首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.  相似文献   

2.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

3.
Annual amounts of litterfall and nitrogen input by litterfall were measured in a subtropical evergreen broad-leaved forest to examine the contribution of a liana species, Mucuna macrocarpa Wall., to the spatial heterogeneity of litterfall production and nitrogen input. The total litterfall in the study plot was 7.1 t ha−1 year−1. The amount of litterfall varied with topography and was greatest at the valley bottom and decreased toward the ridges. Macuna macrocarpa litterfall was absent on the ridges although it accounted for the largest percentage, 32%, of total leaf litter production in the valley. Nitrogen input by litterfall was 69 kg ha−1 year−1 in the plot. Nitrogen input by litterfall was also largest at the valley bottom and decreased toward the ridges. Leaf litter of M. macrocarpa had approximately twice the nitrogen concentration of litterfall of other species. Macuna macrocarpa accounted for 42% of nitrogen input by leaf litter in the valley. The abundance and the high nitrogen concentration of M. macrocarpa intensified differences in the amount of litterfall and nitrogen input by litterfall between valleys and ridges. It was concluded that a liana species, M. macrocarpa, can contribute to the spatial heterogeneity of litterfall and may subsequently affect nutrient cycling in a subtropical evergreen broad-leaved forest on Okinawa Island.  相似文献   

4.
Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

5.
Fine litterfall and nutrient return patterns were studied in three subtropical humid forest stands (7-, 13- and 16-year old), regrowing after selective tree cutting in north-eastern India. The seasonality of fine litterfall was unimodal, with a peak during spring and a trough during rainy season in the forest regrowths of three different ages. The rate of fine litterfall increased with increasing basal area of the woody vegetation during forest regrowth. Leaf litter accounted for 83% of the total litterfall. N concentration was maximum during autumn and minimum during rainy season; nutrient concentrations were highest in the leaf litter. Seasonal variation in P concentration was small. Maximum and minimum input of N and P to the forest floor through fine litter coincided with the respective periods of litter production.  相似文献   

6.
The study was conducted to improve our understanding of the effects of forest disturbance on litterfall and patterns of nutrient return in three subalpine forest ecosystems (i.e. Betula utilis-dominated, Abies pindrow-dominated, and Acer mixed broadleaf) of Indian west Himalaya. Total litterfall (t ha−1 yr−1) ranged between 2.6–3.6 and 2.1–2.6 for pristine and degraded stands, respectively. Whereas total litterfall decrease from pristine to degraded stand was about 25–30% in B. utilis and Acer mixed-broadleaf forests, the level of disturbance did not affect total litterfall in A. pindrow (coniferous) forest. Nutrient (N, P, and K) concentrations in litter components of the forests studied also varied across forest types and disturbance intensities. For pristine stands, among all the forests, return of total nutrients via litterfall was higher. The study revealed that patterns of litterfall and nutrient return in the forests studied were sensitive to intensity of disturbance, although sensitivity varied among forest types and nutrient contents. Increased intensity of disturbance greatly affected the total annual amount of nutrient return in broadleaf forests. Maximum impact was recorded in B. utilis forest with a significant decline in nutrient return from pristine to degraded stands (i.e. 64% for N, 38% for P, and 67% for K). Corresponding values for decline in Acer mixed forest were 17, 13, and 33% for N, P, and K, respectively, whereas in A. Pindrow forest N return was 15% higher and P return was 33% lower. This study indicates that the litterfall and litter nutrient concentrations in these forests are sensitive to the intensity of disturbance, which affects the amount of nutrient return. This will have a strong bearing on forest nutrient cycling.  相似文献   

7.

Background

This study was designed to evaluate the internal nutrient cycling of litterfall in different elevation subtropical forests of Central Taiwan.

