首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary fish oil supplementation provides n-3 long-chained polyunsaturated fatty acids for supporting fish growth and metabolism and enriching fillet with eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; c22:6n-3). Two experiments were performed as a 3 × 2 factorial arrangement of dietary treatments for 16 wk to determine effects and mechanisms of replacing 0%, 50%, and 100% fish oil with DHA-rich microalgae in combination with synthetic vs. microalgal source of astaxanthin in plant protein meal (PM)- or fishmeal (FM)- based diets for juvenile rainbow trout (Oncorhynchus mykiss). Fish (22 ± 0.26 g) were stocked at 17/tank and 3 tanks/diet. The 100% fish oil replacement impaired (P < 0.0001) growth performance, dietary protein and energy utilization, body indices, and tissue accumulation of DHA and EPA in both diet series. The impairments were associated (P < 0.05) with upregulation of hepatic gene expression related to growth (ghr1and igf1) and biosynthesis of DHA and EPA (fads6 and evol5) that was more dramatic in the FM than PM diet-fed fish, and more pronounced on tissue EPA than DHA concentrations. The source of astaxanthin exerted interaction effects with the fish oil replacement on several measures including muscle total cholesterol concentrations. In conclusion, replacing fish oil by the DHA-rich microalgae produced more negative metabolic responses than the substitution of synthetic astaxanthin by the microalgal source in juvenile rainbow trout fed 2 types of practical diets.  相似文献   

2.
Intrauterine growth restriction (IUGR) is often observed in one of the fetuses carried by well-fed prolific ewes. This condition is the result of an insufficient placental size to cover the nutritional needs of the fetus during the near exponential growth phase of the last trimester. After birth, these IUGR offspring have an elevated appetite and lower maintenance energy requirements, suggesting dysregulation of homeostatic systems governing energy metabolism. It is also unknown whether the consequent increase in fatness occurs similarly in both visceral and carcass fractions. To address these questions, lambs differing in birth size (BS, IUGR vs. Normal, 2.6 ± 0.05 vs. 4.2 ± 0.07 kg, P < 0.001) were offered unlimited amounts of a low fat [LF; 22% of dry matter (DM)] or a high fat (HF; 38% of DM) milk replacer and slaughtered on day 14 of postnatal age (n = 7 to 8 for each BS × Diet); a second group of IUGR lambs (n = 3 for each diet) was slaughtered when they reached 8.5 kg, corresponding to the weight of Normal lambs on day 14. When normalized to body weight (BW), the DM and energy intake of IUGR lambs were higher than those of Normal lambs over the first 14 d of life (BS, P < 0.01), but contrary to expectations, the HF diet did not exacerbate these effects of the IUGR condition. Intrauterine growth restricted lambs had increased viscera fat with both diets (BS and Diet, P < 0.05) but increased carcass fat only with the LF diet (BS × Diet, P = 0.08); the fatness promoting effect of the IUGR condition was increased in both body fractions when lamb groups were compared at the fixed BW of 8.5 kg. A subset of metabolic hormones was analyzed, including the metabolic rate-setting hormone thyroxine (T4) and its possible positive regulator leptin. Plasma T4 was lower in IUGR than in Normal lambs at birth (P < 0.05) but then disappeared by day 7 of postnatal life (BS × Day, P < 0.01). On the other hand, the HF diet had no effect on plasma T4 over the first 3 d but caused an increase, irrespective of BS by day 11 (Diet × Day, P < 0.001). Plasma leptin increased with dietary fat and time (P < 0.06) but bore no relation to the effects of BS or Diet on plasma T4. These data show that IUGR and Normal lambs are similarly unable to adjust caloric intake in early life and that the fatness promoting effects of the IUGR condition are more pronounced in the viscera than in the carcass. These data also reveal dynamic regulation of plasma T4 by BS and Diet in neonatal lambs.  相似文献   

