首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为探究装配离心雾化喷头的喷杆喷雾机在小麦田植保作业中的适用性,研发了一种基于低容量离心雾化技术的喷杆喷雾机(BSC),以添加诱惑红示踪剂的3种药剂(5%己唑醇悬浮剂、40%氧乐果乳油和50%吡蚜酮水分散粒剂)的混合复配制剂为供试药液,与装配液力式喷头的背负式喷雾器(KSH)、喷杆喷雾机(BSH)以及装配离心雾化喷头的背负式喷雾器(KSC)进行田间施药对比试验,分析了4种机具的主要作业效果指标——雾滴沉积分布均匀性、小麦冠层药液穿透性、作业效率以及防治效果。结果表明:对于沉积均匀性,离心雾化低容量喷杆喷雾与常量喷雾无显著性差异,而装配离心雾化喷头的背负式喷雾器的沉积均匀性低于其他3种机具;与常量喷雾相比,离心雾化方式有效提高了药液的冠层穿透性,最多可提高2.9倍;与常量喷杆、低容量离心背负和常量背负式喷雾器相比,低容量离心喷杆喷雾机的作业效率分别提高0.5倍、5.6倍和18.6倍;对比空白处理,低容量离心喷雾和常量喷雾方式防治效果显著,但两者之间无显著性差异。该研究可为低容量施药技术、超低容量施药技术和离心雾化技术在喷杆喷雾机上的应用提供参考。  相似文献   

2.
比较在不同喷雾压力和施药液量条件下,采用自走式喷杆喷雾机在水稻分蘖期、孕穗期、扬花期进行喷雾处理的农药利用率、沉积分布均匀性及水稻茎基部雾滴密度的差异,为建立自走式喷杆喷雾机在稻田的高效施药技术提供理论依据。以生物染料丽春红-G作为农药示踪剂,估测不同喷雾参数的农药利用率,并用变异系数、绝对份额比例值比较农药分布的均匀性。同时通过水敏纸收集水稻基部雾滴密度,分析不同喷雾参数下农药雾滴穿透水稻冠层的能力。结果表明:在水稻分蘖期,采用自走式喷杆喷雾机在喷雾压力为1.2 MPa、施药液量为375 L/hm^2条件下喷雾,每个采样点的丽春红-G的平均沉积量仅为0.11 mg,与喷雾压力为0.4 MPa、施药液量为300 L/hm^2条件下喷雾的沉积量相比减少了56.00%。在水稻孕穗期,当喷雾压力为1.2 MPa、施药液量为375 L/hm^2时进行喷雾处理,每个采样点的丽春红-G的平均沉积量达0.26 mg,显著高于其他4个处理。在水稻扬花期,不同喷雾参数间的沉积量差距减小。在合适的喷雾压力和施药液量时,自走式喷杆喷雾机在水稻分蘖期、孕穗期和扬花期进行喷雾处理,农药利用率分别达到40.57%、54.97%和55.50%。综合变异系数和绝对份额比例两个指标,采用自走式喷杆喷雾机在喷雾压力为0.8 MPa、施药液量为300 L/hm^2条件下喷雾,农药分布更均匀。喷雾压力对水稻基部雾滴密度有显著影响,在水稻生长中后期,当喷雾压力低于0.8 MPa、施药液量为225~375 L/hm^2时,水稻茎秆基部雾滴密度均小于30个/cm^2。研究结果表明,喷雾压力和施药液量对自走式喷杆喷雾机稻田喷雾的农药利用率、分布均匀性及水稻茎秆基部雾滴密度有显著影响。在水稻生长前期,不宜采用高压力大水量喷雾作业;在水稻生长中后期,为增加对水稻基部病虫害的防治效果,需提高喷雾压力。  相似文献   

3.
通过在小麦田开展喷杆喷雾机施药防治病虫害的试验,探究该施药方式下减少药液量对农药沉积量、利用率、防治小麦病虫效果以及小麦产量的影响,以明确该药械在麦田减量喷雾作业的效果及适宜参数.研究结果表明,与常规施液量450 L/hm2相比,喷施药液量降至150 L/hm2可显著提高药液在小麦冠层的沉积量和沉积利用率,在小麦冠层上...  相似文献   

