首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary We studied the dominant diazotrophs associated with maize roots and rhizosphere soil originating from three different locations in France. An aseptically grown maize plantlet, the spermosphere model, was used to isolate N2-fixing (acetylene-reducing) bacteria. Bacillus circulans was the dominant N2-fixing bacterium in the rhizosphere of maize-growing soils from Ramonville and Trogny, but was not found in maize-growing sandy soil from Pissos. In the latter soil, Enterobacter cloacae, Klebsiella terrigena, and Pseudomonas sp. were the most abundant diazotrophs. Azospirillum sp., which has been frequently reported as an important diazotroph accociated with the maize rhizosphere, was not isolated from any of these soils. The strains were compared for their acetylene-reducing activity in the spermosphere model. The Bacillus circulans strains, which were more frequently isolated, also exhibited significantly greater acetylene-reducing activity (3100 nmol ethylene day-1 plant-1) than the Enterobacteriaceae strains (180 nmol ethylene day-1 plant-1). This work indicates for the first time that Bacillus circulans is an important maizerhizosphere-associated bacterium and a potential plant growth-promoting rhizobacterium.  相似文献   

2.
Summary The response of the cotton plant to inoculation with six strains of Azospirillum brasilense was investigated under subtropical conditions in Egypt. Azospirilla populations and activities were increased as a result of root inoculation with liquid inoculum of Azospirillum sp. Highest C2H2 — reduction activities on roots were obtained with strains S631 and Sp Br 14 (means of 216.85 and 209.50 nmol C2H4g–1 root h–1 respectively) while strain M4 gave the lowest activity (mean of 100.8 nmol C2H4g–1 root h–1). Statistical analysis showed that Azospirillum strains 5631, Sp Br 14, E15 and SC22 significantly increased the plant dry weight and nitrogen uptake while inoculation with strains M4 and SE had no significant effect in that respect.  相似文献   

3.
Summary The level of Azospirillum brasilense strain Cd colonization in the rhizosphere of some vegetables was 104–105 colony-forming units (CFU) per root of one plant in 2-week-old plants inoculated with 5 × 108 Azospirillum cells. Significant increases in root length (35%) and in top (90%) and root (50%) dry weight and total leaf area (90%) were observed in 18-day-old inoculated tomato plants compared with non-inoculated controls. An inoculum concentration of 1 × 108 to 5 × 108 CFU/ml stimulated the appearance of root hairs. Large numbers of bacteria (1 × 109 CFU/ml) caused asymmetrical growth of the root tip. In a petri dish system, Azospirillum (1 × 108 CFU/ml) increased root dry weight (150%), protein content (20%), respiration rate per root (70%) and the specific activity of malate dehydrogenase (45%–65%) over non-inoculated controls. The specific respiration rate, expressed as micromol of O2 per minute per milligram of dry weight of roots, was significantly lower in inoculated roots, suggesting that less energy was spent for accumulation of more dry material.  相似文献   

4.
Summary Wheat seedlings were inoculated with rhizosphere nitrogen-fixing bacteria and grown gnotobiotically for 15 days. The growth medium consisted of semisolid agar with or without plant nutrients. The bacteria, isolated from roots of field-grown wheat, were three unidentified Gram-negative rods (A1, A2, E1), one Enterobacter agglomerans (C1) and two Bacillus polymyxa (B1, B2). A strain of Azospirillum brasilense (USA 10) was included for comparison.Nitrogenase activity (acetylene reduction activity, ARA) was tested on intact plants after 8 and 15 days of growth. In semisolid agar without plant nutrients, five isolates showed ARA of 0.01–0.9 nmol C2H4 plant–1 h–1, while the two strains of B. polymyxa had higher ARA of 3.3–10.6 nmol C2H4 plant–1 h–1.Plant development was not affected by inoculation with bacteria, except that inoculation with B. polymyxa resulted in shorter shoots and lower root weight.Transmission electronmicroscopy of roots revealed different degrees of infection. A. brasilense, A1 and A2, occurred mainly in the mucilage on the root surface and between outer epidermal cells (low infectivity). B. polymyxa strains and E1 were found in and between epidermal cells (intermediate infectivity) while E. agglomerans invaded the cortex and was occasionally found within the stele (high infectivity).  相似文献   

