首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

2.
Auxin signalling and transport participate in plant–microbe interactions as positive or negative regulators of disease resistance. The present study investigated the responses of Arabidopsis thaliana plants impaired in the auxin receptors TIR1, AFB1 and AFB3 and the auxin transporter AXR4, upon infection by the soilborne root pathogen Verticillium dahliae. Fewer symptoms were recorded in afb1, afb3 and axr4 plants compared to the wild type (wt). qPCR analysis revealed that the decrease in symptom severity in afb1, afb3 and axr4 was correlated with reduction in the growth of the pathogen in the plants. Therefore, afb1, afb3 and axr4 are partially resistant to V. dahliae. Upon V. dahliae infection, the expression of TIR1, AFB1, AFB3 and AXR4 was up‐regulated in roots, while indole‐3‐acetic acid levels were similar to mocks. The partial resistance of afb1, afb3 and axr4 against V. dahliae can be attributed in part to the up‐regulation of defence‐related genes, as it was observed that afb1 and axr4 had higher PR1 levels than wt, while afb3 had higher PDF1.2 levels than wt. The findings of the present study suggest that the auxin signalling defective mutants afb1, afb3 and axr4 show increased resistance against V. dahliae.  相似文献   

3.
Auxinic herbicides mimic the effects of natural auxin. However, in spite of decades of research, the site(s) of action of auxinic herbicides has remained unknown and many physiological aspects of their function are unclear. Recent advances in auxin biology provide new opportunities for research into the mode of action of auxinic herbicides. Of considerable interest is the discovery of auxin receptors (TIR1 and possibly ABP1) that may lead to the discovery of auxinic herbicide site(s) of action. Knowledge of auxin-conjugating enzymes and auxin signal transduction components may shed new light on herbicide activity, selectivity in dicots, and mechanisms leading to phytotoxicity in sensitive plants. Analysis of genes induced in response to auxin may provide a novel approach for detection of off-target herbicide injury in crops. For example, the auxin-responsive gene GH3 is highly and specifically induced in response to auxinic herbicides in soybean, and may offer a novel method for diagnosing auxinic herbicide injury. Advances in our understanding of auxin biology will provide many new avenues and opportunities for auxinic herbicide research in the future.  相似文献   

4.
BACKGROUND: Bromus rigidus is a common weed species that has increased in cropping fields owing to limited control options. During a random field survey in Western Australia, six B. rigidus populations that had survived in‐crop weed control programmes were collected. The study aimed to determine the resistance profile of these six populations. RESULTS: Based on dose–response studies, all six B. rigidus populations had a low‐level resistance to sulfosulfuron and sulfometuron (both sulfonylurea herbicides) while remaining susceptible to herbicides with other modes of action. ALS in vitro activity assays revealed no differences in enzyme sensitivity between susceptible and resistant populations, while the use of malathion (a cytochrome P450 inhibitor) in combination with sulfosulfuron caused the resistant populations to behave like the susceptible population. CONCLUSION: This study established that these six B. rigidus populations have a low‐level resistance to the ALS‐inhibiting sulfonylurea herbicides, but are able to be controlled by other herbicide modes of action. The low‐level, malathion‐reversible resistance, together with a sensitive ALS, strongly suggest that a non‐target‐site enhanced metabolism is the mechanism of resistance. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

6.

Background

Selecting wheat varieties with allelopathic potential or high competitiveness against weeds is a sustainable solution for organic farming to eliminate the use of synthetic herbicides. Wheat is one of the most economically important crops. This study focuses on screening the allelopathic or competitive potential of four wheat cultivars, Maurizio, NS 40S, Adesso and Element, on two weeds of interest due to acquired herbicide resistance, Portulaca oleracea and Lolium rigidum, through germination and growth bioassays and the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids).

