首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The holding power of orthopedic screws in the third metacarpal and metatarsal cadaver bones of foals that were aged from 1 to 14 days was tested. Comparative trials between screws inserted at the same site in contralateral bones from the same foal were performed to compare the holding power of 5.5 mm cortical and 6.5 mm cancellous screws in the metaphysis, and the holding power of 5.5 and 4.5 mm cortical screws in the diaphysis. A MTS servohydraulic tensile testing machine was used to perform screw pullouts at a displacement rate of 19 mm/sec. There was no significant difference between maximum holding power of 5.5 mm cortical screws and 6.5 mm cancellous screws in the metaphysis when expressed as kg per mm of bone width at the screw insertion site (p = 0.097) or as kg per mm of screw thread engaged in the bone (p = 0.17). There was no significant difference in holding power of 5.5 and 6.5 mm screws in the proximal versus distal metaphysis (p = 0.10). The 5.5 mm screws had significantly greater holding power than the 4.5 mm screws in the diaphysis (p = 0.0097). Fixation failure at screw pullout was always due to bone shear. In internal fixation in foal bone, the 5.5 mm screws may be a suitable alternative to 6.5 mm screws in the metaphysis. Use of 5.5 mm rather than 4.5 mm screws is recommended in the diaphysis because of greater holding power.  相似文献   

2.
OBJECTIVE: To compare screw insertion characteristics and pullout mechanical properties between self-tapping (ST) and non-self-tapping (NST) AO 4.5-mm cortical bone screws in adult equine third metacarpal bone (MC3). STUDY DESIGN: In vitro biomechanical experiment. ANIMALS OR SAMPLE POPULATION: Seven pairs of adult equine MC3. METHODS: Bicortical holes were drilled transversely in proximal metaphyseal, diaphyseal, and distal metaphyseal locations of paired MC3. NST screws were inserted in pre-tapped holes in 3 sites of one bone pair, and ST screws were inserted in non-tapped holes of contralateral MC3. Tapping and screw insertion times and maximum torques were measured. Screw pullout mechanical properties were determined. RESULTS: Screw insertion time was longer for ST screws. Total time for tapping and insertion (total insertion time) was over twice as long for NST screws. Statistically significant differences were not observed between screws for any pullout mechanical property. From pullout tests, diaphyseal locations had significantly stiffer and stronger structure than metaphyseal locations. Pullout failure more commonly occurred because of screw breakage than bone failure. Bone failure and bone comminution were more commonly associated with ST screws. Bone failure sites had pullout failure loads that were 90% of screw failure sites. CONCLUSIONS: NST and ST 4.5-mm-diameter cortical bone screws have similar pullout mechanical properties from adult equine MC3. ST screws require less than half the total insertion time of NST screws. CLINICAL RELEVANCE: Use of ST 4.5-mm-diameter cortical bone screws should be considered for repair of adult equine MC3 fractures; however, bone failures at screw sites should be monitored.  相似文献   

