured between d 0 and 5, and again between d 108 and 113 of gestation. At farrowing, sows on Treatments 2 and 3 had 19 and 19.1 mm of backfat, respectively, whereas control sows tended to have greater (P < 0.07) backfat (20 mm). On average, sows targeted to gain 6 to 9 mm of backfat failed to reach target gains regardless of feeding method. Feeding sows in gestation based on backfat (Treatments 2 and 3) resulted in a numerically higher proportion of sows in the target backfat range of 17 to 21 mm (40.2, 53.3, and 52.6% for control and Treatments 2 and 3, respectively) at farrowing and a numerically lower percentage of fat sows (>21 mm), but no difference in the percentage of thin sows (<17 mm) compared with feeding based on body condition. In conjunction with this observation, sows fed based on BCS were fed higher (P < 0.05) feeding levels in gestation than were sows fed based on backfat depth. Gestation feeding method had no effect on performance during lactation. Feed intake in lactation was lower (P < 0.05) for high backfat sows (>21 mm) at farrowing compared with sows with <21 mm. The high proportion of sows in the optimal backfat category demonstrates that feeding based on backfat and BW has potential for facilitating more precise feeding during gestation.  相似文献   

10.
Modern sows are younger and leaner at time of mating and probably have poorer appetites than sows of 10 to 15 years ago. Therefore, feeding strategies should aim to minimize weight loss and maintain a sow's body condition throughout her reproductive life. The efficiency with which gilts are introduced into the breeding herd is as important in economic terms as is the efficiency with which the sow returns to estrus after weaning. Gilts should be selected at 50 to 60 kg, and fed a 16% protein diet ad libitum until mated at their second estrus, when they weigh 115 to 120 kg and have 17 to 20 mm backfat. Flushing gilts before the onset of second or third estrus increases ovulation rate of restricted gilts to the levels achieved by gilts fed ad libitum. During gestation, maintenance represents 75 to 85% of total energy requirements. The aim should be to achieve 20 to 25 mm backfat at farrowing. Increased feed intake from day 2 to 3 after mating will not increase embryo mortality. Feeding an extra 1 kg feed/sow/day for the last 10 days of gestation increases piglet birth weight slightly and prevents a loss of 1.5 to 2.0 mm of sow backfat. Wherever possible, sows should be fed ad libitum from the day after farrowing until weaning. Reduced feed intake by lactating sows, for whatever reason, results in excessive weight and condition loss. Excessive weight loss in lactation causes extended remating intervals, a lower percentage of sows returning to estrus within 10 days of weaning, reduced pregnancy rate, and reduced embryo survival. Ovulation rate is not affected by level of feed intake in lactation. It has been suggested that sows will have minimum weaning-to-service intervals when they weigh 150 kg or more at weaning. It is likely that the sow must be anabolic for about 10 days before she will exhibit postweaning estrus. The decision when to rebreed is made some time prior to weaning and is mediated by a host of substrates, hormones, and neurotransmitters. Sows with a delayed return to estrus also have a lower pregnancy rate and smaller subsequent litters. If sows lose considerable weight or condition during lactation, a high level of feeding in the postweaning period will improve embryo survival.  相似文献   

11.
Forty-five gravid cross-bred sows (mean parity 3.3 +/- .3) were randomly allotted to two dietary treatments: corn-soybean mean (CS) or CS plus 60 mg salinomycin per kilogram of diet (CSS). Sows were fed their respective diets through two successive parities with dietary treatment initiated at 100 d postcoitum and continued until weaning of the second successive litter. Therefore, sows fed CSS received salinomycin for 14 d before the first parturition and for approximately 153 d before the second parturition. Daily feed intake was restricted to 2 kg.hd-1.d-1 during gestation and to 3 kg.hd-1.d-1 from weaning to breeding. All sows. had ad libitum access to feed during lactation. Sows were weighed 7 d prior to parturition, at weaning and at breeding. Weaning-to-estrus interval and farrowing interval were recorded for all sows. Litters were weighed at birth and weaning. There were no differences (P greater than .05) between dietary treatments in sow weights before parturition, at weaning or at breeding for either first or second farrowing. The CSS-fed sows lost more weight from weaning to breeding after the first (P less than .03) and second (P less than .05) lactation periods than CS-fed sows. The CSS-fed sows tended to gain more (P = .06) weight during lactation than CS-fed sows. There were no differences (P greater than .05) between treatments in lactation feed intake, weaning-to-estrus interval, farrowing interval, litter size born or weaned, litter weights at birth or at weaning, or in sow culling rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A 3-yr study was conducted to evaluate the effect of dietary biotin supplementation on the reproductive performance of 90 sows and gilts, and on the pre-weaning growth and mortality of 223 litters. Corn-soybean meal-based diets supplemented with either 0 or 440 micrograms/kg d-biotin were fed to sows throughout their reproductive cycle. Biotin supplementation had no beneficial effect (P greater than .10) on 107-d sow weight, sow weight at weaning, weaning to estrus interval, foot lesion score, hair loss score, structural soundness score, number of pigs born, number and percentage of pigs born alive or number and percentage of pigs alive at 21 d of age. Biotin supplementation had no effect (P greater than .10) on pig growth or mortality to 21 d of age. These data do not support the concept that biotin supplementation of sow diets is needed.  相似文献   