Results

The different cultivars showed different abilities to manage surrounding weeds and different capacity to exude or accumulate specialized metabolites in the presence of those weeds. Furthermore, each cultivar behaved differently depending on the weed present in the medium. The most efficient cultivar to control the tested monocot and dicot weeds was Maurizio, as it effectively controlled germination and growth of L. rigidum and P. oleracea while exuding large amounts of benzoxazinones through the roots, especially the hydroxamic acids 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and dihydroxy-2H-1,4-benzoxaxin-3(4H)-one. By contrast, NS 40S, Adesso and Element showed the potential to control the growth of just one of the two weeds through allelopathy or competition.

Conclusion

This study reveals that Maurizio is the most promising wheat cultivar for sustainable weed control, and that the screening of crop varieties with allelopathic potential, which results in the displacement of synthetic herbicides, is an immediate solution in ecological and sustainable agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

7.

BACKGROUND

Black-grass (Alopecurus myosuroides Huds.) has become a problematic weed in cereals in Europe. Besides resistance to post-emergent herbicides becoming increasingly widespread, enhanced metabolism of inhibitors of the synthesis of very-long-chain fatty acids (VLCFAs), such as flufenacet, is evolving. Yet, cross-resistance patterns and evolution of this resistance remains poorly understood.

RESULTS

The cDNA sequences of five glutathione transferases (GSTs) upregulated in flufenacet resistant black-grass were identified and used for recombinant protein expression. Moderate to slow detoxification of flufenacet was verified for all candidate GSTs expressed in E. coli, and the most active protein produced flufenacet-alcohol instead of a glutathione conjugate, in the presence of reduced glutathione (GSH). Moreover, cross-resistance to other VLCFA-inhibitors e.g., acetochlor and pyroxasulfone and the ACCase inhibitor fenoxaprop was verified in vitro. Various other herbicides of different modes of action including VLCFA-inhibitors were not detoxified by the candidate GSTs.

CONCLUSIONS

As several in planta upregulated GSTs detoxified flufenacet in vitro, the shift in sensitivity observed in black-grass populations, is likely a result of an additive effect. The polygenic character and the relatively low turnover rate of the individual GSTs may explain the slow evolution of flufenacet resistance. In addition, flufenacet resistance was accompanied by cross-resistance with some, but not all, herbicides of the same mode of action, and furthermore to the ACCase inhibitor fenoxaprop-ethyl. Hence, not only the rotation of herbicide modes of action, but also of individual active ingredients is important for resistance management. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

8.

BACKGROUND

The potential of weed species to respond to selection forces affecting the evolution of weedy traits such as competitive ability is poorly understood. This research characterized evolutionary growth changes in a single Abutilon theophrasti Medik. population comparing multiple generations collected from 1988 to 2016. A competition study was performed to understand changes in competitive ability, and a herbicide dose–response study was carried out to assess changes in sensitivity to acetolactate synthase-inhibiting herbicides and glyphosate over time.

RESULTS

When grown in monoculture, A. theophrasti biomass production per plant increased steadily across year-lines while leaf number decreased. In replacement experiments, A. theophrasti plants from newer year-lines were more competitive and produced more biomass and leaf area than the oldest year-line. No clear differences in sensitivity to imazamox were observed among year-lines. However, starting in 1995, this A. theophrasti population exhibited a progressive increase in growth in response to a sublethal dose of glyphosate (52 g a.e. ha−1), with the 2009 and 2016 year-lines having more than 50% higher biomass than the nontreated control.

CONCLUSION

This study demonstrates that weeds can rapidly evolve increased competitive ability. Furthermore, the results indicate the possibility of changes in glyphosate hormesis over time. These results highlight the importance of the role that rapid (i.e., subdecadal) evolution of growth traits might have on the sustainability of weed management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.