5.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

6.
Summary The microbial activity at the soil-root interface (rhizosphere) of barley was examined using a rhizobox system. In this system, the soil was placed in several compartments separated from each other by a 500-mesh nylon cloth. Plants were grown in the central compartment and after a 2-month growing period the roots were still confined to this compartment. The soil from each compartment was then analyzed for ATP, NO3 /–, total N, total C and CO2 production. The increase in ATP concentration was found in a range of 4 mm around the roots. The ATP content and CO2 production across the rhizosphere were correlated in all the soils used, but changes in NO3 were not correlated with ATP changes. The range of NO3 change was wider than that of the ATP change, indicating that NO3 production is not influenced by the biological activity in the rhizosphere.  相似文献   

7.
Summary The influence of the partial pressure of oxygen on denitrification and aerobic respiration was investigated at defined P02 values in a mull rendzina soil. The highest denitrification and respiration rates obtained in remoistened, glucose- and nitrate-amended soil were 43 1 N20 h–1g–1 soil and 130 1 O2 h–1g–1 soil, respectively. At -55 kPa matric water potential, corresponding to 40% water saturation, N20 was produced only below P02 40 hPa. The K m, for O2 was 3.0 x 106 M. Formation of N2O and consumption of O2 occurred simultaneously with half maximum rates at P02 6.7–13.3 hPa. Nitrite accumulated in soil below 40 hPa and increased with decreasing pO2. The upper threshold for N20 formation in amended soil was P02 33–40 hPa (39-47 M O2).  相似文献   

8.
Summary Non-symbiotic N2 fixation was studied under laboratory conditions in two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) incubated in a 15N-enriched atmosphere. N2 fixation was greatest with the Drummer soil (18–122 g g–1 soil, depending upon the soil treatment) and lowest with the Khurrarianwala soil (4–81 g g–1 soil). Fixation was increased by the addition of glucose, a close correlation being observed between the amount of glucose added and the amount of N2 fixed in the three soils (r = 0.96). Efficiency of N2 fixation varied with soil type and treatment and was greatest in the presence of added inorganic P. Application of Mo apparently had a negative effect on the amount and efficiency of N2 fixation in all the soils. The percentage of non-symbiotically fixed 15N in potentially mineralizable form (NH 4 + -N released in soil after a 15-day incubation period under anaerobic conditions) was low (2%–18%, depending upon the soil treatment), although most of the fixed N (up to 90%) was recovered as forms hydrolysable with 6N HCl. Recovery in hydrolysable forms was much greater for the fixed N than for the native soil N, indicating that the former was more available for uptake by plants.  相似文献   

9.
Summary The nitrogen metabolism of wheat plants inoculated with various Azospirillum brasilense strains and nitrate reductase negative (NR) mutants was studied in two monoxenic test tube experiments. The spontaneous mutants selected with chlorate under anaerobic conditions with nitrite as terminal electron acceptor fixed N2 in the presence of 10 mM NO3 and were stable after the plant passage. One strain (Sp 245) isolated from surface-sterilized wheat roots produced significant increases in plant weight at both NO3 levels (1 and 10 mM) which were not observed with the NR mutants or with the two other strains. Similar effects were observed in a pot experiment with soil on dry weight and total N incorporation but only at the higher N fertilizer level. In the monoxenic test tube experiments plants inoculated with the mutants showed lower nitrogenase activities than NR+ strains at the low NO3 level (1 = mM) but maintained the same level of activity with 10 mM NO3 where the activity of all NR+ strains was completely repressed. The nitrate reductase activity of roots increased with the inoculation of the homologous strains and with the mutants at both NO3 levels. At the low NO3 level this also resulted in increased activity in the shoots, but at the high NO3 level the two homologous strains produced significantly lower nitrate reductase activity in shoots while the mutants more than doubled it. The possible role of the bacterial nitrate reductase in NO3 assimilation by the wheat plant is discussed.  相似文献   

