首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The application of real-time ultrasonography to monitoring ovarian function in mammals has advanced the understanding of follicular dynamics and its regulation. Follicular development is a wave-like sequence of organised events. The waves consist of the synchronous growth of small (4 to 5 mm) antral follicles, followed by the selection and growth of one dominant follicle which achieves the largest diameter and suppresses the growth of the subordinate follicles. In the absence of luteal regression, the dominant follicle eventually regresses (becomes atretic) and a new follicular wave begins. The dominant follicle regulates the growth of the subordinate follicles, because the appearance of the next wave is accelerated if the dominant follicle is ablated, and delayed if the lifespan of the dominant follicle is prolonged. During bovine oestrous cycles, two or three successive waves emerge, on average, on the day of ovulation (day 0) and day 10 for two-wave cycles, and on days 0, 9 and 16 for three-wave cycles. During the oestrous cycle there are thus two or three successive dominant follicles, and the last of these ovulates. Ovarian folliculogenesis is a complex process involving interactions between pituitary gonadotrophins, ovarian steroids and non-steroidal factors. Subtle changes in the hormonal milieu regulate folliculogenesis and the emergence of a follicular wave is preceded by a small increase in the concentration of plasma follicle-stimulating hormone. The mechanisms that promote the selection of a dominant follicle have not been elucidated, but considerable progress has been made in understanding follicular development and its regulation. Most treatments designed to control the development of follicular waves have been based on the physical or hormonal removal of the suppressive effect of the dominant follicle, and the consequent controlled induction of the emergence of a new follicular wave. The studies reviewed here describe current methods for regulating the bovine ovarian cycle, interesting models for future studies, and information that may be used for improving reproductive efficiency.  相似文献   

2.
The association between conception rate at first service and numbers of follicles developed during a follicular wave was examined in 102 suckled beef cows and 14 heifers. Follicular development was monitored using ultrasonography for either two (trial 1) or three (trial 2) consecutive oestrous cycles (pre-breeding, breeding and post-breeding equivalent). Animals were examined on alternate days from day 6 after first oestrus (day 0) until ovulation and from day 6 after insemination until next ovulation or day 24 of pregnancy and were observed for oestrus twice daily and inseminated artificially at either the second (trial 1) or third oestrus (trial 2). Cows were classified as having two or three waves of follicular development for each oestrous cycle. Numbers of follicles >or=4 mm per wave were determined, and based on the maximum diameter they attained, were classified as small (4-6 mm), medium (7-10 mm) or large (>or=11 mm) follicles. Total numbers of follicles, and primarily numbers of small and medium follicles, were affected by trial and within trial by cow, oestrous cycle and follicular wave. Heifers had more small and total numbers of follicles, but fewer large follicles than cows in trial 1 (p < 0.05). The average number of antral follicles per wave in the breeding cycle or post-breeding period did not affect conception rates, which averaged 84%. Repeatability of the total numbers of antral follicles between and among oestrous cycles and follicular waves ranged from 0.01 to 0.97. In conclusion, fertility was not affected by the numbers of antral follicles >or=4 mm in diameter in a single follicular wave.  相似文献   

3.
Follicular development was examined by transrectal ultrasound scanning in 12 heifers during 51 oestrous cycles. Internal diameters of largest and second largest follicles and the number of smaller ovarian vesicles were determined. Diameters of dominant follicles showed inverse growth pattern to the second largest follicles and numbers of smaller follicles (greater than or equal to 5 mm). There was an increase in diameters of the largest follicles from beginning of dioestrous to day 9 and from time of luteolysis to ovulation, which was coincident which a decrease in diameters of the second largest follicles and numbers of smaller ovarian vesicles. Smaller follicles increased in count and diameter, when the dominant follicle achieved its largest dimension and started to regress. The cyclic corpus luteum had no local influence on diameters of the largest and second largest follicles in the ovary bearing the corpus luteum versus the contralateral ovary. Internal diameters of oestrous follicles measured 14.7 +/- 2.6 mm in heifers and 15.3 +/- 2.9 mm in cows at the day of oestrous (p greater than 0.05; t-test). Dioestrous follicles with similar size were detected during various stages of the oestrous cycle. The diameter of the dominant follicle is not an accurate criterion for determining the stage of the oestrous cycle.  相似文献   