3.
OBJECTIVE: To compare screw insertion variables and pullout mechanical properties between AO 6.5-mm cancellous and 7.3-mm cannulated bone screws in foal femoral bone. STUDY DESIGN: A paired, in vitro mechanical study. SAMPLE POPULATION: Seven pairs of femora from immature (1-7 months) foals. METHODS: The 6.5 cancellous and 7.3-mm cannulated screws were inserted at standardized proximal and distal metaphyseal, and mid-diaphyseal locations. Insertion torque, force, and time to drill, tap (6.5-mm cancellous), guide wire insertion (7.3-mm cannulated), and screw insertion were measured. Screw pullout properties (yield and failure load, displacement, and energy, and stiffness) were determined from mechanical tests. The effects of screw type and location on insertion variables and pullout properties were assessed with repeated measures ANOVA. Pairwise comparisons were examined with post hoc contrasts. Significance was set at P<.05 for all comparisons. RESULTS: Insertion torques for the 7.3-mm cannulated screws were significantly greater than for the 6.5-mm tap, but significantly lower than for the 6.5-mm cancellous screws. Total screw insertion times were similar. Pullout properties of both screws were similar at each femoral location. The holding power of both screws was significantly greater in the mid-diaphysis than in either metaphyseal location. Pullout failure occurred by bone shearing at the bone-screw interface in all specimens. CONCLUSIONS: The 6.5-mm cancellous and 7.3-mm cannulated screws vary in insertion properties, but have similar pullout properties in the mid-diaphysis, proximal, and distal metaphysis of foal femora. Both screw types have greater holding power at the mid-diaphyseal location compared with metaphyseal locations. Based on overall similar holding powers of 6.5-mm cancellous and 7.3-mm cannulated screws, it is unlikely that increasing the screw diameter beyond 6.5 mm will provide increased holding power in foal femoral bone. CLINICAL RELEVANCE: Use of the 7.3-mm cannulated screw should be considered for foal femoral fracture repair when greater accuracy is needed, or when bone threads for the 6.5-mm cancellous screw have been stripped.  相似文献   

4.
Comparison was made of the holding power of 5.5 and 4.5 mm cortical orthopedic screws inserted into third metacarpal and metatarsal cadaver bones from 3- and 8-year-old horses. The tensile strength of these screws was tested mechanically. In nine comparative trials of these screws, 5.5 mm screws pulled out of bone in five trials at an average of 116.0 kg tensile force and broke in four trials at an average of 1383.2 kg. A 4.5 mm screw pulled out of bone at 834.5 kg in one trial, and screws broke at an average of 849.2 kg in eight trials. The larger 5.5 mm screw required a significantly greater (p = 0.022) pullout force than the mean force at 4.5 mm screw breakage. Fixation failure was due to screw breakage or bone shear, with 5.5 mm screws occasionally creating bone fragmentation during pullout. The average tensile breaking strengths of the 5.5 mm screws (1391.4 kg) and 4.5 mm screws (832.7 kg) determined mechanically were similar to forces at screw breakage during pullout testing in bone. Since the 5.5 mm screws have greater holding power and tensile strength than 4.5 mm screws, the use of the 5.5 mm screw in fracture repair in adult horses is recommended.  相似文献   

5.
Comparison was made of the holding power of orthopedic screws inserted self-tapped or after pre-tapping in foal bone. Third metacarpal and metatarsal bones were used. Comparative trials were made between screws inserted at the same site in the corresponding bones from the contralateral limbs of the same foal. A MTS servohydraulic tensile testing machine was used to perform screw pullouts at a displacement rate of 19 mm/sec. The 5.5 mm cortical screws had significantly greater holding power than 6.5 mm cancellous screws when both were inserted self-tapped (p = 0.0056). Pre-tapped insertion of 5.5 mm screws produced a significantly greater holding power than self-tapped insertion of 5.5 mm screws (p = 0.018). Pre-tapped insertion of 6.5 mm screws produced a significantly greater holding power than self-tapped insertion of 6.5 mm screws (p = 0.0000). In internal fixation of fractures in foals, insertion of 5.5 mm and 6.5 mm screws pre-tapped in metaphyseal bone is recommended because it produces greater holding power than self-tapped insertion.  相似文献   

6.
Paired equine third metacarpal bones were drilled and tapped for 4.5 mm and 5.5 mm cortical screws. Tapping was done by hand or with an air-driven reversible orthopedic drill. Screws were inserted and subjected to extraction forces to failure of the osseous threads or the screws. There was no difference in holding power of either screw size between hand-tapped and power-tapped holes.  相似文献   