4.
为实现丘陵山区茶园自动化喷药,解决目前丘陵茶园自动化程度低、药液浪费严重和大中型装置无法进入等问题,设计了一种茶园自动喷药装置。根据丘陵山区茶园实际条件,对自动喷药装置的主要零部件进行结构设计及理论分析,装置采用水平方向和45°角方向喷射的喷药模式,结合超声波测距模块自动对靶,实现喷头与茶树冠表层之间位置的定位,并计算得到喷杆长度为1.1 m,单侧喷杆上设置3个喷头,喷头间距为0.5 m。喷药控制系统以STC89C52作为微控制器,运用C语言编程实现对喷杆喷药距离的自动调节和对电机和电磁阀的控制。选取冠层梯度、喷雾高度和行走速度为试验因素,以雾滴沉积密度为性能指标进行正交试验,结果表明:冠层梯度对雾滴沉积密度有极显著影响(P<0.001),喷雾高度和行走速度对其影响不显著(P>0.05),对雾滴沉积密度的影响程度从大到小依次为冠层梯度、喷雾高度、行驶速度,不同冠层梯度下各点位雾滴平均沉积密度均大于26个·cm-2,满足喷幅界定的20个·cm-2要求。  相似文献   

5.
为探究植保无人机对园林植物黄山栾喷雾的最优作业参数,使用四旋翼植保无人机开展园区内喷雾试验,调查喷雾作业后黄山栾上的雾滴沉积分布情况。经比较得出,试验机型对黄山栾喷雾较优的作业参数为喷液量750mL/株、作业高度3.5 m、作业速度1 m/s。调查发现,黄山栾不同冠层的雾滴覆盖密度和沉积量多数呈现为上层>中层>下层。极差分析结果显示,影响飞防作业中雾滴覆盖密度与沉积量的主要因素是作业速度,其次是喷液量和作业高度。研究结果可为植保无人机在高冠乔木上的推广应用提供依据,并为园林病虫害统防统治提供技术参考。  相似文献   

6.
新型药械性能测定及其应用于稻飞虱防治的效果   总被引:1,自引:0,他引:1  
以新型药械背负式电动低量喷杆喷雾机为研究对象,选用背负式电动喷雾器作对照,对两种施药器械进行了性能测定、稻田喷雾质量评价及施药防治稻飞虱效果对比试验。结果表明,供试药械的流量略高于对照药械,喷幅比对照药械大,田间行走速度比对照药械快。田间喷雾后供试药械平均雾滴体积中径为271μm,显著小于对照药械的473μm。供试药械喷雾的雾滴分布较均匀,各个点的雾滴体积中径值相差不大,稳定性较好,雾滴谱较窄。供试药械作业强度高于对照药械,但作业效率是后者的6.3倍。两药械均喷施50%吡蚜酮水分散粒剂7.5g/667m~2(有效成分用量)防治稻飞虱,药后21 d供试器械处理平均防效为83.08%,显著高于对照器械处理的67.38%。  相似文献   

7.
两种植保无人机对火龙果冠层的作业参数优化   总被引:1,自引:0,他引:1  
为探究飞行作业参数对植保无人机喷雾雾滴在火龙果冠层沉积分布规律的影响,明确植保无人机作业时雾滴的最佳分布效果,通过采用飞行高度、飞行速度、航线方向3个因素的3个水平正交试验,综合分析T16多旋翼和F5A电动单旋翼2种植保无人机在不同作业参数下在火龙果冠层的雾滴密度和覆盖率。结果表明:在相同喷施量情况下,影响这2种植保无人机雾滴分布的主次因素不一致,影响T16多旋翼植保无人机雾滴分布的主次因素依次为作业高度、作业速度、航线方向;影响F5A电动单旋翼植保无人机雾滴分布的主次因素依次为作业速度、作业高度、航线方向。优化了2种植保无人机在火龙冠层的作业参数,T16多旋翼植保无人机最佳作业参数是平行或垂直于种植行飞行,飞行高度为1.0 m,飞行速度为3.0 m/s;F5A电动单旋翼植保无人机最佳作业参数是垂直或平行于种植行飞行,飞行高度为2.0 m,飞行速度为2.0 m/s。这2种植保无人机飞行速度越小,飞行高度越低,其雾滴在火龙果冠层分布越好,雾滴穿透性也越好。在最优参数下,2种植保无人机喷雾雾滴在火龙果各个冠层都能达到比较好的分布效果,冠层下层雾滴密度高于冠层其他层。  相似文献   