Methods

The litterfall of evergreen hardwoods at three elevations, specifically Mt. Peitungyen (2,078?m), Hui-Sun experimental forest (HSEF) (1,066?m), and Lienhauchi (782?m) in central Taiwan, was collected monthly using traps and sorted into leaves, twigs, reproductive litter, and miscellaneous material. In addition, the litter on the forest floor was collected trimonthly. All the samples were weighed and measured for C, N, P, K, Ca, and Mg concentrations and fluxes from March 2009 to February 2010.

Results

The annual litterfall productions were 6.58, 8.24, and 9.17?Mg?ha?1?year?1 at Mt. Peitungyen, HSEF, and Lienhauchi, respectively. At more than 60?%, leaves were the main component of the total litterfall. There was smallest decomposition constant (0.487) at Mt. Peitungyen. The nutrient fluxes increased as elevation decreased. The litterfall correlated positively with rainfall at Lienhauchi, with temperature at HSEF, and with temperature and rainfall at Mt. Peitungyen.

Conclusion

The annual litterfall decreased with an increase in elevation. The turnover rate was faster at HSEF than at Mt. Peitungyen. Thus, the forest managers should pay more attention to understand and monitor plant community responses to global warming and nutrient loss.  相似文献   

8.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

9.
Canopy litterfall is a significant pathway for return of nutrients and carbon (C) to the soil in forest ecosystems. Litterfall was studied in five even-aged stands of Norway spruce, Sitka spruce, Douglas-fir, European beech and common oak at three different locations in Denmark; two sandy sites, Ulborg and Lindet in Jutland, and one loamy site, Frederiksborg on Zealand. Litterfall was collected during three years from 1994 to 1996 in all five species and during six years from 1994 to 1999 in Norway spruce, Sitka spruce and European beech. The average total litterfall was in the range of 3200–3700 kg ha−1 yr−1 and did not differ significantly among tree species. There were no significant differences in total litterfall among sites during the short period, but during the longer period the richer site Frederiksborg had significantly higher total and foliar litterfall amounts compared to the more nutrient-poor sites Lindet and Ulborg. There were close relationships between foliar and total litterfall suggesting that foliar litterfall can be reliably estimated from total litterfall. Beech and oak bud scale litter was significantly related to foliar litterfall. The amount of branch and twig litter was significantly higher in oak than in other tree species. The average foliar litterfall was well related to the annual volume increment. The relationship differed markedly from previously reported relationships based on global litterfall data suggesting that such relationships are better evaluated at the regional level. Nutrient concentrations and fluxes in foliar litterfall were not significantly different among the five tree species. However, there was a significant effect of site on most nutrient concentrations of the three litterfall fractions, and foliar fluxes of P, Ca and Mn were all significantly highest at Frederiksborg and lowest at Ulborg. The similarity in litterfall inputs to the forest floor under these five tree species suggested that previous reports of large variability in forest floor accumulation should primarily be attributed to differences in litter decomposition.  相似文献   

10.
Litter Production in Western Washington Douglas-Fir Stands   总被引:1,自引:0,他引:1  
GESSEL  S. P.; TURNER  J. 《Forestry》1976,49(1):63-72
Litter production by Douglas-fir stands ranging in age from22 years old to 160 years old, is discussed. Typical leaf litterproduction was 2100 kg ha–1 yr–1 while total litterwas 2500 kg ha–1 yr–1. Annual fall of leaf litterincreases up to about 40 years of age and then becomes fairlyconstant while total litter continues to increase because ofwood production, although this increase may be quite irregular.Average nutrient returns to the forest floor are 21, 3, 7, 32,4, and 7 kg ha–1 yr–1 for N, P, K, Ca, Mg, and Mnrespectively.  相似文献   