10.
Summary Physiological and symbiotic characteristics were identified in Rhizobium fredii isolated from subtropical-tropical soils. The generation times of R. fredii Taiwan isolated-SB 357 and -SB 682 were 1.7 and 2.5 h, respectively. These strains were associated with acid production in yeast-extract mannitol medium. They were able to use hexoses, pentose, sucrose, trehalose and raffinose. Strain SB 357 can resist a high concentration of kanamycin (100 g ml–1 and penicillin (400 g ml–1). It can tolerate up to 2.34% NaCl and 1031.3 mosmol kg–1 (23.4 bars). The growth rate of R. fredii SB 357 under the concentration of approximately 450 mosmol kg–1 (10.2 bars) was not affected by salinity, but responded to osmotic pressure. Both strains (SB 357 and SB 682) isolated from subtropical-tropical soils were able to form an effective N2-fixing symbiosis with the US soybean cv Clark lanceolate leaflet.  相似文献   

11.
Summary The effect of increasing oxygen concentrations (0, 5, 10 and 20 Vol% O2) on total denitrification and N20 release was studied in model experiments using a neutral pH loamy soil relatively rich in easily decomposable organic matter and supplied with nitrate (300 g nitrate N/g dry soil). The sterilized soil was inoculated with three different denitrifying bacteria (Bacillus licheniformis,Aeromonas denitrificans andAzospirillum lipoferum) and incubated (80% WHC, 30°C). The gas volume was analysed for O2, CO2, N2O, NO and N2 by gas chromatography and the soil investigated for changes in ammonium, nitrite, nitrate, pH, total N and C as well as water-extractable C. WithB. licheniformis andAeromonas denitrificans total denitrification increased remarkably with increasing pO2 as the result of intensified mineralization.Azospirillum lipoferum, however, showed the highest activity at 5 vol% O2. WithB. licheniformis N2O was released only in anaerobic conditions and at 5 Vol% O2 (maximum) or 10 Vol% 02, but not at 20 Vol%, whereasAeromonas denitrificans produced N2O only in the presence of He gas (maximum) or at 5 Vol% O2. In contrast to these bacteria, N2O production withAzospirillum lipoferum was restricted to 10 Vol% O2 (maximum) and to 20 Vol% 02, with some traces at 5 vol% O2. With a certain set of conditions, total denitrification and N2O formation seem to be governed by the mineralization rate of the organisms in question. The increased demand for electron acceptors by a high turnover rate rather than the presence of anaerobic conditions seems to have determined the rate of denitrification.  相似文献   

12.
Summary Aeschynomene afraspera is a wild annual legume growing in periodically waterlogged soils in western Africa. This legume is characterized by a profuse stem nodulation. Nodules are formed on the stem at the emergence of lateral root primordia, called nodulation sites. These sites are irregularly distributed on vertical rows all along the stem and branches. Stem nodules are hemispherically shaped. Their outside is dark green and they contain a red-pigmented central zone. Stem nodules exhibit a high nitrogen-fixing potential. Acetylene reduction assays result in stem nodule activity of 309 mol C2H4 g–1 dry nodule h–1. Field-grown stem nodulated Aeschynomene accumulated more N (51 g N m–2 in 10 weeks) than the root nodulated one. Because of this nitrogenfixing potential and its ability to grow in waterlogged conditions, A. afraspera could probably be introduced into tropical rice cropping systems.  相似文献   

13.
The intercellular colonization of rice roots by Azorhizobium caulinodans and other diazotrophic bacteria has been studied using strains marked with the lacZ reporter gene. A. caulinodans were able to enter the roots of rice at emerging lateral roots (lateral root cracks) by crack entry and this was observed by light microscopy. After colonization of lateral roots, bacteria moved into intercellular space within the cortical cell layer of roots. Naringenin at 1×10-5 and 5×10-5 M concentration significantly enhanced root colonization. The role of nodABC and regulatory nodD genes was also studied; lateral root crack (LRC) colonization of rice was shown to be Nod factor and NodD independent. Lateral root crack colonization of rice was also observed with similar frequency following inoculation with Azospirillum brasilense and the colonization by A. brasilense was stimulated by naringenin and other flavonoid molecules.  相似文献   

