首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live‐attenuated immersion vaccine (F. psychrophilum; B.17‐ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross‐protective efficacy of this B.17‐ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild‐type virulent strain, CSF‐259‐93. To assess protection, 28‐day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17‐ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17‐ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum‐specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17‐ILM vaccine strain appear to contribute to the cross‐protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live‐attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.  相似文献   

2.
For salmonid producers, a common threat is Flavobacterium psychrophilum. Recent advancements in bacterial coldwater disease (BCWD) management include the development of a live-attenuated immersion vaccine that cross-protects against an array of F. psychrophilum strains. Emerging family Flavobacteriaceae cases associated with clinical disease have been increasing, including pathogenic isolates of Flavobacterium spp. and Chryseobacterium spp. The cross-protective ability of a live-attenuated F. psychrophilum vaccine was determined against three virulent Flavobacteriaceae isolates. Juvenile rainbow trout were vaccinated, developed high F. psychrophilum-specific antibody titres and were challenged with Chryseobacterium spp. isolates (S25 and T28), a Flavobacterium sp. (S21) isolate, a mixed combination of S21:S25:T28, and a standard virulent F. psychrophilum CSF259-93 strain. Results demonstrated strong protection in the CSF259-93 vaccinated group (relative per cent survival (RPS)=94.44%) when compared to the relevant CSF259-93 controls (p < .001). Protection was also observed for vaccinated fish challenged with the S21:S25:T28 mix (RPS = 85.18%; p < .001). However, protection was not observed with the S21, S25 or T28 isolates alone. Analysis of whole-cell lysates revealed differences in protein banding by SDS-PAGE, but conserved antigenic regions by Western blot in S25 and T28. Results demonstrate that this live-attenuated vaccine provided protection against mixed flavobacterial infection and suggest further benefits against flavobacteriosis.  相似文献   

3.
Serum and mucosal antibody responses of juvenile rainbow trout, Oncorhynchus mykiss, were characterized by enzyme‐linked immunosorbent assay (ELISA) following immunization with various preparations of formalin‐killed Flavobacterium psychrophilum cells. The protective nature of these preparations was then determined by immunizing rainbow trout fry and challenging with the bacterium. Juvenile rainbow trout immunized intraperitoneally (i.p.) with formalin‐killed F. psychrophilum emulsified with Freund's complete adjuvant (FCA), and i.p. with formalin‐killed F. psychrophilum either with or without culture supernatant generated significant serum antibody responses by 6 and 9 weeks, respectively. Significant mucosal antibody responses were detected by 9 weeks only in fish immunized i.p. with killed F. psychrophilum/FCA. Following immunization and bacterial challenge of rainbow trout fry, protective immunity was conferred in F. psychrophilum/FCA and saline/FCA groups with relative per cent survival values of up to 83 and 51, respectively. Significant protection was not observed in treatment groups immunized by immersion or i.p. without adjuvant at the challenge doses tested. Results suggest that stimulation of non‐specific immune factors enhances the ability of fish to mount a protective immune response, but specific antibody appears necessary to provide near complete protection. In this study, an ELISA was developed to monitor anti‐F. psychrophilum antibody production in trout. The relationship of such responses to protective immunity suggests that future vaccination strategies against coldwater disease may require stimulation of both the innate and adaptive arms of the immune response.  相似文献   

4.
A previous proteomic study examining the plasma acute‐phase response of rainbow trout to sterile inflammation highlighted an unidentified 9.5‐kDa spot using 2D‐PAGE, which was dramatically increased. The 15 amino acid sequence obtained from this protein spot allowed rapid amplification of cDNA ends PCR to generate a 443‐bp nucleotide sequence that was 98.6% similar to type‐4 ice‐structuring protein LS‐12 from Atlantic salmon Salmo salar Linnaeus. Quantitative reverse translation PCR and an ELISA were used to measure gene expression and plasma concentrations of LS‐12 following experimental intraperitoneal injection of rainbow trout with either 106 or 108 colony‐forming units (CFU) of Flavobacterium psychrophilum. There was no significant change in the plasma concentration of LS‐12 up to 15 days post‐infection in any group. Hepatic LS‐12 gene expression was significantly reduced at 3 and 6 days (p < 0.001) post‐infection in fish injected with 108 CFU of F. psychrophilum relative to control fish, while branchial or head kidney expression was unchanged. Infected fish had significantly increased hepatic gene expression of serum amyloid A, confirming an acute‐phase response. Under the conditions used, LS‐12 is not a positive acute‐phase protein in rainbow trout.  相似文献   

