首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Simultaneous inoculation with races 1 and 2 of the vascular wilt pathogenFusarium oxysporumf.sp.lycopersiciprovided a high level of protection against race 2 in three tomato cultivars carrying resistance geneI, which confers resistance to race 1 but not race 2. However, simultaneous inoculation did not provide any protection in cultivars lacking this gene. Protection resulted in reduction and delay of wilt symptoms. Similarly, avirulent races ofF. oxysporumf.sp.melonisprotected muskmelon plants against virulent races of the sameforma specialis.A ratio 10:1 between spore concentrations of inducer and challenger organism gave the highest cross protection, but ratio 0.1:1 still provided significant disease reduction. Cross protection was also obtained when inoculation with the inducer organism was performed 6 or 12 h before inoculation with the challenger organism. Autoclaved spores of the inducer did not have any protective effect, indicating that living propagules were required to initiate protection. The results suggest the presence of a gene-for-gene interaction betweenF. oxysporumf.sp.lycopersici-tomato andF. oxysporumf.sp.melonis-muskmelon, in which cross protection against a virulent race is mediated by recognition of a specific elicitor from the avirulent race by the plant resistance gene product and by subsequent induction of the plant defense reaction.  相似文献   

2.
Tomato plants, susceptible toFusarium oxysporum f. sp.lycopersici, were inoculated by immersing the roots in a conidial suspension ofF. oxysporum f. sp.lycopersici race 1,F. oxysporum f. sp.dianthi race 2 or a mixture of both fungi. Plants inoculated withF. oxysporum f. sp.lycopersici showed disease symptoms after 2 weeks, whereas plants inoculated withF. oxysporum f. sp.dianthi or a mixture of both fungi remained symptomless for over 7 weeks, the duration of the experiment. In another experiment root systems of plants were split and each half was separately inoculated. One half was firstly inoculated withF. oxysporum f. sp.dianthi or treated with water, followed after a week by a second inoculation of the other half withF. oxysporum f. sp.lycopersici or by a water treatment. The disease symptoms in the half firstly inoculated withF. oxysporum f. sp.dianthi were significantly delayed, compared to plants of which that half had been treated with water. BecauseF. oxysporum f. sp.dianthi reduced disease symptoms caused byF. oxysporum f. sp.lycopersici without any direct interaction with this pathogen, it is concluded thatF. oxysporum f. sp.dianthi is able to induce resistance againstF. oxysporum f. sp.lycopersici in tomato plants.  相似文献   

3.
The soil-borne fungus Fusarium oxysporum can cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet. These two diseases cause similar foliar symptoms but different root response and have been proposed to be caused by two distinct F. oxysporum formae speciales. Fusarium yellows, caused by F. oxysporum f. sp. betae, presents vascular discoloration, whereas Fusarium root rot, due to F. oxysporum f. sp. radicis-betae, appears as black rot visible on the root surface. The aim of this work was to study the host-pathogen interaction between sugar beet lines and isolates originally characterized as Fusarium oxysporum f. sp. betae. Eight susceptible sugar beet lines, selected by the USDA-ARS (US) and UNIPD (University of Padova, Italy) breeding programs, were inoculated with three different isolates of F. oxysporum f. sp. betae, the causal agent of Fusarium yellows, representing different genetic groups. All inoculated lines developed symptoms, but severity, expressed as area under the disease progress curve (AUDPC), differed significantly (P < 0.05) among lines. Two lines from UNIPD, 6 and 9, were the most susceptible to the disease, whereas the other lines showed similar levels. The three isolates of F. oxysporum f. sp. betae differed significantly (P < 0.05) in disease severity. Five weeks after inoculation the plants were harvested and roots examined. Surprisingly, severe root rot was observed in the susceptible UNIPD lines when inoculated with all three isolates, while this symptom was never observed in the USDA germplasm. The development of this disease symptom obviously depends on the plant genotype.  相似文献   