3.
This study was conducted to determine the effect of necrotic enteritis (NE), phytase level and meat and bone meal (MBM) processing on bone mineralization of broilers and litter quality. Ross 308 male broiler chicks (n = 768) were allotted to 48 pens with 16 birds each. There were 8 dietary treatments in a 2 × 2 × 2 factorial arrangement. Factors were NE challenge (no or yes), phytase level (500 or 5,000 FTU/kg), and MBM (as-received or over-processed). Half of the birds were challenged with field strains of Eimeria spp. at d 9 and 108 CFU per mL of Clostridium perfringens strain EHE-NE18 on d 14 and 15. The middle toe, tibia and femur of 2 birds per pen were excised at d 16 and 29 for determination of ash, breaking strength (BS) and bone mineralization. At d 42, all were assessed for hock burns and litter was scored and assessed for dry matter (DM). At d 16, challenged birds had lower toe ash (P < 0.01), femur ash (P < 0.001), tibia ash (P < 0.001) and tibial BS (P < 0.001) than unchallenged birds. At d 16, challenged birds fed high phytase and over-processed MBM had higher toe Mn than those fed low phytase and as-received MBM. At d 29 unchallenged birds fed high phytase and as-received MBM had a higher toe Mn than those fed over-processed MBM. At d 16, a phytase × MBM interaction was detected for femur Zn concentration (P < 0.05), where a higher level of Zn was observed in the high phytase group fed over-processed MBM. At d 16, tibial Ca (P < 0.05) and P (P < 0.05) were lower in the challenged whereas the femur K (P < 0.001), Mn (P < 0.01) and Na (P < 0.001) were higher in the challenged at d 16. At d 42, challenged birds had higher litter DM (P = 0.058) and fewer hock burns than those unchallenged (P < 0.05). In conclusion, NE impaired bone traits but high phytase and over-processed MBM increased bone mineral contents. Cases of hock burns may be lower under NE incidences due to lower livability of birds reducing litter wetness.  相似文献   

4.
The objective of this study was to investigate the effects of supplementing N-carbamoylglutamate (NCG), an Arg enhancer, on amino acid (AA) supply and utilization and productive performance of early-lactating dairy cows. Thirty multiparous Chinese Holstein dairy cows were randomly divided into control (CON, n = 15) and NCG (CON diet supplemented with NCG at 20 g/d per cow, n = 15) groups at 4 wk before calving. Diets were offered individually in tie-stalls, and NCG was supplemented by top-dress feeding onto total mixed ration for the NCG group. The experiment lasted until wk 10 after calving. Dry matter intake tended to be higher (P = 0.06), and yields of milk (P < 0.01), milk protein (P < 0.01), and milk fat (P < 0.01) were higher in the NCG-cows than in the CON-cows. Plasma activities of aspartate aminotransferase (P < 0.01), alanine aminotransferase (P = 0.03), and plasma level of β-hydroxybutyrate (P = 0.04) were lower in the NCG-cows than in the CON-cows, whereas plasma glucose (P = 0.05) and nitric oxide (NO, P < 0.01) concentrations were higher. Coccygeal vein concentrations of Cys (P < 0.01), Pro (P < 0.01), Tyr (P = 0.05), most essential AA except Thr and His (P < 0.01), total essential AA (P < 0.01), and total AA (P < 0.01) were higher in the NCG-cows than in the CON-cows. The arterial supply of all AA was greater in the NCG-cows than in the CON-cows. The NCG-cows had higher mammary plasma flow of AA (P = 0.04) and clearance rate of Cys (P < 0.01), Pro (P < 0.01) and Asp (P < 0.01), and higher ratios of uptake to output of Met (P = 0.05), Lys (P < 0.01), Cys (P = 0.01), Pro (P = 0.03), and Asp (P = 0.01). In summary, addition of NCG initiated from the prepartum period improved the lactation performance of postpartum dairy cows, which might attribute to greater Arg and NO concentrations, as well as improved AA supply and utilization, liver function, and feed intake in these cows.  相似文献   