5.
In this study, 318 bacterial strains were isolated from the gastrointestinal (GI) tracts of 29 rainbow trout, Oncorhynchus mykiss (Walbaum). These bacteria were screened in vitro for their ability to inhibit growth of Flavobacterium psychrophilum, the causative agent of coldwater disease. Bacteria observed to inhibit F. psychrophilum growth were further screened against rainbow trout bile, as an indicator of their ability to survive in the GI tract. This screening resulted in narrowing the pool to 24 bacterial isolates. Those 24 isolates were then tested for pathogenicity in rainbow trout by intraperitoneal injection. Following a 28‐day challenge, eight isolates were shown to cause direct mortality and were eliminated from further study. As a result, 16 bacterial isolates were identified as probiotic candidates with the potential to control or reduce disease caused by F. psychrophilum.  相似文献   

6.
Flavobacterium psychrophilum is one of the most important pathogens affecting cultured rainbow trout (Oncorhynchus mykiss). Recent information from UK salmonid farms showed country‐wide distribution of genetically and serologically divergent clones, which has hampered the development of a vaccine for rainbow trout fry syndrome. The current study assessed the efficacy of an injectable polyvalent vaccine containing formalin‐inactivated F. psychrophilum in rainbow trout. The vaccine was formulated with an oil adjuvant (Montanide ISA 760VG) or formalin‐killed cells alone. Duplicate groups of trout (60 ± 13 g) were given phosphate‐buffered saline or vaccine formulated with Montanide by intra‐peritoneal (i.p.) injection and challenged by intra‐muscular (i.m.) injection with a homologous and a heterologous isolate of F. psychrophilum at 525 degree days post‐vaccination (dd pv). Significant protection was achieved in vaccinated fish (p = 0.0001, RPS 76% homologous, 88% heterologous). Efficacy of the adjuvanted vaccine was also demonstrated by heterologous challenge at 1155 dd pv resulting in 100% protection, whereas survival in the un‐adjuvanted group was not significantly different from control fish. Levels of specific antibody at 1155 dd pv, as measured by ELISA, were significantly higher in the fish vaccinated with adjuvant when compared with unvaccinated fish.  相似文献   

7.
Eight strains of rainbow trout were introgressed to develop a single strain (H‐ARS) that was selected for faster growth when fed a fishmeal‐free, plant‐based diet (Selection Diet). For four generations, families from these crosses were fed the Selection Diet and selected for increased weight gain. Growth and nutrient retention were compared among H‐ARS and two parental strains, the House Creek (HSC) and Fish Lake (FL) fed either a fish meal or Selection diet for 12 weeks. There was a significant effect of strain (P < 0.01), but not diet on weight gain, and a significant interaction of strain by diet (P < 0.05). The H‐ARS trout gained more weight averaged across diet (991% of initial wt.) than the HC (924%) or FL trout (483%). The FL trout fed the fish meal diet gained more weight than FL trout fed the selection diet (510% vs 456%). Conversely, H‐ARS trout fed the plant‐based diet gained more weight than those fed the fish meal diet (1009% vs 974%). HSC trout had similar weight gain fed either diet (922% vs 926%). A significant effect of strain on protein retention (P < 0.01) was observed, along with a significant strain by diet interaction (P < 0.02). The results demonstrate that rainbow trout can be selectively improved to grow on a plant‐based diet.  相似文献   