7.
OBJECTIVES: To compare bone fragment compression and the mechanical pushout strength and stiffness of 6.5-mm Acutrak Plus (AP) and 4.5-mm AO cortical (AO) bone screws after stabilization of a simulated equine third metacarpal (MC3) bone complete lateral condylar fracture. STUDY DESIGN: In vitro biomechanical paired study of screw insertion variables, bone fragment compression, and screw pushout tests using a bone screw stabilized simulated lateral condylar fracture model. SAMPLE POPULATION: Six pairs of cadaveric equine MC3s. METHODS: Metacarpi were placed in a fixture and centered on a biaxial load cell in a materials testing system to measure torque, compressive force, and time for drilling, tapping, and screw insertion. Fragment compression was measured with a pressure-sensing device placed between the simulated fracture fragments during screw insertion for fragment stabilization. Subsequently, screws were pushed out of the stabilized bone fragments in a single cycle to failure. A paired t test was used to assess differences between site preparation, screw insertion, fragment compression, and screw pushout variables, with significance set at P <.05. RESULTS: Measured drilling variables were comparable for AO and AP specimens. However, the AP tap had significantly greater insertion torque and force. Mean maximum screw insertion torque was significantly greater for AO screws. For fragment compression, AP screws generated 65% and 44% of the compressive pressure and force, respectively, of AO screws. AP screws tended to have higher overall pushout strength. Pushout stiffness was similar between both screw types. CONCLUSION: The 6.5-mm tapered AP screw generated less interfragmentary compressive pressure and force but had similar pushout stiffness. Evaluation of failure patterns demonstrated that AP screws had greater pushout strength compared with 4.5-mm AO screws for fixation of a simulated complete lateral condylar fracture. CLINICAL RELEVANCE: The 6.5-mm tapered AP screw should provide ample holding strength but would provide less interfragmentary compression than 4.5-mm AO screws for repair of complete lateral condylar fractures in horses.  相似文献   

8.
OBJECTIVE: To evaluate the effect of an osteoconductive resorbable calcium phosphate cement (CPC) on the holding power of bone screws in canine pelvises and to compare the effect with that for polymethylmethacrylate (PMMA). SAMPLE POPULATION: 35 pelvises obtained from canine cadavers. PROCEDURE: Each pelvis was sectioned longitudinally. Within each pair of hemipelvises, one 4.0-mm cancellous screw was placed in the sacroiliac (SI) region and another in the iliac body. Similar regions on the contralateral-matched hemipelvis were assigned 1 of 3 augmentation techniques (CPC-augmented 4.0-mm cancellous screws, PMMA-augmented 4.0-mm cancellous screws, and CPC-augmented 3.5-mm cortical screws). Pullout force was compared between matched screws and between treatment groups prior to examination of cross sections for evaluation of cement filling and noncortical bone-to-cortical bone ratio. RESULTS: CPC and PMMA augmentation significantly increased pullout force of 4.0-mm screws inserted in the SI region by 19.5% and 33.2%, respectively, and CPC augmentation significantly increased pullout force of 4.0-mm cancellous screws inserted in the iliac body by 21.2%. There was no difference in the mean percentage augmentation between treatment groups at either location. Cement filling was superior in noncortical bone, compared with filling for cortical bone. Noncortical bone-to-cortical bone ratio was significantly greater in the sacrum (6.1:1) than the ilium (1.3:1). CONCLUSIONS AND CLINICAL RELEVANCE: CPC and PMMA improve the ex vivo holding strength of 4.0-mm cancellous screws in the SI and iliac body regions and SI region, respectively. Cement augmentation may be more effective in areas with greater noncortical bone-to-cortical bone ratios.  相似文献   