5.
We hypothesized that the inclusion of calcium salts of fatty acid (CSFA) into the diets and the fatty acid (FA) profile of the supplements would impact performance and meat characteristics of Bos indicus bulls. Hence, the objective was to evaluate the effects of CSFA profiles on intake, body weight (BW), carcass, and meat characteristics of feedlot-finished B indicus bulls. Fifty-three Nellore bulls [initial BW 315 ± 5.9 kg and 20 ± 2 mo] were used. At the beginning, 6 bulls were randomly chosen and slaughtered for determination of their BW composition, and the remaining 47 bulls were evaluated during a 140-d experimental period. The bulls were placed in individual pens, blocked according to initial BW and randomly allocated to 1 of the 3 following treatments: (1) control diet containing sugarcane bagasse, ground corn, citrus pulp, peanut meal, and mineral–vitamin mix (CON), (2) CON with the addition of 3.3% of CSFA from soybean oil (CSO), or (3) CON with the addition of a mixture of 3.3% of CSFA from palm, soybean, and cottonseed oils (CPSCO). Diets were offered ad libitum and formulated to be isonitrogenous. Bulls supplemented with CSFA had a greater (P < 0.01) final BW, dry matter intake, average daily gain (ADG), feed efficiency (FE), and FA intake vs. CON. Among carcass parameters, CSFA-supplemented bulls had greater (P < 0.01) carcass ether extract concentration vs. CON bulls. When the CSFA profile was evaluated (CSO vs. CPSCO), CPSCO bulls had a better (P ≤ 0.03) FE, carcass ADG, and hot carcass weight (HCW) vs. CSO bulls. The FA intakes differed among CSFA treatments, as the total saturated, palmitic, and oleic FA intakes were greater for CPSCO (P < 0.01), whereas lower intakes of total unsaturated and polyunsaturated FA (P < 0.01) were observed for CPSCO vs. CSO. Samples from the Longissimus muscle contained greater palmitoleic (P = 0.01) and reduced linoleic (P = 0.02) FA concentrations in CSFA-supplemented bulls vs. CON bulls. In agreement with the FA intakes, CPSCO-supplemented bulls had a greater (P ≤ 0.05) unsaturated FA concentration vs. CSO in Longissimus muscle. In summary, CSFA supplementation improved the performance of finishing B. indicus bulls vs. CON. Moreover, the inclusion of CSFA from palm, soybean, and cottonseed oil benefited the FE, carcass ADG, and HCW compared with the inclusion of CSFA from soybean oil, demonstrating the potential of specific FA for improving the performance and meat quality of B. indicus bulls.  相似文献   

6.
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.  相似文献   

7.
This study aimed to assess the impact of seasonal thermal stress on oxidative stress, immune response, and stress hormones of lactating dairy cows in subtropical regions with different levels of temperature-humidity index (THI). A total of 32 healthy lactating Holstein dairy cows experienced 4 seasons (8 cows/season). The physiological parameters were categorized into low THI (LTHI, THI = 42.97 ± 0.95) in winter, moderate THI (MTHI, THI = 61.84 ± 0.42) in spring and autumn, and high THI period (HTHI, THI = 86.09 ± 0.23) in summer. The blood samples were collected twice in each season to measure oxidative stress, inflammatory and hormonal parameters. Our results showed THI had a positive correlation with the rectal temperature (R2 = 0.821, P < 0.001) and respiratory rate (R2 = 0.816, P < 0.001). Dry matter intake, milk yield and fat percentage also significantly differed among groups (P < 0.05). Compared with the MTHI group, the LTHI group exhibited a significant increase in malondialdehyde (MDA) level (P < 0.001), and the HTHI group displayed a significant increase in levels of cortisol, interleukin (IL)-10, IL-1β and tumor necrosis factor-α (P < 0.001). Opposite changes in serum endotoxin and immunoglobulin G levels were observed with the increasing THI (P < 0.001). LTHI notably increased the triiodothyronine level, although the thyroxine level was reduced by LTHI and HTHI compared with the MTHI group. In conclusion, LTHI and HTHI conditions may induce different degrees of oxidative stress, inflammation response, and stress hormone imbalances on lactating dairy cows, therefore environmental management is necessary for the health of dairy cows in extreme weather conditions.  相似文献   