11.
Abstract

Rates of litter decomposition and nutrient release from litter provide valuable information on the capacity of different tree species to replenish soil nutrients in degraded tropical areas. Leaf litter decomposition, leaf litterfall, plantation floor leaf litter, and mulch performance were studied for four indigenous timber species, Virola koschnyiWarb, Dipteryxpanamensis(Pittier) Record and Mell, Terminalia amazonia(J.F. Gmel.) Exell., and Albizia gua-chapele(H.B.K.) Little, grown in mixed and monospecific plantations in the Atlantic humid lowlands of Costa Rica. Terminalia amazonialitter decomposed the fastest: no litter remained after 6 months. After 12 months, D. panamensis, A. guachapele, and the mixed litter decomposed completely, while 15% of the original weight of V. koschnyilitter remained. Differences in decomposition rates were closely related to leaf nutrient content. Total annual leaf litterfall was highest in T. amazonia(872.9 g/m2), followed by D. panamensis, V. koschnyi, and the mixed plots. A. guachapelehad the lowest leaf litterfall (236.0 g/m2). The highest plantation-floor leaf litter was found in V. koschnyiand D. panamensis.Both litterfall and plantation-floor litter accumulation fluctuated least in the mixed plots. A. guachapeleand D. panamensismulch most positively affected maize seedling growth, followed by the mixed mulch. Recommendations are drawn from the results to suggest species choice for sustainable land management in the region.  相似文献   

12.
Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The objective of this research was to assess litterfall production,the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species(S1); a Quercus spp.forest(S2); and,a Tamaulipan thornscrub forest(S3).Total annual litterfall deposition was 594,742 and 533 g m~(-2) for S1,S2 and S3.Leaf litter was higher (68%) than twigs(18%),reproductive structures(8%) or miscellaneous material(6%).Micronutrient leaf deposition was higher for Fe followed by Mn,Zn and Cu.Macronutrient leaf deposition was higher for Ca followed by K,Mg and P.Even though P deposition in leaves and twigs was lower than other macronutrients,its nutrient use efficiency was higher than Ca,Mg or K.Altitude and species composition determine litter and nutrient deposition,with higher values at mid-altitudes(550 m).Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study.Litter production and nutrient deposition are expected to change in a scenario of global warming.  相似文献   

13.
This study was conducted to assess the suitability of two fallow species that are indigenous to West Africa, M. thonningii (Schum and Thonn) and P. santalinoides (L'Her), for alley cropping with maize and their effect on soil chemical properties. It was carried out during the rain-fed cropping season at Ibadan, Nigeria and Mbalmayo, Cameroon in 1993 and 1994. Total dry matter of P. santalinoides prunings was higher at the two sites than that of M. thonningii by about 35% to 37%. Maize grain yield in plots supplied with prunings was significantly higher (P > 0.05) than in control (no prunings or fertilizer application) at Ibadan. Grain yield in plots supplied with prunings plus 40 kg ha−1 urea fertilizer gave significantly higher yields than plots supplied with 80 kg N ha−1 urea fertilizer only. At Mbalmayo, there was no significant difference between grain yield in plots supplied with 80 kg N ha−1 and plots supplied with prunings plus 40 kg N ha-1 urea fertilizer though the latter had higher yields. Grain yield was also higher in the middle rows than in rows adjacent to the hedgerows and these were not significantly different. Weed dry matter was reduced by 27% to 43% when Pterocarpus prunings were applied and 13% to 31% with application of Millettia prunings. Weed flora in both locations changed from grasses to broad leaved. Soil chemical changes at soil depth 0 to 10 cm showed significant increases (pH, C, N, P and Ca) after two cropping seasons in plots supplied with prunings or prunings plus fertilizer than the initial values. At Mbalmayo, K was lower after cropping in treatments than the initial values while at Ibadan, K and Mg were lower except in plots supplied with Pterocarpus prunings only. P. santalinoides and M. thonningii have significant potential for agroforestry in this sub-region. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Leaf and litter nitrogen and phosphorus in three forests with low P supply   总被引:1,自引:0,他引:1  
We compared the N and P contents of the main labile components of nutrient cycles in three different forest ecosystems [a tropical evergreen forest (TEF); a tropical dry forest (TDF); and a Mediterranean temperate forest (MTF)] with low P supply. A mass-balance approach was used to estimate mean residence times for organic matter, N and P in the forest floor, and to examine the flexibility of N and P intra-system cycling in the three forest ecosystems. For this purpose, we combined published values of N and P in foliage, litterfall, forest floor litter and mineral soils in these three forest ecosystems. The results of our analysis were consistent with the widely held belief that the N content of leaves (both green and senescent) and litter increases with increasing temperatures. In contrast, the data did not support the hypothesis that leaf P content decreases with increasing temperatures and precipitation: leaf and litterfall P contents were higher in both tropical forests than they were in the temperate forest. The TEF had the highest P content of the three forests studied. The mass-balance analysis indicated that although P mineralization in the TDF can run ahead of litter decomposition stoichiometry when P is in short supply, flexibility is much reduced or absent in the TEF and the MTF. Our analysis provides additional evidence of the importance of climatic factors in forest ecosystem processes and highlights the role of flexibility in ecosystem nutrient cycling, especially for P in ecosystems with a limited P supply.  相似文献   