4.
The aim of this study was to characterize ir-IGF-I pattern and its relation to other hormones during the oestrous cycle in mares. Nine non-pregnant non-lactating pluriparous thoroughbred mares were used. The studied mares were examined ultrasonically and bled daily to follow the ovarian changes and the hormonal milieu for a complete Interovulatory interval (IOI). Two (minor and major) follicular waves were characterized per IOI in thoroughbred mares. The largest follicle of the first follicular wave (DF1) was firstly detected at D - 1.75 ± 0.47 with a growth rate of 2.78 ± 0.14mm/day and maximum diameter of 22.45 ± 0.75mm on day 6.65 ± 0.82. The largest follicle of the second follicular wave (DF2) had a growth rate of 2.15 ± 0.29 mm/day, reached a maximum diameter of 42.70 ± 2.63 mm on D 19.25 ± 0.43. Ir-IGF-I increased significantly prior to ovulation and had a similar pattern to oestrogen (r = 0.84, p < 0.05), suggesting that the ovarian follicles are the main source of circulating ir-IGF-I during the oestrous cycle of mares and that ir-IGF-I may be a crucial factor in follicular differentiation and maturation. In conclusion, this study demonstrated that ir-IGF-I is secreted during the oestrous phase of the cycle concomitant with the development of the future ovulatory dominant follicle, and it may act in synergy with other hormones for the selection and differentiation of the dominant follicle.  相似文献   

5.
AIM: To investigate ovarian follicular and luteal activity during the postpartum period of cows genetically selected for high or low mature bodyweight, in relation to metabolic and reproductive endocrine parameters, to determine whether there are differences between strains that could affect fertility outcomes.

METHODS: The presence of follicles ≥5 mm diameter and luteal structures was mapped in the ovaries of 12 high (heavystrain) and 12 low (light-strain) mature bodyweight cows by daily trans-rectal ultrasonography from Day 7 postpartum until the end of their first normal oestrous cycle. Blood samples were collected daily, for measurement of concentrations of follicle stimulating hormone (FSH), progesterone, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and insulin. Intervals to first ovulation were calculated from ultrasonography data.

RESULTS: Heavy-strain cows had shorter intervals than light-strain cows from calving to the emergence of the first (9.0 (SE 0.9) vs 12.4 (SE 1.3) days) and second (16.4 (SE 1.8) vs 20.6 (SE 1.6) days) dominant follicles (p<0.05). Concentrations of FSH in heavy-strain cows prior to the emergence of the second, third and fourth dominant follicles were higher than in light-strain cows (p<0.05). Heavy-strain cows were more likely to have a large (>15 mm diameter) follicle earlier than light-strain cows (p<0.01). Concentrations of insulin and IGF-1, but not those of GH, were higher in heavy- than light-strain cows during the postpartum period (p=0.01 and p=0.02, respectively), and concentrations of both on Day 6 were inversely related to the time of emergence of the first dominant follicle (p>0.01).

Concentrations of progesterone were similar in both strains of cow until Day 10 of the first oestrous cycle, but thereafter were higher in light- than heavy-strain cows until Day 16. Progesterone concentrations in heavy-strain cows declined earlier and more rapidly than in their lighter counterparts.

CONCLUSION: These results indicate that there is a rapid postpartum resumption of follicular activity in both heavy-and light-strain cows, but that there is an earlier emergence of dominant follicles and ovulation in the former. Differences in luteal function, in terms of lower dioestrus progesterone concentrations and an earlier onset of luteolysis, in heavy- than light-strain cows might be sufficient to impair the fertility of the former.  相似文献   

