首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NO(2) abundance in the stratosphere has been determined from ground-based spectra of the rising and setting sun and moon and of the twilight sky near 4500 angstroms. The spectra were taken at the Fritz Peak Observatory, at an altitude of 3 kilometers in the Colorado mountains. Separation of the stratospheric contribution requires observations at a relatively unpolluted site; direct measurement of the tropospheric absorption in the Colorado mountains often yields an upper limit on the tropospheric mixing ratio of 0.1 part per billion. The stratospheric NO(2) abundance is two to three times greater at night than during the day and increases significantly during the course of a sunlit day; these changes are related to photolytic decomposition of NO(2) and N(2)O(5) in the daytime stratosphere. Absorption by NO(3) was sought but not found; the results set an upper limit of 2 percent on the nighttime abundance ratio of NO(3) to NO(2) in the stratosphere.  相似文献   

2.
Dramatic springtime depletions of ozone in polar regions require that polar stratospheric air has a high degree of dynamical isolation and extremely cold temperatures necessary for the formation of polar stratospheric clouds. Both of these conditions are produced within the stratospheric winter polar vortex. Recent aircraft missions have provided new information about the structure of polar vortices during winter and their relation to polar ozone depletions. The aircraft data show that gradients of potential vorticity and the concentration of conservative trace species are large at the transition from mid-latitude to polar air. The presence of such sharp gradients at the boundary of polar air implies that the inward mixing of heat and constituents is strongly inhibited and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. The overall size of the polar vortex thus limits the maximum areal coverage of the annual polar ozone depletions. Because it appears that this limit has not been reached for the Antarctic depletions, the possibility of future increases in the size of the Antarctic ozone hole is left open. In the Northern Hemisphere, the smaller vortex and the more restricted region of cold temperatures suggest that this region has a smaller theoretical maximum for column ozone depletion, about 40 percent of the currently observed change in the Antarctic ozone column in spring.  相似文献   

3.
Kim KR  Craig H 《Science (New York, N.Y.)》1993,262(5141):1855-1857
The global budget of N(2)O shows a significant imbalance between the known rate of destruction in the stratosphere and the estimated rates of natural and anthropogenic production in soils and the ocean. Measurements of the (15)N/(14)N and (18)O/(16)O ratios in two major tropospheric sources of N(2)O, tropical rain forest soils and fertilized soils, show that soil N(2)O from a tropical rain forest in Costa Rica and from sugar-cane fields in Maui is strongly depleted in both (15)N and (18)O relative to mean tropospheric N(2)O. A major source of heavy N(2)O, enriched in both (15)N and (18)O, must therefore be present to balance the light N(2)O from soils. One such source is the back-mixing flux of N(2)O from the stratosphere, which is enriched in (15)N and (18)O by photolysis and chemistry. However these return fluxes of (15)N and (18)O are so great that a large oceanic flux of N(2)O is required to balance the heavy isotope-enriched stratospheric flux. All these effects will be reflected in climatically related isotopic variations in trapped N(2)O in polar ice cores.  相似文献   

4.
Stratospheric harbingers of anomalous weather regimes   总被引:13,自引:0,他引:13  
Observations show that large variations in the strength of the stratospheric circulation, appearing first above approximately 50 kilometers, descend to the lowermost stratosphere and are followed by anomalous tropospheric weather regimes. During the 60 days after the onset of these events, average surface pressure maps resemble closely the Arctic Oscillation pattern. These stratospheric events also precede shifts in the probability distributions of extreme values of the Arctic and North Atlantic Oscillations, the location of storm tracks, and the local likelihood of mid-latitude storms. Our observations suggest that these stratospheric harbingers may be used as a predictor of tropospheric weather regimes.  相似文献   

5.
We have developed a chemical ionization mass spectrometry technique for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) were often near or below the detection limit of the measurements (0.005 parts per billion by volume), indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels, as a result of stratosphere-to-troposphere transport events. We developed a method for diagnosing the amount of stratospheric ozone in these UT parcels using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.  相似文献   

6.
Samples from the stratosphere obtained by U-2 aircraft after the first three major eruptions of Mount St. Helens contained large globules of liquid acid and ash. Because of their large size, these globules had disappeared from the lower stratosphere by late June 1980, leaving behind only smaller acid droplets. Particle-size distributions and mineralogy of the stratospheric ash grains demonstrate in-homogeneity in the eruption clouds.  相似文献   

7.
Krueger AJ 《Science (New York, N.Y.)》1983,220(4604):1377-1379
The eruptions of El Chichón volcano on 28 March and 3 and 4 April 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong absorption by volcanic gases at the shortest wavelengths of the spectrometer (312.5 and 317.5 nanometers). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 meters per second. The spectral reflectance is consistent with sulfur dioxide absorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on 3 and 4 April is 3.3 x 10(6) tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.  相似文献   

8.
Nitrous oxide (N(2)O) and methane (CH(4)) are chemically reactive greenhouse gases with well-documented atmospheric concentration increases that are attributable to anthropogenic activities. We quantified the link between N(2)O and CH(4) emissions through the coupled chemistries of the stratosphere and troposphere. Specifically, we simulated the coupled perturbations of increased N(2)O abundance, leading to stratospheric ozone (O(3)) depletion, altered solar ultraviolet radiation, altered stratosphere-to-troposphere O(3) flux, increased tropospheric hydroxyl radical concentration, and finally lower concentrations of CH(4). The ratio of CH(4) per N(2)O change, -36% by mole fraction, offsets a fraction of the greenhouse effect attributable to N(2)O emissions. These CH(4) decreases are tied to the 108-year chemical mode of N(2)O, which is nine times longer than the residence time of direct CH(4) emissions.  相似文献   