14.
Summary N2 fixation (acetylene reduction assay) by phylloplane microorganisms was measured in dominant and co-dominant plant species growing in a tropical rain forest. No significant acetylene reduction was recorded with intact leaf samples. Azotobacter sp., Beijerinckia sp., Derxia sp., and Klebsiella pneumoniae were isolated as phylloplane N2-fixing bacteria. Azospirillum lipoferum was only isolated from soil samples containing the roots of Poaceae. Nitrogenase activity was recorded in culture derived from the roots and rhizosphere soil samples, although low acetylene reduction activity indicates that these associations did not provide large amounts of N to the systems studied.  相似文献   

15.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

16.
In this study we found that Penicillium spp. exhibiting P-solubilizing activity are common both on and in the roots of wheat plants grown in southern Australian agricultural soils. From 2,500 segments of washed and surface-disinfested root pieces, 608 and 223 fungi were isolated on a selective medium, respectively. All isolates were screened for P solubilization on solid medium containing hydroxyapatite (HA); 47 isolates (5.7%) solubilized HA and were identified as isolates of Penicillium or its teleomorphs. These isolates were evaluated for solubilization of Idaho rock phosphate (RP) in liquid culture. Penicillium bilaiae strain RS7B-SD1 was the most effective, mobilizing 101.7 mg P l–1 after 7 days. Other effective isolates included Penicillium simplicissimum (58.8 mg P l–1), five strains of Penicillium griseofulvum (56.1–47.6 mg P l–1), Talaromyces flavus (48.6 mg P l–1) and two unidentified Penicillium spp. (50.7 and 50 mg P l–1). A newly isolated strain of Penicillium radicum (KC1-SD1) mobilized 43.3 mg P l–1. RP solubilization, biomass production and solution pH for P. bilaiae RS7B-SD1, P. radicum FRR4718 or Penicillium sp. 1 KC6-W2 was determined over time. P. bilaiae RS7B-SD1 solubilized the greatest amount of RP (112.7 mg P l–1) and had the highest RP-solubilizing activity per unit of biomass produced (up to 603.2 g P l–1 mg biomass–1 at 7 days growth). This study has identified new isolates of Penicillium fungi with high mineral phosphate solubilizing activity. These fungi are being investigated for the ability to increase crop production on strong P-retaining soils in Australia.  相似文献   

17.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

18.
We measured the terpene concentration in pentane and water extracts from soil horizons (litter, organic, top and low mineral) and from roots growing in top and low mineral horizons on a distance gradient from Pinus halepensis L. trees growing alone on a grassland. Terpene concentrations in pentane were higher than in water extracts, although β-caryophyllene showed relatively high solubility in water. The litter and roots were important sources of terpenes in soil. Alpha-pinene dominated in roots growing in both “top” (A1) and “low” (B) mineral horizons (123 ± 36 μg g−1 or 14 ± 5 mg m−2) and roots in low mineral horizon (270 ± 91 μg g−1 or 7 ± 2 mg m−2). Beta-caryophyllene dominated in litter (1469 ± 331 μg g−1 or 2004 ± 481 mg m−2). Terpene concentration in soil decreased with increasing distance to the trunk. This is likely to be related to changes in litter and roots type on the distance gradient from pine to grass and herbs. The relative contributions of all compounds, except α-pinene, were similar in the mineral soils and litter. This suggests that litter of P. halepensis is probably the main source of major terpene compounds. However, long-term emissions of α-pinene from P. halepensis roots might also contribute to α-pinene concentrations in rhizosphere soils.  相似文献   

19.
Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha–1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils.Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 g NH4OH-N g–1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 g NH4OH-N g–1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.  相似文献   

20.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号