6.
The characteristics of the major follicular waves (primary and secondary) throughout estrous cycle were studied in 7 healthy Caspian mares (age, 4-15 years; weight, 198.6 ± 0.9 kg) during the breeding season. Ovarian follicular dynamics were monitored by using an ultrasound scanner equipped with a 5-MHz, B-mode, linear-array, rectal transducer throughout 2 complete estrous cycles. The diameters of antral follicles (5 mm) were measured, averaging the narrowest and widest dimensions. To detect follicular wave emergence, the diameter profile of the 3 largest follicles per ovary of each mare was determined without considering day-to-day identity of follicles but with maintenance of distinction between left and right ovaries. The primary waves originated on day 6.4 ± 0.81 (ovulation = day 0) when the mean diameter of ovarian follicles was 9.6 ± 1.05 mm. Divergence between the dominant preovulatory follicle and subordinate follicles occurred on day 13.4 ± 0.81, when the dominant follicle was 18.1 ± 2.67 mm in diameter. The intervals from emergence to divergence and from divergence to ovulation were 7 ± 0.68 and 8.7 ± 0.68 days, respectively. Secondary major follicular waves were not observed during this study. In conclusion, only 1 major follicular wave was detected in a Caspian mare, confirming the data previously described in other equine breeds. It is also indicated that the occurrence of 1 major follicular wave per cycle is a more common phenomena in equine species.  相似文献   

7.
We reviewed recent in vivo studies of the real-time changes in the vasculature of the follicle wall during selection of the dominant follicle as well as during ovulation in cows. Changes in follicle diameter and vascularity were determined by transrectal ultrasonography. Blood flow within the walls of the two largest follicles was detected at the time of wave emergence (largest follicle=5 mm in diameter). Before selection of a follicle (largest follicle <8.5 mm in diameter), the degrees of vascularity of the two largest follicles were not significantly different. After the largest follicle reached a diameter of 10 mm, the vascularity of the largest (dominant) follicle was higher than that of the second largest (subordinate) follicle. In the preovulatory follicle, follicular vascularity gradually increased, and as ovulation approached, the LH-surge induced an increase in blood flow within the follicle wall. The above results suggest that maintenance of follicular vasculature and appropriate blood supplies to follicles are essential for establishment of follicular dominance. Consequently, only a dominant follicle with high vascularity may have a chance to reach final maturation and acquire ovulatory capacity.  相似文献   

8.
This study characterized follicular activity and oestrous behaviour from 5 to 9 days post‐calving up to the 4th ovulation postpartum (pp) in 16 multiparous (range 2–7 parities) Thai swamp buffalo cows (Bubalus bubalis), aged 4–12 years and weighing from 432 to 676 kg. Ovarian follicular activity was examined by transrectal ultrasonography (TUS) every morning. Oestrous detection was performed twice daily by direct personal observation of behaviour and for presence of clear cervical mucus discharge and indirectly by video camera recording during 21 h/day. A follicular wave‐like pattern was present before the 1st ovulation leading to short oestrous cycles. Growth rates and maximum diameters of the ovulatory follicles did not differ between the 1st and 4th ovulations. However, growth rate for non‐ovulatory dominant follicles (DF) before the 1st ovulation was lower than for the ovulatory follicle (p < 0.05). In addition, the diameter of all ovulatory follicles (14.3 ± 0.46 mm, n = 39) was significantly larger (p < 0.01) than those of the preceding last but one non‐ovulatory DF (10.8 ± 0.20 mm, n = 5), but similar to the last preceding non‐ovulatory DF diameter (12.92 ± 0.96 mm, n = 14). Short oestrous cycles were most common between the 1st and 2nd ovulations (93.75%, 15/16 cows, 10.2 ± 0.38 days) decreasing in prevalence thereafter (50%, 3/6 buffaloes, 12.0 ± 1.53 days). Oestrous signs were relatively vague around the 1st ovulation pp to become more easily detectable thereafter. This study suggests that properly fed swamp buffaloes could be mated successfully within 2 months pp, at their 2nd spontaneous ovulation, provided oestrous detection is at least performed daily at 06:00–08:00 hour.  相似文献   

9.
The mare provides a unique experimental model for studying follicle development in monovular species. Development of antral follicles in horses is characterized by the periodic growth of follicular waves which often involve the selection of a single dominant follicle. If properly stimulated, the dominant follicle will complete development and eventually ovulate a fertile oocyte. Regulation of follicular wave emergence and follicle selection involves an interplay between circulating gonadotropins and follicular factors that ensures that individual follicles are properly stimulated to grow (or to regress) at any given stage of follicular wave development. Periodic development of follicular waves continuously occurs during most of post-natal life in the mare and is influenced by factors such as stage of oestrous cycle, season, pregnancy, age, breed and individual so that different types of follicular waves (minor or major, ovulatory or anovulatory) and different levels of activity within waves may develop under different physiological conditions. Changes in gonadotropin levels and/or in the sensitivity of follicles to circulating gonadotropins seem to account largely for these physiological variations in follicle development.  相似文献   