8.
为了研究不同喷雾助剂和喷头对玉米田常用除草剂烟嘧·莠去津防除效果的影响,在自走式喷杆喷雾机施药过程中,选择不用型号喷头(XR11001、XR110015、XR11002)、不同助剂(2、3、4号喷雾助剂),调查药后14 d玉米田杂草株防效以及药后28 d玉米田杂草株防效和鲜重防效,并调查对玉米的安全性和玉米的产量。结果表明:自走式喷杆喷雾机施药过程中,选择喷头XR11001、4号助剂的杂草防效要优于其他处理组,且对玉米安全,不会影响玉米产量。自走式喷杆喷雾机施药的效果要优于人工喷雾。自走式喷杆喷雾机施药过程中,选择细喷头和合适的喷雾助剂,能有效提高药效。  相似文献   

9.
为探究植保无人机在核桃园低空低容量喷雾最优作业参数,本文采用三因素三水平正交试验设计,研究了植保无人机喷雾后核桃树上雾滴沉积分布情况。结果表明:影响雾滴覆盖密度和沉积量的主要因素是飞行速度,其次是飞行高度和施药液量;在树高6~7 m的核桃园中植保无人机喷雾效果较优的作业参数是飞行速度2.2~3.0 m/s,飞行高度2.0~2.5 m,施药液量22.5~30.0 L/hm~2,其平均雾滴覆盖密度和沉积量分别为26.36~37.94个/cm~2、0.24~0.29μg/cm~2;不同冠层雾滴覆盖密度和沉积量分布为上层中层下层,外围内膛;喷头型号对雾滴覆盖密度和雾滴直径有显著影响;中等喷头(Teejet110015)处理的沉积量最大,但粗、中、细3种喷头处理间的沉积量无显著性差异;植保无人机和地面人工+机动喷杆喷雾的农药地面流失率分别为3.61%和23.69%,两处理间有显著性差异。本文对无人机在核桃园喷雾作业参数进行了优选,可为无人机对高冠果树的合理喷施、提高喷施效果提供参考和指导。  相似文献   

10.
农药有效利用率与喷雾技术优化   总被引:41,自引:0,他引:41  
提高农药的有效利用率是植保工作者非常关心的问题。本文阐述了农药有效利用率的广义和狭义涵义,并分析了农药使用中存在的药剂浪费、有效利用率低的问题。根据喷雾技术中的“剂量传递”过程,分析了农药有效利用率的狭义涵义,在春季果园和作物苗期,常规喷雾法的农药有效利用率只有20%~30%;在夏秋季果园和作物中后期,随着作物叶面积系数(LAI)的增加,农药的有效利用率可达到50%~60%。论文分析了造成农药有效利用率低的原因,提出喷雾技术的优化措施:(1)大田喷雾时采用机动喷杆喷雾替代背负式手动常规喷雾,可以改善雾滴沉积分布的均匀性;(2)添加喷雾助剂可以提高药液在靶标表面的润湿性;(3)优化雾滴粒径,采用细雾滴替代粗雾滴可以提高雾滴的中靶率;(4)降低施药液量可以减少药液流失;(5)加装挡板可以减少雾滴飘失等。通过以上技术的优化,可以大幅度提高农药的有效利用率,达到减量增效的目的。  相似文献   