9.
Objective —To determine risk of failure of the Synthes 4.5-mm cannulated screw system instrumentation in equine bone and to compare its application with the Synthes 4.5-mm standard cortex screw system.
Study Design —The maximum insertion torque of the cannulated and standard cortex screw systems were compared with the ultimate torsional strengths of the equipment. Pullout strength and ultimate tensile load of cannulated and standard cortex screws were also determined.
Sample Population—Paired equine cadaver third metacarpal and third carpal bones.
Methods —Maximum insertion torque and ultimate torsional strengths were determined by using an axial-torsional, servohydraulic materials testing system and a hand-held torquometer. Pullout tests were performed by using a servohydraulic materials testing system.
Results —Maximum insertion torque of all cannulated instrumentation was less than ultimate torsional strength at all locations ( P < .05). Maximum insertion torques of cannulated taps and screws were greater than for standard taps and screws in the third carpal bone ( P < .002). Pullout strength of the cannulated screws was less than the standard cortex screws at all sites ( P < .001). Cannulated screws broke before bone failure in all but one bone specimen. Conclusions—The risk of cannulated instrument or screw failure during insertion into bone is theoretically low. The relatively low pullout strength of the cannulated screws implies that the interfragmentary compression achievable is likely to be less than with standard cortex screws. Clinical Relevance—The relatively low pullout strength of the cannulated screw suggests that its risk of failure during fracture repair is greater than with the standard cortex screw.  相似文献   

10.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

11.
Lag screw fixation using single 4.5 mm cortical bone screws is a recommended technique for repair of mid-sagittal plane fractures of the distal phalanx in adult horses. However, implant infection and technical difficulties in obtaining adequate interfragmentary compression have made this surgical procedure somewhat controversial. We hypothesized that use of larger diameter screws would result in increased axial compression and improved stability of this fracture.Paired distal phalanges from the forelimbs of 10 adult horses were collected at necropsy and divided in half in the midsagittal plane. Using a randomized block study design, four types of bone screws (4.5 mm cortical, 5.5 mm cortical, 6.5 mm cancellous pre-tapped, and 6.5 mm cancellous non-tapped) were inserted to a depth of 15 mm. During screw insertion, the axial force generated under the screw head was measured with a load washer containing a piezoelectric force transducer, while torque of insertion was recorded with a torsional testing machine. The 6.5mm screw inserted after pre-tapping generated significantly greater axial force (2781 N) than the 4.5 mm (1522 N), 5.5 mm (2073 N) or 6.5 mm non-tapped (2295 N) screws. The relationship between maximal applied torque and axial force generated was linear for each screw type. Each unit of torque applied during insertion of cortical screws resulted in a greater increase in axial compression, as compared to cancellous screws. These data suggest that use of larger diameter screws would result in improved interfragmentary compression of distal phalangeal fractures.  相似文献   

12.
OBJECTIVE: To evaluate in vitro holding power and associated microstructural and thermal damage from placement of positive-profile transfixation pins in the diaphysis and metaphysis of the equine third metacarpal bone. SAMPLE POPULATION: Third metacarpal bones from 30 pairs of adult equine cadavers. PROCEDURE: Centrally threaded positive-profile transfixation pins were placed in the diaphysis of 1 metacarpal bone and the metaphysis of the opposite metacarpal bone of 15 pairs of bones. Tensile force at failure for axial extraction was measured with a materials testing system. An additional 15 pairs of metacarpal bones were tested similarly following cyclic loading. Microstructural damage was evaluated via scanning electron microscopy in another 6 pairs of metacarpal bones, 2 pairs in each of the following 3 groups: metacarpal bones with tapped holes and without transfixation pin placement, metacarpal bones following transfixation pin placement, and metacarpal bones following transfixation pin placement and cyclic loading. Temperature of the hardware was measured with a surface thermocouple in 12 additional metacarpal bones warmed to 38 C. RESULTS: The diaphysis provided significantly greater resistance to axial extraction than the metaphysis. There were no significant temperature differences between diaphyseal and metaphyseal placement. Microstructural damage was limited to occasional microfractures seen only in cortical bone of diaphyseal and metaphyseal locations. Microfractures originated during drilling and tapping but did not worsen following transfixation pin placement or cyclic loading. CONCLUSIONS AND CLINICAL RELEVANCE: Centrally threaded, positive-profile transfixation pins have greater resistance to axial extraction in the diaphysis than in the metaphysis of equine third metacarpal bone in vitro. This information may be used to create more stable external skeletal fixation in horses with fractures.  相似文献   