10.
Several studies have clarified that the follicular cysts degenerate and are replaced by newly growing follicles that develop into new follicular cysts without ovulation, i.e., turnover of ovarian follicular cysts in cows. However, the relativity of endocrinological changes, including the inhibin profile during turnover of spontaneous follicular cysts in dairy cows, is still unclear. In the present study, the relationship between turnover of follicular cysts and changes in the peripheral blood concentrations of progesterone (P), estradiol-17beta (E(2)), luteinizing hormone (LH), follicle stimulating hormone (FSH) and inhibin were examined in lactating dairy cows. Five cows diagnosed with follicular cysts (follicles of more than 25 mm in diameter in the absence of a corpus luteum) were investigated. Their ovarian dynamics were monitored using ultrasonography, and blood samples were collected at 2- or 3- day intervals throughout the experiment. The day when a follicle fated to become a follicular cyst reached more than 8 mm in diameter was defined as the start of a cystic follicular wave. Four of the 5 cows exhibited a similar patterns of cystic follicular changes and hormone profiles. The data from the 4 cows was used for analysis of the relationships between turnover of cystic follicles and the hormone profiles. Two or three new cystic follicular waves occurred in each cow during the experimental period. The mean diameter of the cystic follicles was more than 25 mm 13 to 15 days after the start of the cystic follicular wave, and it began to decrease 1 to 6 days before the start of the subsequent cystic follicular wave. The levels of E(2) and inhibin tended to decrease for 7 to 9 days before the start of a new cystic follicular wave and to increase concomitantly with new follicular cyst growth. The levels of FSH rose for 1 to 3 days before the start of a new cystic follicular wave. The present study clarified the relationship between FSH and inhibin during turnover of spontaneous follicular cysts in dairy cows and found that it was very similar to previous results for cows. The present results suggest that an increase in FSH secretion following a reduction in inhibin secretion triggers turnover of cystic follicles in cows with spontaneous follicular cysts.  相似文献   

11.
The origin and evolution of preovulatory follicles (POF) in 9 hyperstimulated (polyovulatory) Serrana goats were characterised. After oestrus synchronisation and detection, transrectal ovarian ultrasonography was performed daily during two complete oestrous cycles. Blood samples were taken every 4 h during 24 h after oestrus detection for preovulatory LH peak and twice a week for plasma progesterone determinations. The interovulatory interval of 14 oestrous cycles with double ovulations was 21.1 +/- 0.3 days. The onset of ovulatory follicular wave occurred 4 days (-3.9 +/- 0.3 days, n = 14) prior to the ovulation day (day 0) with a POF size of 6.9 +/- 0.2 mm (n = 28). In goats with ovulations in both ovaries (78.6%), the emergence of the first POF occurred earlier (-4.1 +/- 0.3 days) than the second POF (-3.3 +/- 0.2 days, n = 11, P < 0.05). No differences in the total number of follicles > or = 2 mm were found between the day of POF emergence (4.3 +/- 0.4) and the day before ovulation (3.5 +/- 0.3, P > 0.05). These results showed the existence of a delay between the emergence of first and second POF and suggest a weak dominance effect in goats with double ovulations.  相似文献   

12.
The two-wave hypothesis for follicular development during the bovine estrous cycle was tested by ultrasonically monitoring individual follicles in 10 heifers during an interovulatory interval. A dominant follicle was defined as one that reached a diameter of at least 11 mm. Subordinate follicles were defined as those that appeared to originate from the same follicular pool as a dominant follicle. A dominant follicle and its cohorts were defined as a wave. Two waves during an interovulatory interval were identified in 9 of 10 heifers. The first wave was first identified, retrospectively, on a mean of Day 0.2 +/- 0.1 (ovulation = Day 0) and gave origin to a dominant anovulatory follicle and a mean of 1.4 +/- 0.3 identified subordinates. The dominant follicle reached maximum diameter (mean, 15.8 +/- 0.8 mm) on an average of Day 7 and then decreased (P less than .04) by Day 11. The subordinate follicles increased in diameter for a few days and then regressed. The second wave was first identified on a mean of Day 10.0 +/- 0.4 and gave origin to the ovulatory follicle and a mean of 0.9 +/- 0.3 subordinates. One of the 10 heifers had 3 waves of follicular activity characterized by an anovulatory wave emerging on Day 0, another anovulatory wave emerging on Day 10, and an ovulatory wave emerging on Day 16. Results strongly supported the two-wave hypothesis but also indicated that a minority of interovulatory intervals in this heifer population may have 3 waves of follicular activity.  相似文献   