11.
本文在喷杆喷雾机上优化喷洒装置,采用多喷头组合喷雾,设计了双扇面喷雾的吊杆喷雾装置,对单一扇形雾喷头、双扇形雾喷头组合、双扇面吊杆喷雾进行了大田试验,数据结果显示:标准扇形雾喷头ST110-04(德国Lechler)+双扇面吊杆的喷雾效果最好,在冠层上中下不同部位的沉积变异系数为28.4%,在棉花冠层下部的覆盖率达到50.92%,虫口减退率超过85.0%;标准扇形雾喷头和防飘喷头组合ST110-02+IDK120-02(德国Lechler)喷雾效果其次;单一喷头喷雾在冠层下部的覆盖率较小,为33.14%,虫口减退率(红蜘蛛)为77.3%。双扇面组合喷雾与单扇面喷雾相比有显著性差异,不同类型喷头组合的喷雾性能优于其他类型喷头。  相似文献   

12.
风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响   总被引:2,自引:0,他引:2  
为探究和减少植保无人飞机喷雾施药过程中的雾滴飘移,采用由单个旋翼与喷头组成的喷雾单元,在可控风洞环境条件下进行了模拟飞行喷雾试验,控制风洞条件为风速5 m/s、喷雾压力0.3 MPa及旋翼转速2300 r/min不变,对比研究了11种喷头、4种代表性助剂以及不同温度/相对湿度条件对雾滴飘移的影响,采用飘移潜在指数(DIX)及相对减飘率(DPRP)两项指标进行对比评估。结果表明:在温度/相对湿度为20℃/RH 80%条件下,不同类型喷头喷雾药液在空中垂直面和水平距离上的飘移沉积量分布均呈现显著的规律性变化趋势,与对照喷头F110-03相比,喷头飘移潜在性从大到小依次为:TR80-0067>ST110-0067>XR110-01>ST110-015>TR80-01>ST110-02>XR110-03>对照F110-03>IDK系列,其中IDK120-01与IDK120-015喷头的减飘移效果相近并为最好;在30℃/RH 40%条件下,采用XR110-01喷头,分别添加助剂0.5%Silwet DRS-60、1.0%"迈飞"(MF)和1.0%Y-20079后,与不添加助剂的对照相比,平均减飘率分别为43.3%、15.6%和5.2%,表明不同助剂对飘移的影响不同,需考虑助剂类型及其减飘效果合理选用;在20℃/RH 40%、20℃/RH 80%、30℃/RH 40%和30℃/RH 60%条件下,XR110-01喷头与添加1.0%MF助剂组合有利于空中飘移的减少,尤其是高温/低湿条件下,添加助剂的减飘移效果较好。该研究结果可为植保无人飞机的喷头选择、喷雾助剂筛选和实际应用提供参考和指导,并为进一步研究喷头及助剂的减飘技术提供数据基础。  相似文献   

13.
BACKGROUND: Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems—instead of the still predominantly used spray guns—might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. RESULTS: The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0–4.9‐fold using the appropriate application technique. CONCLUSIONS: When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow‐cone, the air‐inclusion flat‐fan and the standard flat‐fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
以亿丰丸山3WP-500CN型号自走式喷杆喷雾机为研究对象,以诱惑红85作为指示剂,测定了6种喷雾助剂 (红太阳、倍力、迈丝、融透、印楝油和哈速腾)、3种喷头 (TEEJET-VP80015、ASJ-VP110015和LICHENG-VP11003) 以及3种喷雾压力 (0.2、0.4 和0.6 MPa) 对农药沉积利用率、药液雾化性能 (D50值雾滴密度等)、雾滴分布均匀性等喷雾参数的影响,以及240 g/L噻呋酰胺悬浮剂对水稻纹枯病防治效果及水稻产量的影响。结果表明:采用TEEJET-VP80015喷头,在0.4 MPa喷雾压力条件下,助剂哈速腾雾滴分布均匀性显著高于其他助剂,变异系数为0.11,同时对雾滴估计沉积量 (45.74 μL/cm2) 与分布跨度 (1.29) 的影响显著高于其他助剂;助剂迈丝对雾滴密度 (103.78个/cm2) 和农药沉积利用率 (83.88%) 的影响均显著高于其他助剂。采用TEEJET-VP80015喷头,在未添加助剂条件下,不同喷雾压力对雾滴分布跨度、雾滴附着率和农药沉积利用率影响差异显著,其中在0.6 MPa压力下,分布跨度为1.18,雾滴附着率为33.32%,农药沉积利用率为78.19%。在未添加助剂、0.4 MPa喷雾压力条件下,喷头LICHENG-VP11003对雾滴分布均匀性的影响显著高于另外两种喷头,变异系数为0.12,同时对雾滴覆盖率 (69.37%)、雾滴估计沉积量 (42.77 μL/cm2) 和农药沉积利用率 (75.79%) 的影响也显著高于另外两种喷头。各测定条件下,240 g/L噻呋酰胺悬浮剂对水稻纹枯病的防治效果与雾化性能和雾化参数结果一致,其中添加助剂迈丝后防治效果达到89.27%,显著高于添加其他助剂,增大喷雾压力到0.6 MPa,防治效果达到88.67%,显著高于其他压力条件;采用TEEJET-VP80015喷头,在0.4 MPa喷雾压力下,水稻产量为8301 kg/hm2,显著高于人工喷雾。因此,助剂与喷头类型均对自走式喷杆喷雾机施药时的农药沉积利用率、雾滴分布均匀性以及雾滴参数和雾化效果有显著的影响,在适当的喷雾压力下添加助剂可提高农药的防治效果。  相似文献   