8.
The Gram‐negative bacterium, Flavobacterium psychrophilum, is endemic to California, USA, where it is an important pathogen in salmonid aquaculture, especially in rainbow trout (Oncorhynchus mykiss). Disease outbreaks caused by F. psychrophilum in rainbow trout fingerlings can approach 90% mortality, resulting in millions of dollars of economic losses annually. The focus of this study was to investigate the genetic diversity of 49 F. psychrophilum isolates collected from disease outbreaks in 17 salmonid hatcheries in California, USA, from 2015 to 2018 using multilocus sequence typing. Results suggest California F. psychrophilum isolates are diverse, representing 11 distinct sequence types (STs), three of which were previously undescribed. Still, the majority of genotyped isolates (n = 41) belonged to a single clonal complex (CC), CC‐ST10, which is the largest CC worldwide and has been linked to disease outbreaks on several continents. Results of this study provide evidence of marked intraspecific genetic diversity of F. psychrophilum from California. The biological significance of this genetic variability is unclear but could have implications for future vaccine development and treatments. Further studies investigating the virulence, antigenic, and antimicrobial susceptibility profiles of F. psychrophilum are warranted to better understand the epizootiology of this pathogen in the Western United States.  相似文献   

9.
The objective of this study was to determine if deoxynivalenol (DON) exposure alters the susceptibility of rainbow trout to bacterial coldwater disease caused by Flavobacterium psychrophilum. Rainbow trout were fed a nutritionally complete diet containing corn that was naturally contaminated with DON at a desired concentration of <0.5 (control and pair‐fed treatments), 4 or 6 ppm over 7 weeks to apparent satiation. After 4 weeks, fish were infected by intraperitoneal injection with F. psychrophilum (3.03x106 CFU mL?1) via intraperitoneal injection and monitored for morbidity and mortality. A significant linear reduction in feed intake was associated with increasing dietary levels of DON contamination over the initial 4 weeks. There was a significant reduction (P < 0.05) in cumulative per cent mortality in DON‐fed groups (4.1 ppm, 11%; 5.9 ppm, 7%) in comparison to control (46%) and pair‐fed (25%) groups at 21 days post infection. Mortality of trout pair‐fed the control diet was also significantly lower (P < 0.05) than the control group fed to apparent satiation. A replicate trial using genetically similar fish and the same experimental design produced similar results. These results suggest that DON exposure and restricted feed intake provided a protective effect for rainbow trout infected with F. psychrophilum.  相似文献   

10.
Control methods for Flavobacterium psychrophilum are limited and oftentimes ineffective; hence, research efforts have focused on vaccine development. This study tested the hypothesis that a crude lipopolysaccharide (LPS) extract from F. psychrophilum will elicit a protective immune response in rainbow trout Oncorhynchus mykiss (Walbaum) against F. psychrophilum challenge. Rainbow trout (mean weight, 3 g) were immunized intraperitoneally with the following treatment and control preparations: 10 μg of crude LPS with or without Freund's complete adjuvant (FCA), 25 μg of crude LPS with or without FCA and saline with or without FCA. Immunization of fish with 10 or 25 μg of crude LPS/FCA resulted in significant antibody responses against F. psychrophilum using ELISA with a whole‐cell lysate as the coating antigen, but only minimal levels of protection were conferred following F. psychrophilum challenge at 14 weeks post immunization. Western blot analyses demonstrated that fish exhibited antibodies specific for low‐molecular mass proteins present in the crude LPS extract, but did not exhibit antibodies specific for F. psychrophilum LPS. The results indicate that higher immunization doses and/or the use of an alternative extraction method that yields larger LPS molecules (23–70 kDa) may be necessary to elicit specific antibody responses against F. psychrophilum LPS.  相似文献   

11.
Flavobacterium psychrophilum is responsible for significant economic losses in rainbow trout aquaculture. Antimicrobial treatment remains the primary means of control; however, there are limited choices available for use. The objectives of the study were therefore to determine the minimum inhibitory concentrations for erythromycin and florfenicol in selected F. psychrophilum isolates and to evaluate their clinical treatment efficacy in experimentally infected rainbow trout. All isolates tested had moderate susceptibility to florfenicol and erythromycin except one isolate, which had low susceptibility to erythromycin. Two isolates (one with moderate and one with low susceptibility to erythromycin) were used in an experimental infection trial. Rainbow trout juveniles were injected intraperitoneally with 108 cfu/fish and after mortality had begun, fish were given erythromycin‐ and florfenicol‐medicated feed at a rate of 75 mg kg?1 day?1 and 10 mg kg?1 day?1 fish body weight, respectively, for 10 consecutive days. The splenic F. psychrophilum load was determined using an rpoC quantitative PCR throughout the 30‐day trial. Relative to antibiotic‐free controls, erythromycin treatment significantly (p < 0.05) reduced mortality of rainbow trout juveniles infected with FPG101, even when treatment was initiated after clinical signs developed.  相似文献   