13.
Diets containing 0, 10, or 20% dried wash water solids (WWS) from a milk processing plant were fed to 54 Yorkshire gilts (160 to 270 kg) for five parities. Feed intake, weight changes, and morbidity of sows were measured; number of pigs per litter, birth weight, and weight gain of pigs were also determined. Blood, tissue, and milk samples were taken from sows for hematological and mineral analyses, and tissue samples were taken from newborn pigs from each treatment per parity. Overall, initial sow weight, sow weight at weaning, and weight losses were not affected (P greater than .05) by treatment. At 107 d of gestation, overall weights decreased (P less than .05) linearly with level of WWS in the diet. The number of pigs per litter and weight of pigs were not affected (P greater than .10) by diet. Concentrations of NA (P less than .10) and Cd (P less than .05) were lower in kidney of sows fed 20% WWS, and concentrations of Zn were lower in bone and in kidney of sows fed the 20% WWS diet. The Sr and Ba concentrations increased (P less than .05, P less than .10) linearly in bone from sows with level of WWS in the diet. In pigs, concentrations of Mn in kidney and Zn in liver were lower for the 20% WWS treatment. In conclusion, feeding WWS to sows over five parities had minimal adverse effects on sow productivity and pig performance; the reduction in Zn concentrations in tissues of sows and pigs seemed to be related to the Ca content of WWS.  相似文献   

14.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

15.
A total of 208 sows and 288 gilts (PIC line C29) were used to determine the influence of feeding frequency (2 vs. 6 times/d, floor fed) on performance and welfare measurements on a commercial sow farm. Treatments consisted of feeding similar amounts of feed to each sow (2.5 kg) or gilt (2.05 kg) over 2 (0700 and 1530) or 6 times daily (0700, 0730, 0800, 1530, 1600, and 1630). There were 8 sows or 12 gilts in each pen. Gilts and sows were moved to pens 1 to 4 d after breeding. In sows, there were no differences (P > 0.10) in ADG, backfat change, or variation in BW. There was a trend (P < 0.08) for sows fed twice daily to farrow more total pigs born, but number born alive or other reproductive performance traits were not different (P > 0.10) among treatments. Sows fed 6 times per day had increased vocalization during the morning (P < 0.07) and afternoon (P < 0.01) feeding periods compared with sows fed twice daily. Sows fed twice daily had more skin (P < 0.01) and vulva (P < 0.04) lesions as well as a small increase in feet and leg (P < 0.01) and hoof (P < 0.02) problems. In this commercial facility, the standard management protocol required moving gilts to a different gestation facility on d 42. On d 42, two pens of gilts with similar breeding dates and treatment were combined and moved to another facility with larger pens until farrowing. Gilts fed 6 times daily had a tendency for greater ADG (P < 0.07) from d 0 to 42 and a tendency for greater (P < 0.09) backfat on d 42. After movement to the larger groups from d 42 to farrowing, ADG was similar (P > 0.10) for gilts fed 2 or 6 times daily. Gilts fed twice daily had lower BW variation at d 42 (P < 0.04) and tended to at farrowing (P < 0.10). In gilts, there were no differences (P > 0.10) for reproductive performance, skin and vulva lesions, and feet and leg scores. In conclusion, there were few growth, farrowing, or aggression differences among gilts fed 2 or 6 times daily. This suggests that either feeding method is suitable for group-housed gilts. Among sows, feeding frequency resulted in few growth or farrowing performance differences. Feeding 6 times daily resulted in a small but significant reduction in skin and vulva lesions and structural problem scores while increasing vocalization. Increasing the feeding frequency from 2 to 6 times daily does not appear to have a negative or positive impact on performance or welfare of group-housed gilts and sows.  相似文献   

16.
Effects of feeding sulfadimethoxine and ormetoprim to sows and gilts in late gestation were evaluated. One sow and 2 gilts were randomly selected and were fed 1 of 3 rations: (1) a gestation ration from farm A, where congenital goiter in newborn pigs was a problem, (2) gestation ration from farm A containing 275 g of sulfadimethoxine and 55 g of ormetoprim/100 kg of ration, or (3) standard swine gestation ration containing 275 g of sulfadimethoxine and 55 g of ormetoprim/100 kg of ration. Sows and gilts were fed the appropriate ration for 22 to 58 days before farrowing. The numbers of stillborn or weak pigs did not increase in any group. However, congenital goiter was detected in all pigs from swine fed medicated rations 2 and 3. Congenital goiter was not present in pigs from swine given gestation ration 1.  相似文献   