8.
This study evaluated the effects of dietary energy levels on growth performance, carcass traits, meat quality, and serum biochemical of female Hu lambs. Seventy female Hu lambs (aged 4 months) were randomly allotted to 5 dietary treatments. Lambs were fed diets with 5 levels of metabolizable energy (ME): 9.17 (E1), 9.59 (E2), 10.00 (E3), 10.41 (E4), and 10.82 MJ/kg (E5). The lambs were adapted to the experimental diets for 10 d and the experiment period lasted for 60 d. Dry matter intake and feed conversion ratio linearly (P < 0.001) increased and decreased (P < 0.001), respectively, with increasing dietary ME levels. Average daily gain (ADG) linearly (P < 0.001) increased with increasing dietary ME levels, with the highest final body weight (P = 0.041) observed in E4 group. Moreover, dietary energy level was associated with linear increases in serum total protein (TP) (P < 0.001), albumin (ALB) (P = 0.017), glucose (GLU) (P = 0.004), and low-density lipoprotein cholesterol (LDLC) (P = 0.006) concentrations, and it was associated with a quadratic decrease in serum triglyceride (TG) concentration (P = 0.002). Serum ammonia concentration, which was firstly decreased and then increased, was quadratically affected by dietary ME levels (P = 0.013). Compared with E1 group, lambs in E4 group had higher (P < 0.05) live weights, carcass weights, mesenteric fat ratio, non-carcass fat ratio, and larger loin muscle area, but lower (P < 0.05) meat colour a∗ and b∗ values, and lesser (P < 0.05) C17:0, C20:0, C18:1n-9t, C18:3n-3, and n-3 polyunsaturated fatty acids (PUFA), but greater (P < 0.05) C18:3n-6 and n-6:n-3 ratios in longissimus dorsi (LD) muscle tissue, and lesser (P < 0.05) C17:0, C18:3n-3, C22:6n-3, and n-3 PUFA in the biceps femoris (BF) muscle tissue. The results demonstrated that increasing dietary energy level improved the growth performance and affected carcass traits, serum biochemical indexes, and fatty acid profiles in different muscles of female Hu lambs. For 4-month-old female Hu lambs, the recommended fattening energy level is 10.41 MJ/kg.  相似文献   

9.
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA–) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA– in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA– (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA– pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA– fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA– (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.  相似文献   

10.
The efficacy of exogenous carbohydrases in pig diets has been suggested to depend on enzyme activity and dietary fiber composition, but recent evidence suggests other factors such as ambient temperature might be important as well. Therefore, we investigated the effect of heat stress (HS) on the efficacy of a multienzyme carbohydrase blend in growing pigs. Ninety-six (barrows: gilts; 1:1) growing pigs with initial body weight (BW) of 20.15 ± 0.18 kg were randomly assigned to six treatments, with eight replicates of two pigs per pen in a 3 × 2 factorial arrangement: three levels of carbohydrase (0, 1X, or 2X) at two environmental temperatures (20 °C or cyclical 28 °C nighttime and 35 °C day time). The 1X dose (50 g/tonne) provided 1,250 viscosimetry unit (visco-units) endo-β-1,4-xylanase, 4,600 units α-l-arabinofuranosidase and 860 visco-units endo-1,3(4)-β-glucanase per kilogram of feed. Pigs were fed ad libitum for 28 d and 1 pig per pen was sacrificed on day 28. There was no enzyme × temperature interaction on any response criteria; thus, only main effects are reported. Enzyme treatment quadratically increased (P < 0.05) BW on day 28, average daily gain (ADG) (P < 0.05), and average daily feed intake (ADFI) (P < 0.05) with the 1X level being highest. HS reduced the BW at day 14 (P < 0.01) and day 28 (P < 0.01), ADG (P < 0.01), and ADFI (P<0.001). There was a trend of increased feed efficiency (G:F) (P < 0.1) in the HS pigs. HS increased apparent jejunal digestibility of energy (P < 0.05) and apparent ileal digestibility of calcium (P < 0.01). At day 1, HS reduced serum glucose (P < 0.001) but increased nonesterified fatty acid (P < 0.01). In the jejunum, there was a trend of increased villi height by carbohydrases (P < 0.1), whereas HS reduced villi height (P < 0.05). HS increased the jejunal mRNA abundance of IL1β in the jejunum (P < 0.001). There was a trend for a reduction in ileal MUC2 (P < 0.1) and occludin (P < 0.1) by HS, and a trend for increased PEPT1 (P < 0.1). There was no effect of HS on alpha diversity and beta diversity of the fecal microbiome, but there was an increase in the abundance of pathogenic bacteria in the HS group. In conclusion, HS did not alter the efficacy of carbohydrases. This suggests that carbohydrases and HS modulate pig performance independently.  相似文献   