15.
Mineral fertilizers were applied to adjacent plantations of 2, 4-year old, hybrid poplars: clone 27 (Northwest, P. deltoides × P. balsamifera) and 794 (Brooks, P. deltoides × P. × petrowskyana), in north eastern Alberta. Fertilization was done in May 2003 to see whether growth rates could be increased and rotations shortened. Three fertilizers (N, NP and NPKS + Cu + Zn) were applied at each of three rates (supplying N at 0, 100 and 200 kg ha−1) in a factorial randomized block design to the two separate plantations. Fertilization with 200 kg ha−1 N and 100 kg ha−1 P increased volume growth of clone 27 by 1 m3 ha−1 year−1 over 2 years. Clone 794 showed no volume response to fertilization, but produced 8.7 m3 ha−1 more than clone 27. Leaf area, dry mass and nutrient concentrations of both clones increased in the first year after fertilization, showing that fertilizer uptake occurred. Decrease in leaf size between 2003 and 2004 was affected by fertilizer level in clone 794. There were differences between some nutrient concentrations in the soils occupied by the two clones, and clone 794 had higher leaf concentrations of N, K, Ca, S, Mn, Zn, B and Mo than clone 27. Fertilization of 4-year old plantations of either clone was unwarranted, and planting clone 794 would be likely to provide greater yield than planting and fertilizing clone 27.  相似文献   

16.
Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.  相似文献   

17.
The amount and pattern of litterfall and its nutrient returnwere studied in seven natural forests of Schima superba Gardn.and Champ. (SCS), Castanopsis fabri Hance (CAF), Tsoongiodendronodorum Chun (TSO), Cinnamomum chekiangense Nakai (CIC), Altingiagracilipes Hemsl. (ALG), Castanopsis carlesii (Hemsl.) Hayata(CAC) and Pinus massoniana D. Don (PIM), and compared with thatof an adjacent 29-year-old plantation of Chinese fir (Cunninghamialanceolata Lamb.) (CUL) in Jianou, Fujian, China. Mean annualtotal litterfall over 3 years of observations varied from 4.63Mg ha–1 in the CUL to 8.85 Mg ha–1 in the PIM; ofthis litterfall, the leaf contribution ranged from 62 to 73per cent. Litterfall in the CAF, ALG and CAC showed an unimodaldistribution pattern, while for the five other forests, thelitterfall pattern was multi-peak. The rank order of the eightforests, according to nutrient return mass with the exceptionof P, was different from the order when rank was according tototal mass of litterfall. The highest annual N, K and Ca returnsfrom total litterfall were noticed in the TSO, the CAF and theCUL, respectively. The amounts of P and Mg potentially returnedto the soil were the highest in the PIM. The leaf fraction providedgreater potential returns of N, P, K, Ca and Mg to the soilthan other litter fractions. The results of this study demonstratethat natural forests have a greater capability for maintainingsite productivity than the monoculture coniferous plantation,due to higher amount of above-ground litter coupled with greaternutrient returns; therefore conservation of natural forestsis recommended as a practical measure in forest management torealize sustainable development of forestry in mountainous areasof southern China.  相似文献   