17.
Sixty-two gilts were paired at breeding and assigned randomly to one of the following dietary treatments: (1) low P or (2) high P during gestation and lactation. Two sets of diets (A and B) were formulated; each set to provide a low (10 g) and high (15 g) daily P intake (equal Ca daily intake, 15 g) when fed at 1.82 and 2.27 kg daily, respectively for sets A and B. Females were fed 1.82 kg daily of set A diets during the first 11 wk of gestation, 2.27 kg daily of set B diets for the next 3 wk and 3.34 kg of the appropriate set B diets containing 20% wheat bran until farrowing, at which time the bran was gradually removed from set B diets and the feed level increased to 4 kg daily until weaning. The proportions of defluorinated phosphate and limestone were varied to provide the appropriate level of Ca and P (low and high). At approximately 5 wk before farrowing at each parity, up to 12 females from each group were used in Ca, P and N balance trials that lasted about 2 wk. Dietary P intake did not affect the apparent absorption and retention of N and Ca; 88% of the consumed N was absorbed and one-half of the absorbed was retained, and 37% of the Ca was absorbed and 94% of the absorbed was retained. Females fed the higher P intake, although excreting higher levels of P in the feces and urine, absorbed and retained a larger amount of P; but the low P-fed sows were more efficient in the retention of P when expressed as a percentage of intake or as a percentage of the absorbed P. With the exception of average total litter weight at birth that favored high P-fed sows, live, dead and total pigs at birth, average birth weight and breeding performance were not statistically different between P levels. Except for the first parity, most characteristics favored sows fed the higher P intake. Serum Ca and P levels and hair P concentration were similar between P levels. Hair Ca concentration, however, was higher for the high P-fed sows. Sows fed the higher daily P intake retained more P and there was a trend for better farrowing performance. However, breeding performance, serum Ca and P levels, hair P concentrations and Ca and N balance were similar between dietary P intakes. These results would support current National Research Council-suggested Ca and P levels for sows.  相似文献   

18.
The effect of a new group housing system on performance (132 gilts and litters) and endocrinological (35 gilts) and immunological functions (28 gilts) was studied. Animals were randomly assigned to a conventional system (control), involving greater than 2 mo in individual stalls, or to the Hurnik-Morris (H-M) housing system, involving continuous housing in small groups, for breeding-gestating swine. The gilts were reared throughout gestation in their respective housing systems and moved 3 to 5 d prefarrowing to a common farrowing facility. Various production data were collected, including sow weight and backfat measurements, number of pigs born, number born alive, number weaned, litter birth weight, and litter weaning weight. An adrenal function test using dexamethasone pretreatment and ACTH1-24 challenge was imposed on gilts 5 d prebreeding and once between d 81 to 87 of gestation. Plasma progesterone was measured at the same time. Immune function was measured by serum antibody response to hen egg white lysozyme (HEWL) and delayed-type hypersensitivity (DTH) to tuberculin. Gilts reared in the H-M housing system exhibited a number of pigs weaned per litter and litter weaning weights comparable to the number and weights in the control system (7.3 +/- .33 vs 6.9 +/- .38, P = .421 and 56.9 +/- 2.42 kg vs 51.3 +/- 2.76 kg, P = .132, respectively). Prefarrowing and weaning backfat measurements were significantly reduced in group-housed gilts (15.8 +/- .45 mm vs 17.8 +/- .55 mm, P = .005 and 14.6 +/- .4 mm vs 16.2 +/- .42 mm, P = .008, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A cooperative experiment to evaluate biotin addition to sow diets was conducted at three research stations using 303 litters. Primiparous and multiparous sows (overall average parity 2.8) were fed a 14% CP corn-soybean meal diet (140 micrograms/kg biotin), with or without supplemental biotin (330 micrograms added biotin per kg feed), throughout gestation and lactation. As many sows as possible were fed their respective diets through three successive parities. During gestation, sows were given from 1.82 to 2.27 kg of feed per day, depending on environmental conditions; during lactation sows had ad libitum access to feed. Supplemental biotin had no effect (P greater than .35) on sow weights at breeding, at d 109 of gestation, at farrowing or at weaning. No differences were found in litter size at birth (P greater than .18), but at d 21 of lactation, sows fed the diet containing supplemental biotin had larger litters than sows fed the unsupplemented diet (9.4 vs 8.7 pigs, respectively; P = .01). Pig weights at birth and d 21 of lactation were not affected (P greater than .20) by dietary treatment. Biotin supplementation did not affect (P greater than .28) the length of the interval from weaning to estrus. No evidence was found that feet cracks or bruises were reduced by biotin supplementation. The results indicate that biotin supplementation of a corn-soybean meal diet during gestation and lactation increased the number of pigs at d 21 of lactation, but it did not decrease the incidence of foot lesions.  相似文献   

20.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号