15.
BACKGROUND: Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. RESULTS: In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air‐assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air‐inclusion or extended‐range nozzles. In tomatoes, the extended‐range nozzles and the twin air‐inclusion nozzles performed best. Using smaller‐size extended‐range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. CONCLUSIONS: The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
BACKGROUND: In the greenhouses of south‐eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self‐propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self‐propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. RESULTS: The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. CONCLUSIONS: The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
4种喷雾器在茶树上喷雾效果比较   总被引:2,自引:0,他引:2  
[目的] 筛选出适合茶树病虫害防治的新型喷雾器。[方法] 对4种喷雾器进行额定喷雾压力下喷头流量、喷雾后雾滴在茶树有效沉积量以及地面流失量的比较试验。[结果] 静电喷雾器3WBJ 16DZ在0.5 MPa喷雾压力喷雾时喷头流量最大,为1 290 mL/min;在不同高度及距施药者不同距离的雾滴沉积分布比较中,在小区内投放相同质量指示剂的情况下,静电喷雾器3WBJ 16DZ喷雾雾滴的沉积量约为其他3种供试喷雾器喷雾雾滴沉积量的2~3倍,而其地面流失率却小于对照背负式手动喷雾器。[结论] 通过田间试验测定,静电喷雾器3WBJ 16DZ具有施药液量少、药液沉积量高等特点,适合在茶树上推广使用。  相似文献   

18.
BACKGROUND: The objective of this study was to investigate spray drift from a conventional field sprayer as influenced by meteorological and technical factors, and to provide spray operators with data on which to base sound judgements when applying pesticides. The study was conducted in grazing fields and cereal crops. RESULTS: Interpreting the results from 15 field trials under varying meteorological conditions using different boom heights and driving speeds indicates that, during normal spraying conditions, the most decisive factors influencing the total spray drift (TSD) will be boom height and wind speed, followed by air temperature, driving speed and vapour pressure deficit. One important finding was that TSD (within the encompassed range of meteorological conditions and a boom height of 0.4 m) could be expressed as a simple function of the fraction of droplets ≤ 100 µm. In cereal crops: TSD = 0.36 + 0.11× [fr. (d ≤ 100 µm)] and in grazing fields, TSD = 1.02 + 0.10× [fr. (d ≤ 100 µm)]. In most cases a fraction of the airborne drift passed over the 6 m sampling mast located 5 m downwind of the spray swath. CONCLUSIONS: Under specified conditions, the present results indicate a simple relation between the total spray drift and volume fractions of droplets ≤ 100 µm. Given the nozzle type, it was concluded that the most decisive factors determining TSD are wind speed and boom height. Evaluating the relative importance of the meteorological and technical factors contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号