4.
Fusarium wilt of tobacco could be caused by Fusarium oxysporum f. sp. batatas or f. sp. vasinfectum since f. sp. nicotianae was rejected because there was no evidence of isolates specific to tobacco. Forty isolates of F. oxysporum from soil and plants from tobacco fields in Extremadura (south-western Spain) were characterized by pathogenicity on burley and flue-cured tobacco, for vegetative compatibility group (VCG), and by random amplified polymorphic DNA (RAPD). Isolates from burley were identified as race 1 of F. oxysporum f. sp. batatas based on pathogenicity on tobacco, sweet potato and cotton, and those from flue-cured as race 2. Most isolates from soil were heterokaryon self-incompatible (HSI) and the remaining isolates from soil and tobacco were grouped into four VCGs: VCG 1 (5 isolates from burley), VCG 2 (17 isolates from flue-cured and 4 from soil), VCG 3 (2 isolates from flue-cured) and VCG 4 (2 isolates from soil). This is the first report of the two races and VCGs of F. oxysporum f. sp. batatas in Spain. Analysis of RAPD revealed two clusters (C-I and C-II) related to race and VCGs. C-I included race 1 (VCG 1) isolates from burley and nonpathogenic (VCG 4 or HSI) isolates from soils. C-II included nonpathogenic (VCG 2) and race 2 (VCG 2 or VCG 3) isolates from flue-cured. VCG and RAPD markers were effective in distinguishing race 2 from race 1, suggesting that there are two genetically differentiated groups of F. oxysporum f. sp. batatas on tobacco in Extremadura.  相似文献   

5.
 Green fluorescent protein (GFP)-marked Fusarium oxysporum f. sp. melonis and nonmarked F. oxysporum f. sp. fragariae were stained with neutral red. The neutral red stained vacuoles of the fungi without disturbing GFP fluorescence in the cytoplasm. GFP-marked fungi showed fluorescent hyphae with dark-stained vacuoles, whereas nonmarked fungi were detected as nonfluorescent hyphae with dark-dotted vacuoles. Root colonization by these two fungi was monitored using this method. Microconidia attached similarly to the root surface and elongated vegetative hyphae. Only the pathogenic fungi invaded, causing necrosis at the inoculation site. Thus, the present method enabled us to track simultaneously the various formae speciales of F. oxysporum colonizing the root surface. Received: March 25, 2002 / Accepted: September 27, 2002  相似文献   

6.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   

7.
The abilities of fungi pathogenic and nonpathogenic to bean (Phaseolus vulgaris) to metabolize the phytoalexin phaseollin were compared when grown in shake cultures containing 12 to 15 μg phaseollin/ml. Under these conditions phaseollin was metabolized by five out of seven pathogens and by three out of five nonpathogens. Disappearance of phaseollin was accompanied by the appearance of metabolic products in cultures ofFusarium solani f. sp.phaseoli, Colletotrichum lindemuthianum, Botrytis cinerea andCladosporium herbarum. The nonpathogenC. herbarum detoxified phaseollin to 1a-hydroxyphaseollone as rapidly as the pathogenF. solani f.sp.phaseoli. Phaseollin was converted to 6a-hydroxyphaseollin by the pathogensB. cinerea andC. lindemuthianum, and this product was further metabolized by the latter fungus. 6a-Hydroxyphaseollin was less fungitoxic toB. cinerea. C. lindemuthianum was equally sensitive to both compounds. Phaseollin was not metabolized by the pathogensFusarium oxysporum f. sp.phaseoli andThielaviopsis basicola.  相似文献   