9.
Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.  相似文献   

10.
The widespread use of hydrogen fuel cells could have hitherto unknown environmental impacts due to unintended emissions of molecular hydrogen, including an increase in the abundance of water vapor in the stratosphere (plausibly by as much as approximately 1 part per million by volume). This would cause stratospheric cooling, enhancement of the heterogeneous chemistry that destroys ozone, an increase in noctilucent clouds, and changes in tropospheric chemistry and atmosphere-biosphere interactions.  相似文献   

11.
The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from an expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10(6) cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.  相似文献   

12.
Continuing worldwide increase in tropospheric methane, 1978 to 1987   总被引:1,自引:0,他引:1  
The average worldwide tropospheric mixing ratio of methane has increased by 11% from 1.52 parts per million by volume (ppmv) in January 1978 to 1.684 ppmv in September 1987, for an increment of 0.016 +/- 0.001 ppmv per year. Within the limits of our measurements, the global tropospheric mixing ratio for methane over the past decade is consistent either with a linear growth rate of 0.016 +/- 0.001 ppmv per year or with a slight lessening of the rate of growth over the past 5 years. No indications were found of an effect of the El Ni?o-Southern Oscillation-El Chichon events of 1982-83 on total global methane, although severe reductions were reported in the Pacific Northwest during that time period. The growth in tropospheric methane may have increased the water concentration in the stratosphere by as much as 28% since the 1940s and 45% over the past two centuries and thus could have increased the mass of precipitable water available for formation of polar stratospheric clouds.  相似文献   

13.
Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.  相似文献   

14.
Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.  相似文献   

15.
The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.  相似文献   

16.
YL Yung  CE Miller 《Science (New York, N.Y.)》1997,278(5344):1778-1780
We propose an isotopic fractionation mechanism, based on photolytic destruction, to explain the 15N/14N and 18O/16O fractionation of stratospheric nitrous oxide (N2O) and reconcile laboratory experiments with atmospheric observations. The theory predicts that (i) the isotopomers 15N14N16O and 14N15N16O have very different isotopic fractionations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205 nanometers should better simulate the observed isotopic fractionation of stratospheric N2O. Modeling results indicate that there is no compelling reason to invoke a significant chemical source of N2O in the middle atmosphere and that individual N2O isotopomers might be useful tracers of stratospheric air parcel motion.  相似文献   

17.
The sulfur cycle   总被引:9,自引:0,他引:9  
Even granting our uncertainties about parts of our model of the sulfur cycle, we can draw some conclusions from it: 1) Man is now contributing about one half as much as nature to the total atmospheric burden of sulfur compounds, but by A.D. 2000 he will be contributing about as much, and in the Northern Hemisphere alone he will be more than matching nature. 2) In industrialized regions he is overwhelming natural processes, and the removal processes are slow enough (several days, at least) so that the increased concentration is marked for hundreds to thousands of kilometers downwind. 3) Our main areas of uncertainty, and ones that demand immediate attention because of their importance to the regional air pollution question, are: (i) the rates of conversion of H(2)S and SO(2) to sulfate particles in polluted as well as unpolluted atmospheres; (ii) the efficiency of removal of sulfur compounds by precipitation in polluted air. And for a better understanding of the global model we need to know: (i) the amount of biogenic H(2)S that enters the atmosphere over the continents and coastal areas; (ii) means of distinguishing man-made and biogenic contributions to excess sulfate in air and precipitation; (iii) the volcanic production of sulfur compounds, and their influence on the particle concentration in the stratosphere; (iv) the large-scale atmospheric circulation patterns that exchange air between stratosphere and troposphere (although absolute amounts of sulfate particles involved are small relative to the lower tropospheric burden); (v) the role of the oceans as sources or sinks for SO(2).  相似文献   

18.
Temperatures obtained from early Cassini infrared observations of Titan show a stratopause at an altitude of 310 kilometers (and 186 kelvin at 15 degrees S). Stratospheric temperatures are coldest in the winter northern hemisphere, with zonal winds reaching 160 meters per second. The concentrations of several stratospheric organic compounds are enhanced at mid- and high northern latitudes, and the strong zonal winds may inhibit mixing between these latitudes and the rest of Titan. Above the south pole, temperatures in the stratosphere are 4 to 5 kelvin cooler than at the equator. The stratospheric mole fractions of methane and carbon monoxide are (1.6 +/- 0.5) x 10(-2) and (4.5 +/- 1.5) x 10(-5), respectively.  相似文献   

19.
Simple, steady-state models for ozone photochemistry, radiative heat balance, and eddy-diffusive mass transport can be combined to estimate water-induced changes in the stratospheric ozone concentrations and temperatures, the integrated ozone column, the solar power transmitted to the earth's surface, and the surface temperature. These changes have been computed parametrically for mixing fractions of water vapor between 3 x 10(-6) and 6.5 x 10(-6). With added water from the exhausts of projected fleets of stratospheric aircraft, the ozone column may diminish by 3.8 percent, the transmitted solar power increase by 0.07 percent, and the surface temperature rise by 0.04 degrees K in the Northern Hemisphere. Due to a cancellation of terms, temperatures in the lower stratosphere remain essentially unchanged. These results are sensitive to the form of the water profile and emphasize the potential role of convective transients near 30 kilometers.  相似文献   

20.
Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号