11.
Iso-nitrogenous and iso-lipidic diets containing 0%, 3%, 6%, 9%, and 12% hydrolyzed porcine mucosa (namely, HPM0, HPM3, HPM6, HPM9, and HPM12) were prepared to evaluate their effects on the growth performance, muscle nutrition composition, texture property, and gene expression related to muscle growth of hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Groupers were fed to apparent satiation at 08:00 and 16:00 every day for a total of 56 days. It was found that the weight gain percentage in the HPM0, HPM3, and HPM6 groups did not differ (P > 0.05). The cooking loss and drip loss of the dorsal muscle in the HPM3 group were lower than those in the HPM6 and HPM9 groups (P < 0.05). The hardness and chewiness of the dorsal muscle in the HPM3 group were higher than those in the HPM0, HPM9, and HPM12 groups (P < 0.05). The gumminess in the HPM3 group was higher than that in the HPM9 and HPM12 groups (P < 0.05). The total essential amino acid content of the dorsal muscle in the HPM12 group was higher than that in the HPM0 group (P < 0.05). The contents of total n-3 polyunsaturated fatty acid and total n-3 highly unsaturated fatty acid, as well as the ratio of n-3/n-6 polyunsaturated fatty acid in the dorsal muscle was higher in the HPM0 group than in all other groups (P < 0.05). The relative expressions of gene myogenic factor 5, myocyte enhancer factor 2c, myocyte enhancer factor 2a, myosin heavy chain, transforming growth factor-beta 1 (TGF-β1), and follistatin (FST) were the highest in the dorsal muscle of the HPM3 group. The results indicated that the growth performance of hybrid grouper fed a diet with 6% HPM and 27% fish meal was as good as that of the HPM0 group. When fish ingested a diet containing 3% HPM, the expression of genes TGF-β1 and FST involved in muscle growth were upregulated, and then the muscle quality related to hardness and chewiness were improved. An appropriate amount of HPM could be better used in grouper feed.  相似文献   

12.
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/−), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.  相似文献   

13.
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.  相似文献   

14.
Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 109 cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1st to the 4th phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P < 0.01) on degradation characteristics of alfalfa pellets and the copies of rumen microorganism; the increasing concentrate level resulted in linear, quadratic or cubic variation trend for these parameters. SC supplementation significantly (P < 0.05) affected dry matter (DM) and neutral detergent fiber (NDF) degradation rates (cDM, cNDF) and NDF effective degradability (EDNDF). Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria.  相似文献   