8.
The objective of the current study was to characterize Fusarium oxysporum f. sp. radicis-cucumerinum isolates from cucumbers in Turkey in terms of pathogenicity, vegetative compatibility and amplified fragment length polymorphism (AFLP) variation. In the 2007 and 2008 greenhouse cucumber-growing seasons, surveys were conducted in Adana, Antalya, Hatay and Mersin provinces of the Mediterranean region of Turkey. Forty-seven fungal isolates of F. oxysporum were recovered from diseased cucumber plants. The pathogenicity of each isolate was tested on cucumber seedlings at the one-true-leaf stage. Forty of the 47 isolates of F. oxysporum were virulent on cucumber seedlings. Based on disease symptoms, the differential effect of temperatures of 17°C and 29°C on disease development, and the virulence on cucumber seedlings, these 40 isolates were identified as F. oxysporum f. sp. radicis-cucumerinum. Nitrate non-utilizing mutants were generated on minimal medium containing 1.5% KClO3 and their phenotypes were determined. Mutants in different phenotypic classes were paired on minimal medium; of 40 F. oxysporum f. sp. radicis-cucumerinum isolates, thirty-eight were placed into VCG 0260. Remaining two strains were assigned to VCG 0261. The AFLP primers produced a total of 180 fragments between 200 and 500 bp in length for the 30 isolates tested. At a genetic similarity of 0.71, the UPGMA analysis separated the isolates into two distinct clusters. The first cluster, AFLP I, included 28 isolates, of which all belonged to VCG 0260. Two strains in the second AFLP cluster both belonged to VCG 0261.  相似文献   

9.
The growth and survival of three strawberry pathogens, Fusarium oxysporum f. sp. fragariae (FOF), Phytophthora cactorum, and Verticillium dahliae, were examined in anaerobic (anoxic) conditions at several temperatures (10–40 °C). The growth and survival of these fungi were suppressed by anaerobic conditions in comparison with those in cultured aerobically. Under anaerobic conditions at 22.5 °C, tested isolates of FOF and P. cactorum grew slightly, but V. dahliae did not grow. The three fungi survive for markedly shorter time in the anaerobic conditions compared with the aerobic conditions at all tested temperatures except 40 °C for FOF and P. cactorum. Moreover, survival periods shortened as the cultivation temperature increased. These results demonstrate that anaerobic conditions contribute to eradicating these pathogens during flooding or reductive soil disinfestation.  相似文献   

10.
In the asparagus crop at least four soil-borne diseases can be distinguished. Footrot is one which appears to be caused byFusarium oxysporum f. sp.asparagi and is characterized by brown oval lesions on the lower parts of stems. A method is described for testing for pathogenicity the species ofFusarium and other fungi isolated from diseased plants. A negative correlation was found between the number ofF. oxysporum f. sp.asparagi isolates and the ‘G-value’ which provides an indication of the development of an asparagus crop.  相似文献   

11.
Inoculation of wounded wheat leaves with chitin or non-pathogenic isolates of Botrytis cinerea caused rapid lignification at wound margins and protected the leaves against subsequent infection by either Fusarium graminearum or Penicillium oxalicum. These pathogens normally spread rapidly from inoculated wounds, inducing a relatively slow rate of lignification. The degree of protection afforded by pretreatments correlated with their lignin-inducing capacities. Prior wounding alone did not induce lignification but did provide a degree of protection against pathogens, possibly attributable to a faster lignification response on subsequent challenge: an earlier onset of lignification in response to chitin occurred when the leaves had been wounded 24 h prior to inoculation.The induction of lignified papillae and haloes by the inoculation of unwounded leaves with Botrytis cinerea did not provide any significant protection against subsequent challenge by the appressorial pathogens Pyricularia oryzae or Erysiphe graminis f. sp. tritici.Prior treatment of wounded or unwounded leaves with UV light or cycloheximide totally suppressed lignification and treated leaves were extremely susceptible to attack by normally nonpathogenic fungi. Attempts to suppress lignification by the use of α-aminooxyacetate and α-aminooxy-β-phenylpropionate were unsuccessful and plants remained resistant to non-pathogens.The results support the proposal that lignification is a factor in the resistance of wheat to fungi although the involvement of other factors cannot be ruled out.  相似文献   