13.
OBJECTIVE--To compare the biomechanical characteristics and mode of failure of 2 parallel-screw techniques for proximal interphalangeal joint arthrodesis in horses. STUDY DESIGN--Randomized block design, blocking for horse (1-5), method of screw fixation (three 4.5-mm vs two 5.5-mm), side (left limb vs right limb), and end (front limb vs hind limb). Constructs were loaded to failure in 3-point bending in a dorsal-to-palmar (plantar) direction. SAMPLE POPULATION--Twenty limbs (10 limb pairs) from 5 equine cadavers. METHODS--A combined aiming device was used to facilitate consistent screw placement. Three parallel 4.5-mm cortical screws were placed in lag fashion in 1 limb of a pair, and 2 parallel 5.5-mm cortical screws were placed in lag fashion in the contralateral limb. Arthrodesis constructs were tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials-testing machine. Loading rate was 19 mm/s. Maximal bending moment at failure and composite stiffness were obtained from bending moment-angular deformation curves. Data were analyzed using ANOVA and chi(2) analysis. RESULTS--There were no significant differences in bending moment (P >.05, power = 0.8 @ delta = 19%) or composite stiffness (P >.05, power = 0.8 @ delta = 19%) between the 2 fixation techniques. Higher maximal bending moment was found in front limbs than hind limbs, and front limbs with two 5.5-mm screws than hind limbs with two 5.5-mm screws. In all cases, constructs completely failed. A greater number of 4.5-mm cortical screws failed than 5.5-mm cortical screws. CONCLUSIONS-In pastern arthrodesis constructs loaded in 3-point bending, end (front limb vs hind limb) affected maximal bending moment at failure of constructs. There was no significant effect of horse, treatment, or side on maximal bending moment or stiffness. Two 5.5-mm cortical screws should provide a surgically simpler pastern arthrodesis than three 4.5-mm cortical screws while maintaining similar biomechanical characteristics. CLINICAL RELEVANCE--Three 4.5-mm screws or two 5.5-mm screws will provide similar biomechanical characteristics in bending when performing equine pastern arthrodesis.  相似文献   

14.
OBJECTIVE: To test the effects of bone diameter and eccentric loading on fatigue life of 2.7-mm-diameter cortical bone screws used for locking a 6-mm-diameter interlocking nail. SAMPLE POPULATION: Eighteen 2.7-mm-diameter cortical bone screws. PROCEDURE: A simulated bone model with aluminum tubing and a 6-mm-diameter interlocking nail was used to load screws in cyclic 3-point bending. Group 1 included 6 screws that were centrally loaded within 19-mm-diameter aluminum tubing. Group 2 included 6 screws that were centrally loaded within 31.8-mm-diameter aluminum tubing. Group 3 included 6 screws that were eccentrically loaded (5.5 mm from center) within 31.8-mm-diameter aluminum tubing. The number of cycles until screw failure and the mode of failure were recorded. RESULTS: An increase in the diameter of the aluminum tubing from 19 to 31.8 mm resulted in a significant decrease in the number of cycles to failure (mean +/- SD, 761,215 +/- 239,853 to 16,941 +/- 2,829 cycles, respectively). Within 31.8-mm tubing, the number of cycles of failure of eccentrically loaded screws (43,068 +/- 14,073 cycles) was significantly greater than that of centrally loaded screws (16,941 +/- 2,829 cycles). CONCLUSIONS AND CLINICAL RELEVANCE: Within a bone, locking screws are subjected to different loading conditions depending on location (diaphyseal vs metaphyseal). The fatigue life of a locking screw centrally loaded in the metaphyseal region of bone may be shorter than in the diaphysis. Eccentric loading of the locking screw in the metaphysis may help to improve its fatigue life.  相似文献   