15.
The study was conducted to test the effects of using yeast culture (Saccharomyces cerevisiae) as feed additive on the growth performance, noxious gas emission, utilization of nutrients, excreta microbial count, and meat quality of broilers. In total, 360 one-day-old Ross 308 broilers with average body weight (BW) of 42.90±1.43 g were randomly selected and allotted to two groups; they were fed either a basal diet (control) or a basal diet supplemented with 1% yeast culture (YC). Each treatment group had 10 replication pens and each replication contained 18 birds. The experiment was divided into 3 phases (1 to 7, 8 to 21, and 22 to 35 days) for growth performance observation. In the 1st phase (1 to 7 days), only the body weight gain (BWG) significantly increased (P<0.05) in birds with the YC diet compared to the control diet. Significant effects on BWG (P<0.05) and feed conversion ratio (FCR) (P<0.05) were seen in birds receiving the YC-supplemented diet in the 3rd phase (22 to 35 days) as compared to the control diet. In addition, during the overall period (1–35 d), BWG was significantly higher (P<0.05) and FCR was reduced (P<0.05). Throughout this experiment, the meat quality, nutrient utilization, noxious gas emission, and bacterial count in the excreta did not vary significantly between the groups. This study proved that a higher dose of YC (Saccharomyces cerevisiae) supplementation could maintain the consistent positive effect on broiler growth but eliminated the speculated outcomes on digestibility, bacterial count, or excreta gas emission.  相似文献   

16.
Serum cystatin C levels (CysC) are used in human medicine to document progressive kidney failure. Although CysC are not thought to be useful for the diagnosis of kidney dysfunction in dogs, there has been no specific consideration of body weight as a confounding issue. The aim of this study was to assess that the utility of CysC for the diagnosis of decreased glomerular filtration rate (GFR) in smaller vs. larger dogs. In clinically healthy dogs, serum creatinine (Cre) and CysC correlate directly with body weight; we found that dogs weighing <20 kg had significantly lower CysC than those weighing ≥20 kg (0.27 ± 0.07 vs. 0.34 ± 0.05 mg/l, respectively, P<0.001). In dogs weighing <20 kg, CysC had superior diagnostic accuracy for the detection of mildly decreased plasma iohexol clearance (PCio) (<1.8 ml/min/kg) compared with Cre (sensitivity 100% vs. 80.9% and specificity 100% vs. 85.7%); this was not true for dogs weighing ≥20 kg. Additionally, using a cut-off PCio of <1.8 ml/min/kg, the area under receiver-operating characteristics curve (AUC) of CysC was significantly higher than that of Cre in dogs weighing <20 kg (P<0.05); this was not true for dogs weighing ≥20 kg (P=0.695). In conclusion, CysC is a useful marker for the detection of a mild decreasing GFR compared with Cre in dogs weighing <20 kg.  相似文献   

17.
Increased metabolic burdens in breeding sows, which are induced by elevated systemic oxidative stress, could increase the need for nucleotides to repair lymphocyte DNA damage; however, de novo synthesis of nucleotides may be insufficient to cover this increased need. This study investigated the effects of dietary nucleotides on milk composition, oxidative stress status, and the reproductive and lactational performance of sows. Forty multiparous sows were assigned to 2 dietary treatments (Control group, and 1 g/kg Nucleotides group) based on a randomized complete block design using their BW at 85 d of gestation as a block. Sows from 2 groups were fed a restricted diet during gestation and ad libitum during lactation. The experiment lasted from 85 d of gestation to 21 d of lactation. The reproductive performance of sows and the growth performance of suckling piglets were measured. Oxidative stress parameters and milk components were also analysed. Data were analyzed using contrasts in the MIXED procedure of SAS. Sows in the Nucleotides group consumed more feed during the first week (P < 0.01) and from 1 to 21 d (P < 0.05) of lactation than those in Control group. Correspondingly, the litter weight gain of piglets showed a tendency to increase from cross-fostering to 9 d (P = 0.09) and from cross-fostering to 20 d (P = 0.10) in the Nucleotides group relative to the Control group. Additionally, the Nucleotides group was higher (P < 0.01) than the Control group in the concentrations of uridine 5''monophosphate, guanosine 5''monophosphate, inosine 5''monophosphate, adenosine 5''monophosphate and total nucleotides in milk. Furthermore, the Nucleotides group was higher (P < 0.01) than the Control group in the serum levels of total antioxidant capacity (P < 0.01) for sows at 109 d of gestation and glutathione peroxidase for weaning piglets, but lower at the levels of thiobarbituric acid-reactive substances (P < 0.05) in serum of weaning piglets. This study indicated that maternal dietary nucleotides could promote piglet growth, probably due to the higher lactational feed intake and higher concentration of nucleotides in the milk of sows, and lower oxidative stress for both sows and piglets.  相似文献   