12.
Flavobacterium psychrophilum and oxytetracycline have both been associated with spinal deformities in salmonids. Experiments were carried out to investigate whether infection with F. psychrophilum or medication with oxytetracycline (OTC) at the fry stage would result in an increased occurrence of vertebral column deformities in rainbow trout, Oncorhynchus mykiss (Walbaum). Fish were on‐grown for 9 months and examined by radiology at the end of the experiments. There was a relationship between infection by F. psychrophilum and deformities of the spinal column, if fish with more than 10 affected vertebrae were classified as deformed. The deformities found among infected fish were often visible externally and were more severe than those seen among control fish (most deformities foun among controls were only seen on X‐ray photographs). Deformities were evenly spread along the vertebral column of infected fish. OTC treatments of up to 200 mg of OTC (kg fish)?1 day?1 for 10 days and repeated three times did not result in increased spinal deformities relative to untreated control groups; therefore, medication of rainbow trout with oxytetracycline did not cause deformities of the spinal column under our treatment conditions.  相似文献   

13.
Co‐infection of rainbow trout with infections haematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum is known to occur, and it has been speculated that a combined infection can result in dramatic losses. Both pathogens can persist in fish in an asymptomatic carrier state, but the impact of co‐infection has not been well characterized or documented. In this study, it was hypothesized that fish co‐infected with F. psychrophilum and IHNV would exhibit greater mortality than fish infected with either pathogen alone. To test this, juvenile rainbow trout were co‐infected with low doses of either IHNV or F. psychrophilum, and at 2 days post‐initial challenge, they were given a low dose of the reciprocal pathogen. This combined infection caused high mortality (76.2%–100%), while mortality from a single pathogen infection with the same respective dose was low (5%–20%). The onset of mortality was earlier in the co‐infected group (3–4 days) when compared with fish infected with F. psychrophilum alone (6 days) or IHNV (5 days), confirming the synergistic interaction between both pathogens. Co‐infection led to a significant increase in the number of F. psychrophilum colony‐forming units and IHNV plaque‐forming units within tissues. This finding confirms that when present together in co‐infected fish, both pathogens are more efficiently recovered from tissues. Furthermore, pathogen genes were significantly increased in co‐infected groups, which parallel the findings of increased systemic pathogen load. Extensive tissue necrosis and abundant pathogen present intracellularly and extracellularly in haematopoietic tissue. This was pronounced in co‐infected fish and likely contributed to the exacerbated clinical signs and higher mortality. This study provides novel insight into host–pathogen interactions related to co‐infection by aquatic bacterial and viral pathogens and supports our hypothesis. Such findings confirm that mortality in fish exposed to both pathogens is greatly elevated compared to a single pathogen infection.  相似文献   