12.
Editorial     
Abstract

The major pulse crops in India are gram, pigeon pea, black gram, green gram, lentil and peas. Gram, pigeon pea and pea are attacked by several diseases some of which cause considerable crop damage. Gram is affected mainly by wilt (Fusarium oxysporum f. sp.ciceri Matuo and Sato), blight (Mycosphaerella pinodes B. and Blox) and rust (Uromyces ciceris-arietinii (Grogn.) Jacz. &; Boy.). The main diseases of pigeon pea are wilt (Fusarium oxysporum f. sp.udum (Butler) Snyd. and Hans.), and sterility mosaic. Powdery mildew (Erysiphe polygoni DC) and rust (Uromyces vicia-fabae (Pers.) Schroet.) are the most important pea diseases. Some diseases of minor importance are described. Details are given of the symptoms, distribution and control of the diseases with particular reference to those of economic importance. Several minor diseases of lentil, green gram and black gram are included.  相似文献   

13.
Using melon seedlings at the cotyledon stage and genetically marked fungi, a system for monitoring pathogenic and nonpathogenic Fusarium oxysporum was devised in the present study. Protoplasts were prepared from three formae speciales (melonis, radicis-lycopersici and fragariae )of F. oxysporum and transformed with a synthetic gene for green fluorescence protein. Transformants were primarily isolated in the presence of hygromycin B and then screened by the emission of bright green fluorescence. Roots of melon seedlings were inoculated with fluorescing microconidia of these fungi, and fungal infection behavior was traced. Using fluorescence microscopy, we directly observed not only the fungus at the root surface, but also the mycelia elongating in the trachea of roots. Both pathogenic and nonpathogenic fungi germinated and hyphae elongated superficially on the surface of root. Only pathogenic fungi caused root necrosis at the inoculation site. Hyphae grew within the stem to induce constriction or cracking of lower hypocotyls, then causing wilting of the seedlings. Infection behavior of genetically marked pathogenic and nonpathogenic F. oxysporum could be successfully monitored after inoculation of cotyledons of seedlings. Received 6 June 2001/ Accepted in revised form 3 August 2001  相似文献   

14.
Since virulence ofFusarium oxysporum f.sp.vasinfectum (FOV) on cotton (Gossypium hirsutum) is enhanced when the fungus is cultivated in a saline environment, excessively saline water must not be used for the irrigation of cotton. However, the limitations thus placed on the available water resources may lead to conditions of enforced water stress for the plant. The present study investigated whether water stress affects the susceptibility of cotton to FOV. Groups of 2-month-old cotton plants of theFusarium-susceptible Coker 304 and the moderately resistant GSC 20 varieties were maintained without watering for varying periods immediately before or after being inoculated with FOV (15 plants per group, two replications). Watering was suspended for 3, 6, 12 or 24 days before inoculation, and for 3, 6, 12 or 15 days after inoculation. After inoculation the plants were maintained in a controlled environment with a 15,000 lux, 12-h photoperiod, at 28°/24°C D/N, 20% r.h. Xylem water potential was determined in a pressure chamber. Percent infected leaf area and date of onset of wilt were the parameters used to define severity of FOV infection. There was a consistent relation between low water potential in the xylem (-7 and -20 MPa) and severity of infection, particularly when the dry period occurred after inoculation. After exposure to the lowest post-inoculation water potentials, even variety GSC 20, which is normally moderately resistant, exhibited a fairly high percent infected leaf area. This should be taken into account when the cotton grower is faced with water shortages, especially during the period from branching to flower bud break.  相似文献   