BACKGROUND

Target site resistance to herbicides that inhibit protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) has been described mainly in broadleaf weeds based on mutations in the gene designated protoporphyrinogen oxidase 2 (PPO2) and in one monocot weed species in protoporphyrinogen oxidase 1 (PPO1). To control PPO target site resistant weeds in future it is important to design new PPO-inhibiting herbicides that can control problematic weeds expressing mutant PPO enzymes. In this study, we assessed the efficacy of a new triazinone-type inhibitor, trifludimoxazin, to inhibit PPO2 enzymes carrying target site mutations in comparison with three widely used PPO-inhibiting herbicides.

RESULTS

Mutated Amaranthus spp. PPO2 enzymes were expressed in Escherichia coli, purified and measured biochemically for activity and inhibition kinetics, and used for complementation experiments in an E. coli hemG mutant that lacks the corresponding microbial PPO gene function. In addition, we used ectopic expression in Arabidopsis and structural PPO protein modeling to support the enzyme inhibition study. The generated data strongly suggest that trifludimoxazin is a strong inhibitor both at the enzyme level and in transgenics Arabidopsis ectopically expressing PPO2 target site mutations.

CONCLUSION

Trifludimoxazin is a potent PPO-inhibiting herbicide that inhibits various PPO2 enzymes carrying target site mutations and could be used as a chemical-based control strategy to mitigate the widespread occurrence of PPO target site resistance as well as weeds that have evolved resistance to other herbicide mode of actions. © 2022 BASF SE and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.

Background

The resistance of weeds to herbicides is a significant issue in ensuring future food supply. Specific examples are Plantago lanceolata, Portulaca oleracea and Lolium rigidum, which mainly infect rice, wheat, barley and pastures, and cause high yield losses every year. In this regard, natural products and their mimics have provided new hope as a result of their different modes-of-action, activity at low concentrations and reduced pollution effects relative to conventional herbicides. However, the poor water solubility and physicochemical properties of these compounds limit their broad application. These problems can be addressed by formulation techniques, and encapsulation appears to be of great interest.

Results

Disulfide herbicides inspired by aminophenoxazinones have been formulated with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), γ-CD and polymeric nanoparticles (NPs). In silico studies were employed to identify which complexes would be generated and complex formation was confirmed by nuclear magnetic resonance spectroscopy. Solubility diagrams were generated to assess any improvement in water solubility, which was enhanced 2–13-fold. Scanning electron microscopy and energy-dispersive X-ray spectra confirmed the success of the formulation process for the nanoparticles. Formulated compounds were evaluated in an in vitro wheat coleoptile bioassay, with almost 100% elongation inhibition achieved using only water for the bioassay. Specific in vitro testing on weed phytotoxicity showed that the application of core/shell NPs is highly effective in the fight against P. lanceolata seed germination.

Conclusions

The formulation of disulfide herbicides with CD complexes and NPs led to an enhancement in water solubility and bioactivity. These systems can be applied in pre-emergent mode against P. lanceolata, using only water to prepare the sample, and they showed better activity than the positive controls. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

11.
This study has investigated the activity of several herbicide classes at the plant plasma membrane. Two-phase partitioning was used to prepare highly purified plasma membrane vesicles from the monocotyledon weed black-grass (Alopecurus myosuroides Huds.) and the dicotyledon crop sugar beet (Beta vulgaris L. cv. Celt). The purity of the plasma membrane H+-ATPase activity was characterised with respect to inhibitors, pH and substrate specificity. In both species, contamination of the plasma membrane by tonoplast fragments was largely eliminated and chlorophyll was absent. In addition, the plasma membrane H+-ATPase from black-grass and sugar beet exhibited high vanadate sensitivity and a sharp pH profile around 6·5. Subsequently, H+-ATPase activity was assayed in the presence (100 μM ) and absence of four graminicide classes and auxin-type herbicides. Graminicides, including the aryloxyphenoxypropionate diclofop-methyl and the thiocarbamate triallate, inhibited H+-ATPase activity by 50–80% in both species. However, other graminicides, including the cyclohexanediones and the chloroacetamide alachlor, had no affect. Similarly, auxin-type herbicides such as 2,4-D and MCPA did not inhibit H+-ATPase activity. Results are discussed in relation to the proposed mode of action of these herbicides. © 1998 SCI  相似文献   