13.
Increase in the blood supply to individual follicles appears to be associated with follicular growth rates and the ability to become the dominant follicle, while reduced thecal vascularity appears to be closely associated with follicular atresia. Therefore, this study aimed to determine the real-time changes in the vascularity of the follicle wall during the first follicular wave in cycling Holstein cows. Normally cycling and lactating cows (n=5) were examined by transrectal color Doppler ultrasonography (the sensitivity for velocity: > 2 mm/sec) to determine the changes in the vasculature of the follicle wall (presence or absence of blood flow) and the diameter of follicles. A new follicular wave and ovulation were induced by GnRH injection at 48 h after an injection of PGF2alpha analogue. The ovaries were scanned daily for 7 days after GnRH injection. Follicles >2.5 mm were classified into 3 groups by the changes in diameter as follows: 1) largest follicle, 2) second largest follicle, and 3) small follicles, which included all other follicles >2.5 mm. Before the follicle selection, there was no significant difference in the percentage of follicles with detectable blood flow between the subsequently determined largest and second largest follicles. After the follicle selection, the percentage of follicles with detectable blood flow significantly decreased among the second largest follicles. In addition, small follicles with detectable blood flow kept larger diameters than those without detectable blood flow from one day before the occurrence of follicle selection. It is likely that maintenance of follicle vasculature and appropriate blood supply to the larger follicles is essential for follicle dominance. In small follicles, the presence of blood flow within the wall also appears to be required for recruitment. Consequently, the data suggest that the change of the blood supply to an individual follicle closely relates to the dynamics of follicular growth in the first follicular wave in the cow.  相似文献   

14.
Characteristics of Ovarian Follicle Development in Domestic Animals   总被引:4,自引:0,他引:4  
In most domestic animals the later stages of follicle development occurs in a wave‐like pattern during oestrous cycles (cattle, sheep, goats, horses and buffalo) or periods of reproductive activity (llamas and camels). A follicle wave is the organized development of a cohort of gonadotrophin‐dependent follicles all of which initially increase in size, but most of which subsequently regress and die by atresia (subordinate follicles). The number of remaining (dominant) follicles is specific to the species and is indicative of litter size. Follicle waves develop during both luteal and follicular phases and it is the dominant follicle(s) of the last follicular wave that ovulates. However, there are cases where dominant follicles from the last two follicle waves can ovulate (sheep and goats). There are exceptions to the organized wave‐like pattern of follicle growth where follicle development is apparently continuous (pigs and chickens). In these animals many follicles develop to intermediate diameters and at specific times follicles that are destined to ovulate are selected from this pool and continue growing to ovulation. Understanding the pattern of follicle development in different species is increasingly important for designing improved methods to manipulate reproduction in domestic animals.  相似文献   

15.
Cows with two waves of follicular growth during the estrous cycle yield follicles that are older and larger at ovulation compared with cows having three waves. The objectives of the current research were 1) to compare fertility in cows with two or three follicular waves and 2) to examine associations between luteal function, follicular development, and fertility after breeding. Follicular waves were monitored by ultrasonography during the estrous cycle before insemination in 106 dairy cows. Fewer cows had three follicular waves before next estrus and ovulation than two waves (P < 0.01; 30% vs 68%, respectively), but pregnancy rate was higher (P = 0.058; 81 vs 63%, respectively). Cows with two waves had shorter estrous cycles (P < 0.01), with the ovulatory follicle being both larger (P < 0.05) and older (P < 0.01). In cows with three waves, luteal function was extended (P < 0.05) and the peak in plasma progesterone occurred later (P < 0.05) in the estrous cycle compared to two wave cows. Considering cows that became pregnant, luteal phase length was shorter (P < 0.05) during the estrous cycle preceding insemination than for nonpregnant cows. In conclusion, fertility was greater in lactating cows inseminated after ovulation of the third-wave follicle that had developed for fewer days of the estrous cycle as compared with two-wave cows.  相似文献   