15.
Experiments were conducted to determine if xylem exudates from three cucurbitaceous plants as well as non-cucurbit species were inhibitory to the growth of microconidia ofFusarium oxysporum f. sp.niveum, causal agent of Fusarium wilt of watermelon. Inhibitory effects of xylem exudates from watermelon(Citrullus lanatus) cultivars differentially susceptible toF.o. f.sp.niveum as well as from watermelon plants previously inoculated with virulent or avirulent races ofF. oxysporum, were compared. Results indicated that xylem fluid contained an inhibitory component that was independent of the resistance status of the cultivar or previous inoculation with virulent or avirulentF.o. f.sp.niveum races. Xylem exudates from cucumber(Cucumis sativis) also inhibited microconidia growth and colony formation while muskmelon(Cucumis melo) and tomato(Lycopersicon esculentum) xylem exudates had little inhibitory activity. Incubation with proteinase K, lysozyme, or boiled xylem fluid suggested that the active component had proteinaceous properties with an oligosaccharide moiety.  相似文献   

16.
The aim of this study was to compare the defense responses of embryo axes of Pisum sativum L. cv. Kwestor with different sucrose levels to pathogenic fungi, i.e. systemic acting Fusarium oxysporum f. sp. pisi and locally acting Ascochyta pisi. Embryo axes were cultured on Heller medium for 96 h. Four variants were compared: these included inoculated embryo axes cultured with or without 60 mM sucrose (+Si and −Si) and non-inoculated embryo axes cultured with or without 60 mM sucrose (+Sn and −Sn). After inoculation of the pea embryo axes with pathogenic fungi a generally higher concentration of free radicals was detected by electron paramagnetic resonance (EPR), in comparison to non-inoculated embryo axes. The inoculation with F. oxysporum caused stronger generation of free radicals in −Si than in +Si embryo axes. A different response was observed after inoculation with A. pisi; starting from 48 h, the concentration of free radicals in +Si axes was found to be 1.5 times higher than in −Si embryo axes. The values of spectroscopic splitting coefficients for these radicals suggest that they are semiquinone radicals. The EPR method also revealed Mn2+ ion accumulation after 24 h of culture. Over time, high levels of these ions were recorded in +Si embryo axes inoculated with F. oxysporum, while in +Si embryo axes inoculated with A. pisi they decreased. Up to 48 h after inoculation with the pathogenic fungi, Mn2+ ion levels were higher in +Si embryo axes than in +Sn axes. The activity of superoxide dismutase (SOD, EC 1.15.1.1) increased in +Si embryo axes up to 72 h after inoculation with pathogenic fungi; however, it was generally lower than in +Sn axes. Catalase activity (CAT, EC 1.11.1.6) increased up to 72 h after inoculation with F. oxysporum and the values were higher than in the non-inoculated tissue. Especially high activity of this enzyme was noted in −Si embryo axes after inoculation with either F. oxysporum or A. pisi. Peroxidase activity (POX, EC 1.11.1.7) towards pyrogallol in embryo axes increased during culture; however, it was lower or similar to that in non-inoculated embryo axes. SOD, CAT and POX zymograms showed that the synthesis of new isoforms was induced after inoculation with pathogenic fungi. Peroxidase isozymes detected by the reaction with diaminobenzidine in native PAGE were intensely stained in +Si embryo axes after inoculation with pathogenic fungi. Respiratory activity of the inoculated tissues was considerably higher than in non-inoculated tissues. The respiration rate was generally much higher in +Si than in −Si embryo axes. Growth of −Si embryo axes was more significantly retarded as a consequence of inoculation than that of +Si embryo axes.These results indicate that, depending on the manner of influence of a pathogenic fungus, both similar and differing defensive strategies may be initiated and a raised sugar levels in pea tissues limit the development of F. oxysporum and A. pisi.  相似文献   