12.
农田杂草严重影响作物的产量和品质,对除草剂的过度依赖和长期使用,使杂草对除草剂的抗性问题日益突出。目前已有262种杂草(152种双子叶和110种单子叶)的512个生物型对23类中的167个除草剂产生抗性。激素类除草剂作为除草剂的重要成员,为禾谷类作物田的杂草防除提供了保障,然而在使用了几十年后,44种杂草对此类除草剂产生了抗药性。本文对激素类除草剂的分类应用、除草机理、抗性现状、抗性机理等进行了综述,以期为激素类除草剂的应用和抗激素类除草剂杂草的防除提供参考。  相似文献   

13.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

14.
In 2003, a random survey was conducted across the Western Australian wheatbelt to establish the extent and frequency of herbicide resistance in Raphanus raphanistrum populations infesting crop fields. Five hundred cropping fields were visited, with 90 R. raphanistrum populations collected, representative of populations present in crop fields throughout the Western Australian wheatbelt. Collected populations were screened with four herbicides of various modes of action that are commonly used for the control of this weed. The majority of Western Australian R. raphanistrum populations were found to contain plants resistant to the acetolactate synthase (ALS)‐inhibiting herbicide chlorsulfuron (54%) and auxin analogue herbicide, 2,4‐D amine (60%). This survey also determined that over half (58%) of these populations were multiple resistant across at least two of the four herbicide modes of action used in the screening. Only 17% of R. raphanistrum populations have retained their initial status of susceptibility to all four herbicides. The distribution patterns of the herbicide‐resistant populations identified that there were higher frequencies of resistant and developing resistance populations occurring in the intensively cropped northern regions of the wheatbelt. These results clearly indicate that the reliance on herbicidal weed control in cropping systems based on reduced tillage and stubble retention will lead to higher frequencies of herbicide‐resistant weed populations. Therefore, within intensive crop production systems, there is a need to diversify weed management strategies and not rely entirely on too few herbicide control options.  相似文献   

15.
The influence of weather and agronomic factors on the activity of six selective herbicides applied at reproductive stages of development for the reduction in seed production of Raphanus raphanistrum in wheat was evaluated. The herbicides used in this way generally reduced seed production by between 80% and 100%. Triasulfuron and mixtures of triasulfuron + MCPA consistently provided the greatest reduction in seed production. This was greater when herbicides were applied at the bud and early flowering stages of R. raphanistrum and the efficacy of the herbicides increased as maximum temperature on the day of spraying increased over the range 14–24°C. An applied model developed from these results predicts the reduction in seed production of R. raphanistrum, for each herbicide, given the stage of weed development and maximum temperature on the day of its application. Wheat yield was significantly reduced as densities of R. raphanistrum increased, with predicted losses at low densities being approximately half of those reported in the literature. There was no consistent evidence that the late application of herbicides had any negative effect on wheat yield through crop injury, nor was there any indication of yield improvement. It is concluded that certain herbicides applied during the reproductive phase of development have considerable potential to reduce R. raphanistrum seed production in wheat crops. As part of an integrated strategy, such late post‐emergence application of selective herbicides to regulate seed production has a likely role for managing weed seedbanks, but little or no value for counteracting weed competition.  相似文献   

16.

BACKGROUND

Regulations in 2021 required the addition of a volatility reduction agent (VRA) to dicamba spray mixtures for postemergence weed control. Understanding the impact of VRAs on weed control, droplet dynamics, and spray pH is essential.