14.
Flavobacterium psychrophilum infections cause high mortality among rainbow trout, Oncorhynchus mykiss, fry in Danish fish farms and hatcheries. Hatcheries based entirely on bore‐hole water recirculation systems have been suggested as a possibility for eliminating F. psychrophilum or at least keeping the amount of this bacterium low. The occurrence of the bacterium in a bore‐hole water recirculation system was compared with a combined bore‐hole water and stream water flow‐through system in a hatchery where outbreaks of rainbow trout fry syndrome caused by F. psychrophilum often occurred. Broodfish, unfertilized and fertilized eggs, eyed eggs and fry, as well as water samples from the tanks/troughs with broodfish/fry, were examined. Suspect yellow bacterial colonies were either confirmed or rejected as F. psychrophilum by growth characteristics and by PCR. As both virulent and less virulent F. psychrophilum isolates are known, isolates were characterized. The isolates were ribotyped and grouped according to ribotyping patterns. Representatives of the groups were serotyped. Fry isolates were very homogeneous whereas isolates from broodfish were heterogeneous, whether the isolates originated from external surfaces of the fish (mucus from skin and gills, haemorrhages and ulcers) or internal organs. Flavobacterium psychrophilum was isolated from broodfish in both water systems; 56% of investigated broodfish from the borehole/flowthrough system and 36% from the recirculation facility harboured the bacterium. In the recirculation system, the bacterium was isolated from fish (ulcers, milt, liver, abdominal cavity) kept in the system for 11 months. Flavobacterium psychrophilum was found in milt and ovarian fluid as well as on the surface of fertilized eggs, but not inside the eggs. Fry also harboured F. psychrophilum, but in the water recirculation system the bacterium was first isolated from the fry after they had been graded. Flavobacterium psychrophilum was found regularly in other parts of the hatchery (outside the recirculation facility), including at the time of grading, suggesting that the occurrence of F. psychrophilum in the fry recirculation facility was due to contamination from the borehole/flowthrough hatchery. It is suggested that the combination of bore‐hole water recirculation systems and good management procedures (including egg disinfection) is a possible method for hatcheries to avoid disease outbreaks due to F. psychrophilum.  相似文献   

15.
The ability of poultry products to replace fish meal in diets for rainbow trout, Oncorhynchus mykiss, depends on their nutrient composition, cost, and consistency. The aim of this study was to assess the ability of three commercially available poultry products (chicken concentrate, CC, poultry by‐product blend, PBB; or chicken and egg concentrate, CE) to maintain growth and disease resistance when substituted for fish meal in a rainbow trout starter diet. A control diet was formulated to contain 48% crude protein and 18% crude lipid; 100% of the fish meal in test diets was replaced with CC, PBB, or CE. At stocking, fry were counted into groups (50 fish/tank) with six replicate tanks for each diet and fed their respective diets four times daily for 8 wk. All the poultry‐based diets supported growth (over 1600% increase over initial weight), nutrient retention, and feed conversion ratios of rainbow trout fry equal to or greater than those observed for fry fed with the fish meal‐based diet. No effect of diet on survival was observed following subcutaneous injection challenge with Flavobacterium psychrophilum. These data suggest that the examined products can be used in place of fish meal for rainbow trout fry without lowering growth and disease resistance.  相似文献   

16.
This study evaluated the probiotic potential of the biofilm formed by the strain Pseudomonas sp. RGM2144 on rainbow trout survival. When challenged with the fish pathogen Flavobacterium psychrophilum, Pseudomonas sp. RGM2144 increased rainbow trout survival to 92.7 ± 1.2% (control: 35.3 ± 9.5%, p < .0001). The draft genome of Pseudomonas sp. RGM2144 is 6.8 Mbp long, with a completeness 100% and a contamination of 0.4%. The genome contains 6122 protein-coding genes of which 3564 (~60%) have known functions. The genome and phylogeny indicate that Pseudomonas sp. RGM2144 is a new species in the Pseudomonas genus, with few virulence factors, plasmids, and genes associated with antimicrobial resistance, suggesting a non-pathogenic bacterium with protective potential. In addition, the genome encodes for 11 secondary metabolite biosynthetic gene clusters that could be involved in the inhibition of F. psychrophilum. We suggest that Pseudomonas sp. RGM2144 may be applied as a probiotic in salmonid fish farming.  相似文献   

17.
In this study, different traits that have been associated with bacterial virulence were studied in Yersinia ruckeri. Two isolates that had been shown to cause disease and mortality in experimentally infected rainbow trout were compared with five avirulent isolates. Both virulent isolates showed high adhesion to gill and intestinal mucus of rainbow trout, whereas the majority of non‐virulent strains demonstrated significantly lower adhesion. A decrease in adherence capability following bacterial treatment with sodium metaperiodate and proteolytic enzymes suggested the involvement of carbohydrates and proteins. All strains were able to adhere to and invade chinook salmon embryo cell line (CHSE‐214), fathead minnow epithelial cell line (FHM) and rainbow trout liver cell line (R1). One non‐virulent strain was highly adhesive and invasive in the three cell lines, whereas the virulent strains showed moderate adhesive and invasive capacity. The internalization of several isolates was inhibited by colchicine and cytochalasin‐D, suggesting that microtubules and microfilaments play a role. For all strains, intracellular survival assays showed a decrease of viable bacteria in the cells 6 h after inoculation, suggesting that Y. ruckeri is not able to multiply or survive inside cultured cells. Analysis of the susceptibility to the bactericidal effect of rainbow trout serum demonstrated that virulent Y. ruckeri strains were serum resistant, whereas non‐virulent strains were generally serum sensitive.  相似文献   