15.
OBJECTIVE: To compare drilling, tapping, and screw-insertion torque, force, and time for the 4.5-mm AO and 6.5-mm Acutrak Plus (AP) bone screws, and to compare the mechanical shear strength and stiffness of a simulated complete lateral condylar fracture of the equine third metacarpal bone (MC3) stabilized with either an AO or AP screw. STUDY DESIGN: In vitro biomechanical assessment of screw-insertion variables, and shear failure tests of a bone-screw-stabilized simulated lateral condylar fracture. SAMPLE POPULATION: Eight pairs of cadaveric equine MC3s METHODS: Metacarpi were placed in a fixture and centered on a biaxial load cell in a materials-testing system to measure torque, compressive force, and time for drilling, tapping, and screw insertion. Standardized simulated lateral condylar fractures were stabilized by either an AO or AP screw and tested in shear until failure. A paired t test was used to assess differences between screws, with significance set at P < .05. RESULTS: Insertion and mechanical shear testing variables were comparable for AO and AP insertion equipment and screws. CONCLUSION: The 6.5-mm tapered AP screw can be inserted in equine third metacarpal condyles and is mechanically comparable with the 4.5-mm AO screw for fixation of a simulated lateral condylar fracture. CLINICAL RELEVANCE: Considering the comparable mechanical behavior, the potential for less-persistent soft-tissue irritation with the headless design, and the ability to achieve interfragmentary compression by inserting the screw in one hole drilled perpendicular to the fracture plane, the 6.5-mm tapered AP screw may be an attractive alternative for repair of incomplete lateral condylar fractures in horses.  相似文献   

16.
The objective of this study was to compare the biomechanical properties in a single cycle axial loading test and the types of failures in two constructs (a 3-hole 4.5-mm dynamic compression plate (DCP) and 7-hole 5.5-mm Y locking compression plate (Y-LCP)) in equine proximal interphalangeal joint (PIJ) arthrodesis. One limb in each pair was randomly assigned to PIJ arthrodesis using a 3-hole 4.5-mm DCP combined with two transarticular 5.5-mm cortical screws, whereas the contralateral limb was submitted to PIJ arthrodesis using a 7-hole Y-shaped 5.0-mm LCP in conjunction with one transarticular 4.5-mm cortical screw inserted through the central plate hole. Cortical screws were inserted in lag fashion. Constructs were submitted to a single axial load cycle to failure. Construct stiffness, load, and deformation were analyzed. Dynamic compression plate and Y-LCP arthrodesis constructs did not differ significantly and were equally resistant to axial loading under the conditions studied (DCP and Y-LCP group stiffness, 5685.22 N/mm and 6591.10 N/mm, respectively). Arthrodesis of the PIJ using a DCP and two transarticular 5.5-mm cortical screws or a Y-LCP yielded biomechanically equivalent outcomes under the test conditions considered. However, Y-LCP provides less impact in the palmar/plantar bone. Application of Y-LCP with unicortical screws has equivalent biomechanical characteristics of DCP and may be a safe option for PIJ arthrodesis, where potential trauma secondary to applying bicortical screws in the palmar/plantar aspect of the pastern can be avoided.  相似文献   

17.
Objective—To assess feasibility of insertion of 4.5-mm Herbert cannulated bone screws (HS) using fluoroscopic guidance and compare the mechanical shear strength of these HS and 4.5-mm AO cortical bone screws (AO) for fixation of dorsal plane slab osteotomies in equine cadaver third carpal bones (C3).
Animals or Sample Population—Eight equine cadavers.
Methods—Bone mineral composition and density of contralateral C3 were confirmed to be equivalent using dual-energy x-ray absorptiometry. A standard 10-mm C3 slab osteotomy was reduced using HS or AO instrumentation under fluoroscopic guidance. Specimens were loaded in shear until failure, using a materials testing apparatus.
Results—HS and AO instrumentation allowed accurate reconstruction of the osteotomy, but there was difficulty encountered seating the HS proximal self-tapping threads. There was no significant difference in maximal load to failure, stiffness, or mode of failure of constructs created with the HS and AO screws.
Conclusions —Use of 4.5-mm HS for repair of C3 radial facet, dorsal plane slab fractures may result in a mechanically comparable fixation to a repair using a 4.5-mm AO. Equine dorsal C3 may be too dense, however, to allow placement of the proximal self-tapping threads of the HS without potentially excessive application of torque to the screw itself.
Clinical Relevance —Dorsal plane, radial facet slab fractures of the equine C3 are a significant clinical problem. Accurate reconstruction and stabilization are necessary for return to athletic function.  相似文献   