RESULTS

Adding glyphosate to dicamba decreased the solution pH by 0.63 to 1.85 units. Across locations, potassium carbonate increased the tank-mixture pH by 0.85 to 1.65 units while potassium acetate raised the pH by 0.46 to 0.53 units. Glyphosate and dicamba in tank-mixture reduced Palmer amaranth control by 14 percentage points compared to dicamba alone and decreased barnyardgrass control by 12 percentage points compared to glyphosate alone 4 weeks after application (WAA). VRAs resulted in a 5-percentage point reduction in barnyardgrass control 4 WAA. Common ragweed, common lambsquarters, and giant ragweed control were unaffected by herbicide solution 4 WAA. Dicamba alone produced a larger average droplet size and had the fewest driftable fines (% volume < 200 μm). Potassium acetate produced a larger droplet size than potassium carbonate for Dv0.1 and Dv0.5. The addition of glyphosate to dicamba decreased droplet size from the entire spray droplet spectrum (Dv0.1, Dv0.5, Dv0.9).

CONCLUSION

A reduction in spray pH, droplet size, and weed control was observed from mixing dicamba and glyphosate. It may be advisable to avoid tank-mixtures of these herbicides and instead, apply them sequentially to maximize effectiveness. VRAs differed in their impacts on spray solution pH and droplet dynamics, but resulted in a minimal negative to no impact on weed control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
BACKGROUND: Horseweed is a weed commonly found in agronomic crops, waste areas and roadsides. Resistance to ALS‐inhibiting herbicides in horseweed was first reported in 1993 in a population from Israel. Resistance to ALS‐inhibiting herbicides in horseweed is now widespread, but, as of now, the resistance mechanism has not been reported. RESULTS: Two of three populations evaluated (P116 and P13) were found to be uniform for resistance (>98% of individuals survived 8.8 g AI ha?1 of cloransulam), whereas a third population, P525, contained about 85% resistant individuals. Cross‐resistance to cloransulam, chlorimuron, imazethapyr and bispyribac was observed in the P116 population. P525 and P13 were both sensitive to imazethapyr but resistant to chlorimuron, imazethapyr and bispyribac. Enzyme activity assays indicated that resistance in P13 was due to an altered target site. Southern blot analysis indicated that the ALS target site is encoded by a single copy gene. Overlapping ALS gene regions were amplified and sequenced from each population. Amino acid substitutions of Ser for Pro at position 197 (P197S) was detected from P13, Ala for Pro (P197A) was identified from P525 and substitution of Glu for Asp (D376E) at position 376 was found in P116. Molecular markers were developed to differentiate between wild‐type and resistant codons at positions 197 and 376 of horseweed ALS. CONCLUSION: Resistance to ALS‐inhibiting herbicides in horseweed is conferred by target‐site mutations that have also been identified in other weed species. Identification of the mutations within horseweed ALS gene sequence enables molecular assays for rapid detection and resistance diagnosis. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Synthetic compounds that act like phytohormonal ‘superauxins’ have been among the most successful herbicides used in agriculture for more than 60 years. These so‐called auxin herbicides are more stable in planta than the main natural auxin, indole‐3‐acetic acid (IAA), and show systemic mobility and selective action, preferentially against dicot weeds in cereal crops. They belong to different chemical classes, which include phenoxycarboxylic acids, benzoic acids, pyridinecarboxylic acids, aromatic carboxymethyl derivatives and quinolinecarboxylic acids. The recent identification of receptors for auxin perception and the discovery of a new hormone interaction in signalling between auxin, ethylene and the upregulation of abscisic acid biosynthesis account for a large part of the repertoire of auxin‐herbicide‐mediated responses, which include growth inhibition, senescence and tissue decay in sensitive dicots. An additional phenomenon is caused by the quinolinecarboxylic acid quinclorac, which also controls grass weeds. Here, the accumulation of phytotoxic levels of tissue cyanide, derived ultimately from quinclorac‐stimulated ethylene biosynthesis, plays a key role in eliciting the herbicidal symptoms in sensitive grasses. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The 1995/6 International Survey of Herbicide-Resistant Weeds recorded 183 herbicide-resistant weed biotypes (124 different species) in 42 countries. The increase in the number of new herbicide-resistant weeds has remained relatively constant since 1978, at an average of nine new cases per year worldwide. Whilst 61 weed species have evolved resistance to triazine herbicides, this figure now only accounts for one-third of all documented herbicide-resistant biotypes. Triazine-resistant weeds have been controlled successfully in many countries by the use of alternative herbicides. Due to the economic importance of ALS and ACCase inhibitor herbicides worldwide, and the ease with which weeds have evolved resistance to them, it is likely that ALS and ACCase inhibitor-resistant weeds will present farmers with greater problems in the next five years than triazine-resistant weeds have caused in the past 25 years. Thirty-three weed species have evolved resistance to ALS-inhibitor herbicides in 11 countries. ALS-inhibitor-resistant weeds are most problematic in cereal, corn/soybean and rice production. Thirteen weed species have evolved resistance to ACCase inhibitors, also in 11 countries. ACCase inhibitor resistance in Lolium and Avena spp. threatens cereal production in Australia, Canada, Chile, France, South Africa, Spain, the United Kingdom and the USA. Fourteen weed species have evolved resistance to urea herbicides. Isoproturon-resistant Phalaris minor infesting wheat fields in North West India and chlorotoluron-resistant Alopecurus myosuroides in Europe are of significant economic importance. Although 27 weed species have evolved resistance to bipyridilium herbicides, and 14 weed species have evolved resistance to synthetic auxins, the area infested and the availability of alternative herbicides have kept their impact minimal. The lack of alternative herbicides to control weeds with multiple herbicide resistance, such as Lolium rigidum and Alopecurus myosuroides, makes these the most challenging resistance problems. The recent discovery of glyphosate-resistant Lolium rigidum in Australia is a timely reminder that sound herbicide-resistant management strategies will remain important after the widespread adoption of glyphosate-resistant crops. ©1997 SCI  相似文献   