18.
Viral haemorrhagic septicaemia (VHS) is one of the most important viral diseases in rainbow trout that has caused great losses to Iranian rainbow trout aquaculture industry in the last 3 years. Therefore, rapid and reliable diagnosis of VHS virus infections is of great importance. An enzyme linked immunosorbent assay (ELISA) method was performed to study serum antibodies against viral haemorrhagic septicaemia virus (VHSV) using recombinant fragments of their N protein. For this purpose, the virus was first isolated from an infected farm. A part of the nucleocapsid (1–505 bp) gene was amplified by RT‐PCR using specific primers. The amplified fragment was ligated to pMALc2x vector and transferred to DH5α strain of Escherichia coli. Then, recombinant plasmids were tested for protein expression in E. coli Rosetta strain. SDS‐PAGE analysis indicated the production of a recombinant protein with an expected molecular weight of 61 KDa. Analysis of trout serum samples from seven previously infected farms and two VHS free farms showed that the designed ELISA method was effective in diagnosing the infected fish. The results revealed that the developed serological assay using designed ELISA based on recombinant protein (N) has the potential to be used in monitoring studies and to determine the prevalence of VHS in rainbow trout farms. The present data allow evaluating the levels of nonneutralizing antibodies without crude virus preparations.  相似文献   

19.
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD), which has a major impact on salmonid aquaculture globally. An Enterobacter species, C6‐6, isolated from the gut of rainbow trout, Oncorhynchus mykiss (Walbaum), has been identified as a potential probiotic species providing protection against BCWD. This study examined the effects of alginate microencapsulation on the protective efficacy of C6‐6 against BCWD in vivo when administered to rainbow trout fry orally or by intraperitoneal (IP) injection. Viable C6‐6 bacteria were microencapsulated successfully, and this process (microencapsulation) did not significantly deteriorate its protective properties as compared to the administration of non‐microencapsulated C6‐6 bacteria. Both oral and IP delivery of C6‐6 achieved significantly better protection than control treatments that did not contain C6‐6 bacteria. The highest relative percent survival (RPS) resulted from IP delivery (71.4%) and was significantly greater than the highest oral RPS (38.6%). Successful intestinal colonization was not critical to protective effects of C6‐6. The study showed that C6‐6 administration, with or without encapsulation, was a viable choice for protecting fry from BCWD especially when administered intraperitoneally.  相似文献   

20.
The immune response in rainbow trout fry against Flavobacterium psychrophilum was elucidated using an immersion‐based challenge with or without prior exposure to hydrogen peroxide (H2O2). Samples were taken from the head kidney 4, 48, 125 and 192 h after immersion, and the regulation of several genes was examined. Bacterial load was assessed based on the presence of 16S rRNA and correlated with gene expression, and the levels of specific antibodies in the blood were measured 50 days post‐infection. Separately, both H2O2 and F. psychrophilum influenced gene expression, and pre‐treatment with H2O2 influenced the response to infection with F. psychrophilum. Pre‐treatment with H2O2 also affected correlation between gene regulation and pathogen load for several genes. A delay in antibody production in H2O2‐treated fish in the early phase of infection was indicated, but H2O2 exposure did not affect antibody levels 50 days post‐infection. An increasing amount of F. psychrophilum 16S rRNA was found in the head kidneys of infected fish pre‐treated with H2O2 relative to the F. psychrophilum group. The results show that a single pre‐treatment with H2O2 impairs the response against F. psychrophilum and may intensify infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号