18.
Objectives— To compare compression pressure (CP) of 6.5 mm Acutrak Plus (AP) and 4.5 mm AO cortical screws (AO) when inserted in simulated lateral condylar fractures of equine 3rd metacarpal (MC3) bones. Study Design— Paired in vitro biomechanical testing. Sample Population— Cadaveric equine MC3 bones (n=12 pair). Methods— Complete lateral condylar osteotomies were created parallel to the midsagittal ridge at 20, 12, and 8 mm axial to the epicondylar fossa on different specimens grouped accordingly. Interfragmentary compression was measured using a pressure sensor placed in the fracture plane before screw placement for fracture fixation. CP was acquired and mean values of CP for each fixation method were compared between the 6.5 mm (AP) and 4.5 mm (AO) for each group using a paired t‐test within each fracture fragment thickness group with statistical significance set at P<.05. Results— AO screw configurations generated significantly greater compressive pressure compared with AP configurations. The ratio of mean CP for AP screws to AO screws at 20, 12, and 8 mm, were 21.6%, 26.2%, and 34.2%, respectively. Conclusion— Mean CP for AP screw fixations are weaker than those for AO screw fixations, most notably with the 20 mm fragments. The 12 and 8 mm groups have comparatively better compression characteristics than the 20 mm group; however, they are still significantly weaker than AO fixations. Clinical Relevance— Given that the primary goals of surgical repair are to achieve rigid fixation, primary bone healing, and good articular alignment, based on these results, it is recommended that caution should be used when choosing the AP screw for repair of lateral condylar fractures, especially complete fractures. Because interfragmentary compression plays a factor in the overall stability of a repair, it is recommended for use only in patients with thin lateral condyle fracture fragments, as the compression tends to decrease with an increase in thickness.  相似文献   

19.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

20.
OBJECTIVE: To compare acute fixation stability and insertion effort of cortex bone screws with and without a shaft inserted in lag fashion in equine metacarpal (metatarsal, MC(T)III) bone. METHODS: Screw types with independent variables of screw diameter (4.5 or 5.5 mm) and shaft type (without shaft, with 20-mm shaft, or with 25-mm shaft) were studied. Bone specimens cut from distal equine MC(T)III condyles were used. After screw insertion in lag fashion into 2 bone blocks with an instrumented device, shear tests were conducted in a mechanical testing machine. Outcome variables of peak insertion torque, insertion energy, stiffness. yield strength, and displacement at 3 kN of load were compared. RESULTS: The effects of screw design were substantial. Screws with shaft were 30% to 40% stiffer and 60% to 70% stronger than screws without shaft. Screws with shaft could tolerate 80 to 95 kg more force than screws without shaft before yielding. At 3 kN load, the displacement with screws with shaft was 55% to 60% of that with screws without shaft. Screws with a long shaft tended to perform better than those with a short shaft. There was no difference in the shear stiffness, shear yield strength, or shear displacement between the 2 screw diameters. Although larger diameter screws required more insertion effort, and screws with a short shaft required the most insertion energy, these differences were small. CONCLUSIONS: Cortex screws with a long shaft of 4.5- or 5.5-mm diameter provide better stability in equine MC(T)III condyle bone with less insertion effort compared with those with a short shaft or no shaft. CLINICAL SIGNIFICANCE: Cortex bone screws with a shaft inserted in lag fashion should be considered for the fixation of equine MC(T)III condylar fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号