17.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

18.
An indole-3-acetic acid (IAA) producing fungal strain was isolated from chickpea grown rhizospheric soil samples. Based on morphological and Internal Transcribed Spacer (ITS) region sequence analysis the new isolate was identified as Fusarium delphinoides. The Fusarium delphinoides strain produces and secretes IAA in-vitro as identified by HPLC and Mass spectrometry. The IAA production is dependent on tryptophan (Trp) as a nitrogen source in the medium. The IAA production is influenced by growth conditions such as pH of the medium, concentration of Trp and the nature of the carbon source. Additional nitrogen sources repress Trp dependent IAA production. Glucose and Trp served as the best carbon and nitrogen sources respectively. Pathogenicity of Fusarium delphinoides towards the plants was tested by electrolyte, nutrient leakage analysis and also by scoring the disease symptoms. Two cultivars of chickpea (ICCV-10 and L-550) and two cultivars of pigeon pea (Maruti and PT-221) were assessed for the pathogenicity by inoculating with spores of Fusarium delphinoides. The inoculation induced symptoms of Fusarium wilt as in the case of Fusarium oxysporum f. sp. ciceris (FOC), a known pathogen causing Fusarium wilt in chickpea. Electrolyte and nutrient leakage from the infected plants were used to assess the resistance, tolerance (moderately resistance) and susceptibility of the plants to the infection. Based on the results, both the pigeon pea cultivars (Maruti and PT-221) were rated as resistant, and ICCV-10 was rated as a tolerant cultivar of chickpea. However, chickpea cultivar L −550 was found to be a susceptible host for infection by Fusarium delphinoides. These results suggest that Fusarium delphinoides, which belongs to the Fusarium dimerum species group, is an IAA producing plant pathogen and causes wilt in chickpea. Further, along with pathogenicity tests, electrolyte and nutrient leakage analysis can be used to assess the pathogenicity of pathogenic fungi.  相似文献   

19.
Germination of chlamydospores ofFusarium oxysporum f. sp.pisi race 1 in the rhizosphere of pea seedlings and red clover seedlings grown in natural soil heavily infested with the pathogen, was highest in percentage along the actively growing parts of the roots. At these sites, exudation of ninhydrinpositive substances and reducing sugars was most intense with seedlings grown in vitro.No significant difference in the percentage of germinating chlamydospores ofFusarium oxysporum f. sp.pisi race 1 were observed in the rhizosphere soil and on the root surface of homologous parts of roots of seedlings and mature plants of a susceptible Rondo and a resistant Rovar pea cultivar grown in natural soil heavily infested with the pathogen. Differences in the growth of mycelium of the pathogen on the root surface, or in the attachment of the mycelium to the root surface of both cultivars were not observed. Epidermis and cortex cells of roots of both cultivars reacted on penetration by the pathogen by producing a cellulose thickening of the cell wall, which later became infiltrated with a ligning-like material. A selective effect on the activities of the pathogen in the rhizosphere, on the root surface and in the epidermis and cortex in relation to resistance thus could not be demonstrated. Formation of new chlamydospores from germ tubes of germinating chlamydospores was frequently observed in the rhizosphere of the susceptible and resistant pea cultivar and in the rhizosphere of red clover seedlings.  相似文献   

20.
Two soil-borne fungal endophytes almost completely suppressed the effects of a post-inoculated and virulent strain of Fusarium oxysporum f. sp. melonis when inoculated to axenically reared melon seedlings in Petri dishes. They were identified as Cadophora sp. on the basis of ITS 1–5.8S rDNA–ITS 2 sequences and morphological characters and obtained from the roots of Chinese cabbage grown as bait plants in a mixed soil made up of samples from different forest soils from Alberta and British Columbia, Canada. Hyphae of Cadophora sp. grew along the surface of the root and colonized root cells of the cortex and reduced the ingress of the Fusarium pathogen into adjacent cells. Melon seedlings pre-inoculated with Cadophora sp. were also grown in soil amended with the different N sources, nitrate or the amino acids leucine and valine, and glucose (final C:N ratio?=?10:1). After 4 weeks, these seedlings were transplanted into the field and disease symptoms were assessed. Only the endophyte-inoculated seedlings treated with valine could effectively inhibit the development of Fusarium wilt in two plots and reduced disease symptom development by 43 and 62 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号