16.
The hypothesis that ovulation in response to short-term (48 h) calf removal (CR) is dependent on the developmental stage of the dominant follicle was tested in two studies. The objective of Exp. 1 was to characterize the fate of a dominant follicle following 48-h CR on d 2, 4, or 8 of a postpartum follicular wave. Ovaries of 61 beef cows were examined daily by transrectal ultrasonography starting at d 20 to 21 postpartum. Treatments were no CR (n = 14) and CR on d 2 (n = 12), 4 (n = 16), or 8 (n = 10) of first detected follicular wave. Percentage of cows that ovulated a dominant follicle following treatment was not different among groups (P = 0.62). Maximum size of dominant follicles was larger in cows that ovulated (P = 0.002) than in cows that did not ovulate. The objectives of Exp. 2 were 1) to determine whether a follicular wave could be synchronized in anestrous cows following injection of 1 mg of estradiol benzoate (EB) and 200 mg of progesterone (P4; EB + P4); 2) to characterize the fate of dominant follicles following 48-h CR at three stages of a synchronized follicular wave; and 3) to determine whether estrous cycles of normal length followed ovulation in cows pretreated with EB + P4. Ovaries of 50 anestrous beef cows were examined daily as in Exp. 1. Treatments were sesame oil (SO) injected (i.m.) on d 25 postpartum and no CR (n = 9); EB + P4 and no CR (n = 9); EB + P4 and CR on 6 (n = 12), 8 (n = 9), or 12 (n = 11) d after injection. The EB and P4 injections were given on d 25 postpartum. Variability in day of emergence of subsequent follicular waves was lower in cows receiving EB + P4 than in SO-injected cows (P < 0.05). The percentage of cows that ovulated was not different (P = 0.16), but CR increased the percentage of cows that ovulated when groups that received EB + P4 were compared to the EB + P4 group that did not have CR (53.1 vs 11.1%, respectively; P < 0.05). Maximum diameter of dominant follicles was larger (P = 0.05) in ovulatory follicles. The luteal phase was longer (P < 0.03) in cows receiving EB + P4 injection (10.6 +/- 1.2 d) than in cows receiving SO (4.4 +/- 2.2 d). In summary, the maximum size of ovulatory follicles was greater than that of nonovulatory follicles, the ovulatory response of postpartum anestrous cows was maintained through d 8 of a follicular wave, synchronization of follicular waves was accomplished in postpartum cows using EB + P4, and the subsequent luteal phase length was increased in animals that were administered EB + P4.  相似文献   

17.
Follicular and hormonal dynamics during the estrous cycle in goats   总被引:3,自引:0,他引:3  
Transrectal ultrasonography of ovaries was performed daily in 6 goats for 3 consecutive estrous cycles. Blood samples collected daily were measured for concentrations of FSH, inhibin A, and estradiol-17beta. Follicular and hormonal data were analyzed for associations between the follicular waves and hormonal concentrations. During the interovulatory intervals, follicular growth and regression occurred in a wave like pattern (2-5 waves), and the predominant patterns were three and four follicular waves. In addition, there was no significant difference among the diameters of dominant follicles during the growth phase of the follicular waves. The number of 3 mm follicles peaked on days 0, 7, and 11 in interovulatory intervals that had three follicular waves and on days -1, 5, 11, and 15 in those that had four follicular waves. Plasma concentrations of FSH increased around the day of follicular wave emergence and declined with the growth of follicles. Circulating FSH increased again concomitant with regression of dominant follicles in the anovulatory wave, whereas FSH levels remained low in the ovulatory wave. Inhibin A was negatively correlated with FSH, while it was positively correlated with estradiol-17beta, suggesting that inhibin A is a product of healthy growing follicles and that it contributes to the suppression of FSH secretion. In conclusion, the growth of ovarian follicles in goats exhibits a wave-like pattern, and follicular dominance is less apparent in goats. Moreover, inhibin A may be a key hormone for regulation of the follicular wave through suppression of FSH secretion in goats.  相似文献   