20.
Barnyardgrass (Echinochloa crus-galli (L.) Beauv.), an annual species of the family Poaceae, is a major weed problem in rice-producing countries throughout the globe. Synthetic herbicides can effectively control this grass in rice paddies, but the development of resistant biotypes after the continuous use of the same active ingredients has led to low herbicide efficacy and yield losses. In this review, a summary of resistant-barnyardgrass cases in global rice production is reported based on data from the International Herbicide-Resistant Weed Database. The first case of resistant barnyardgrass in rice paddies was to the photosystem-II inhibitor propanil in the late 1980s. Eighty-five (85) out of 116 cases in the period from 1986 to 2022 refer to resistant barnyardgrass (E. crus-galli var. crus-galli, E. crus-galli var. formosensis and E. crus-galli var. zelayensis) in 16 countries. Barnyardgrass has been found resistant to acetolactate synthase (ALS) inhibitors (34 cases), acetyl-CoA carboxylase (ACCase) inhibitors (23 cases), photosystem-II inhibitors (11 cases), auxin mimics/cellulose biosynthesis inhibitors (9 cases), very long chain fatty acid inhibitors (6 cases), and microtubule assembly inhibitors (1 case). The majority of all resistance cases reported to the active ingredients penoxsulam, bispyribac-sodium, and imazamox (ALS inhibitors), cyhalofop-butyl and fenoxaprop-ethyl (ACCase inhibitors), propanil (photosystem-II inhibitors), and quinclorac (auxin mimics/cellulose biosynthesis inhibitors). Although target-site resistance with specific mutations has been identified, non-target site resistance mainly through herbicide detoxification is also of great concern increasing the chance of multiple herbicide resistance evolution. Rotation of herbicides should be adopted concerning the modes of action used as well as the application methods to mitigate resistance evolution of this weed in rice paddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号