18.
Animal manure can be a source of antibiotic-resistant genes (ARGs) and pharmaceutical residues; however, few studies have evaluated the presence of ARG in pasture-raised animal production systems. The objective of this study was to examine changes in microbiome diversity and the presence of antibiotic residues (ABRs) on three farms that contained a diverse range of animal species: pasture-raised poultry (broiler and layer), swine, and beef cattle. Total bacterial communities were determined using 16S rRNA microbiome analysis, while specific ARGs (sulfonamide [Sul; Sul1] and tetracycline [Tet; TetA]) were enumerated by qPCR (real-time PCR). Results indicated that the ARG abundances (Sul1 [P < 0.05] and TetA [P < 0.001]) were higher in layer hen manures (16.5 × 10−4 and 1.4 × 10−4 µg kg−1, respectively) followed by broiler chickens (2.9 × 10−4 and 1.7 × 10−4 µg kg−1, respectively), swine (0.22 × 10−4 and 0.20 × 10−4 µg kg−1, respectively) and beef cattle (0.19 × 10−4 and 0.02 × 10−4 µg kg−1, respectively). Average fecal TetA ABR tended to be greater (P = 0.09) for broiler chickens (11.4 µg kg−1) than for other animal species (1.8 to 0.06 µg kg−1), while chlortetracycline, lincomycin, and oxytetracycline ABRs were similar among animal species. Furthermore, fecal microbial richness and abundances differed significantly (P < 0.01) both among farms and specific species of animal. This study indicated that the microbial diversity, ABR, ARG concentrations, and types in feces varied from farm-to-farm and from animal species-to-animal species. Future studies are necessary to perform detailed investigations of the horizontal transfer mechanism of antibiotic-resistant microorganisms (ARMs) and ARG.  相似文献   

19.
Sixteen crossbred buck goats (Kiko x Spanish; BW = 32.8 kg) and wether sheep (Dorset x Suffolk; BW = 39.9 kg) were used to determine the effect of preslaughter diet and feed deprivation time (FDT) on physiological responses and microbial loads on skin and carcasses. Experimental animals were fed either a concentrate (CD) or a hay diet (HD) for 4 d and then deprived of feed for either 12-h or 24-h before slaughter. Blood samples were collected for plasma cortisol and blood metabolite analyses. Longisimus muscle (LM) pH was measured. Skin and carcass swabs were obtained to assess microbial loads. Plasma creatine kinase activity (863.9 and 571.7 ± 95.21 IU) and non-esterified fatty acid concentrations (1,056.1 and 589.8 ± 105.01 mEq/L) were different (P < 0.05) between sheep and goats. Species and diet treatments had significant effects on the ultimate pH of LM. Pre-holding total coliform (TCC) and aerobic plate counts (APC) of skin were significantly different between species. Goats had lower (P < 0.05) TCC (2.1 vs. 3.0 log10 CFU/cm2) and APC (8.2 vs. 8.5 log10 CFU/cm2) counts in the skin compared to sheep. Preslaughter skin E. coli counts and TCC were different (P < 0.05) between species. Goats had lower (P < 0.05) counts of E. coli (2.2 vs. 2.9 log10 CFU/cm2) and TCC (2.3 vs. 3.0 log10 CFU/cm2) in the skin compared with those in sheep. Diet, species, and FDT had no effect (P > 0.05) on E. coli and TCC in carcass swab samples. The APC of carcass swab samples were only affected (P < 0.05) by the FDT. The results indicated that preslaughter dietary management had no significant changes on hormone and blood metabolite concentrations and sheep might be more prone for fecal contamination than goats in the holding pens at abattoir.  相似文献   

20.
The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号