18.
To optimize biomass and crude protein (CP) production for leucaena (Leucaena leucocephala) in southern Texas, field trials were conducted with treatment combinations of three levels of phosphorus (P) , two levels of Mg and two levels of soluble trace element mixture (STEM). The P was banded in the soil while the Mg and micronutrient blend were applied to the foliage. A combination of P (22 kg ha-1), Mg and STEM fertilizers significantly increased biomass from 2555 kg ha-1 to 3028 kg ha-1. This treatment was associated with an increase in leaf CP from 27.9% to 31.0%. P fertilizer had no significant effect on leaf P, but significantly increased leaf nitrogen (N) and leaf copper (Cu). A foliar spray of Mg significantly increased leaf N, P, and Cu. A foliar spray of a complete micronutrient blend increased leaf Cu. Biomass production was correlated positively (decreasing order) with leaf Cu, N, and Mg and negatively with Zn. Leaf N was positively correlated with leaf P and calcium. The critical tissue concentrations (CTC) (where 90% of predicted maximum leaf protein was obtained) were 0.18% and 4.49 mg kg-1 for leaf P and Cu, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropics as a consequence of increasing human activities in the next decades. In the literature, it is frequently assumed that tropical montane forests are N-limited, while tropical lowland forests are P-limited. In a low-level N and P addition experiment, we determined the short-term response of N and P cycles in a north Andean montane forest on Palaeozoic shists and metasandstones at an elevation of 2100 m a.s.l. to increased N and P inputs. We evaluated experimental N, P and N + P additions (50 kg ha−1 yr−1 of N, 10 kg ha−1 yr−1 of P and 50 kg + 10 kg ha−1 yr−1 of N and P, respectively) and an untreated control in a fourfold replicated randomized block design. We collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall and litterfall before the treatment began (August 2007) until 16 months after the first nutrient application (April 2009). Less than 10 and 1% of the applied N and P, respectively, leached below the organic layer which contained almost all roots and no significant leaching losses of N and P occurred to below 0.15 m mineral soil depth. Deposited N and P from the atmosphere in dry and wet form were retained in the canopy of the control treatment using a canopy budget model. Nitrogen and P retention by the canopy were reduced and N and P fluxes in throughfall and litterfall increased in their respective treatments. The increase in N and P fluxes in throughfall after fertilization was equivalent to 2.5% of the applied N and 2% of the applied P. The fluxes of N and P in litterfall were up to 15% and 3%, respectively, higher in the N and N + P than in the control treatments. We conclude that the expected elevated N and P deposition in the tropics will be retained in the ecosystem, at least in the short term and hence, N and P concentrations in stream water will not increase. Our results suggest that in the studied tropical montane forest ecosystem on Palaeozoic bedrock, N and P are co-limiting the growth of organisms in the canopy and organic layer.  相似文献   

20.
[目的]研究外源性氮和磷对马占相思凋落叶的分解速率、分解过程中N、P、K含量和土壤生化特性的影响,以便为森林土壤养分管理提供参考。[方法]以广东省云勇林场马占相思林下凋落叶为试验材料,采用尼龙网袋分解法,设置对照(CK)、施N(10 g·m~(-2))、施P(5 g·m~(-2))、施N+P(N 10 g·m~(-2)+P 5 g·m~(-2))4种处理,每隔3个月取样1次,并测定凋落叶残留量和N、P、K含量。[结果]表明:施N、P和N+P处理对马占相思凋落叶的分解均为促进作用。各处理马占相思凋落叶的N含量在分解过程中大致保持稳定,施P和N+P处理的凋落叶P含量在分解过程中总体呈波动性上升,而各处理的凋落叶K含量变化规律不明显。施N、P和N+P处理提高了马占相思林土壤的有机质和全N含量,促进脲酶、磷酸酶及过氧化氢酶的活性。[结论]施N、P和N+P处理促进了马占相思凋落叶的分解,有利于马占相思林的养分循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号