18.
Ovarian Follicular Dynamics in Buffalo Cows (Bubalus bubalis)   总被引:1,自引:0,他引:1  
Follicular growth in Egyptian buffalo cows was monitored using genital tracts from 200 buffalo cows collected immediately after slaughter. According to the morphological appearance of the corpus luteum (CL), the corresponding oestrous cycle was divided into four stages: A (days 1–4), B (days 5–10), C (days 11–17) and D (days 18–21). Within these stages the follicular population on the ovaries was evaluated and the dominant follicle (DF) determined in all recovered ovaries. The functional status of the DF and the largest sub‐dominant follicles was examined by histological examination in 31 cases, and Radio Immunoassay (RIA) analyses for estradiol‐17β (E2) and progesterone (P4) was performed in the follicular fluid in 23 of the DF. The results showed that DFs changed their endocrine character within the stages of the oestrous cycle. The DFs between days 5 and 10 were functionally active (E2‐dominant; non‐atretic) in most of the cases. Between days 11 and day 17 half of the DFs became functionally inactive (P4‐dominant; atretic). At days 18–21 all of the DF became functionally active and non‐atretic. In the specimens that carried two large follicles one of them was regularly atretic and P4‐dominant whereas the other was non‐atretic and E2‐dominant. Between days 18 and 21 all ovaries examined showed at least one large follicle. These findings suggest that in most of the cases follicular dynamics occurs in two wave‐like patterns in the Egyptian buffalo cows.  相似文献   

19.
We investigated the profiles of circulating levels of inhibin A and total inhibin in beef cows with follicular cysts in relation to the patterns of follicular development and circulating gonadotropins and steroid hormones. Turnover of follicular waves was monitored in five cows every 2 days for 70 days from 10 days after detection of estrus without ovulation. The mean interwave intervals were 19.6 ± 1.0 days (n = 18 waves with cysts from the five cows). Circulating levels of inhibin A were approximately 170 pg/ml before emergence of follicular waves with cysts and increased (P < 0.05) concomitantly with follicle emergence. High concentrations of inhibin A (greater than 300 pg/ml) were noted for 7 days during the growth phase of cystic follicles, but inhibin A levels decreased gradually when development of the cysts reached a plateau. This profile of inhibin A was similar to those of total inhibin and estradiol, but was inversely related to the changes in plasma FSH concentrations. LH pulse frequency and mean concentrations of LH in cows with cysts were higher than those observed in the luteal phase of normal cyclic cows. These results indicate that the capacity to secrete inhibin, as well as estradiol, is maintained in cystic follicles, the growth of which is extended by LH secretion at levels greater than those seen in the normal luteal phase. Inhibin A plays an important role in the extension of interwave intervals by suppressing recruitment of a new cohort of follicles.  相似文献   

20.
A mathematical method was developed for characterizing follicular waves in early pregnant mares. For validation, the results were compared to those derived by a method using day-to-day identification of individual follicles (identity method); the same data set was used for both methods. The following steps were used for each mare: 1) depicting individual diameter profiles over Days 0 to 40 for the 3 largest follicles per ovary without regard to day-to-day follicle identity; 2) separating the follicles into large (>20 to >26 mm) and small categories; 3) using the large category to profile the diameters of individual follicles; and 4) using the small category to detect significant waves of follicular activity on the basis of Tukey's multiple-range test. The identity method detected wave emergence at 15 to 16 mm using the retrospectively identified dominant follicle. The mathematical method detected emergence of waves at a mean diameter of 9.5 ± 0.5 mm, 2 days earlier than did the identity method. Allowing for the 2 days earlier detection, the 2 methods led to similar conclusions on the characteristics of follicular waves. The mathematical method has the following apparent advantages: 1) data can be collected more quickly and with less skill than for the identify method; 2) bias due to inspecting data of the previous days, as required in the identity method, can be eliminated; and 3) days of emergence of a follicular wave can be identified earlier and with greater objectivity. The first step of the procedure (profiling the diameters of the 3 largest follicles perovary) should be useful to practitioners and others engaged in clinical research who need a simple method of characterizing follicular waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号