首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three different commercially available structural plastic media were evaluated in triplicate in moving bed biofilters under low salinity (11–12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double drain fish culture tank paired to a moving bed biofilter. The biofilters were filled with 0.11 m3 of one of three different types of floating plastic structured media. The three types of media evaluated were K1 kaldnes media, MB3 media, and AMB media. Volumetric total ammonia nitrogen (TAN) removal rates (g TAN removed/m3 media-day), TAN removal efficiency, and biofilm kinetic constants, Ki (h−1) were determined for the three media types at two different daily feed load rates of 3.5 and 8.2 kg feed/m3 media. The feed provided was a 4.8 mm slow sinking marine grower diet pellet (45% protein, 17% fat). Average (±standard deviation, SD) volumetric TAN removal rates (VTR) at the lower feed load for the three media types were 92.2 ± 26.3, 86.1 ± 27.5, and 82.5 ± 25.9 for the MB3, AMB, and K1 kaldnes media, respectively. At the higher feed load the average VTR for the three media types was 186.4 ± 53.7, 172.9 ± 47.8, and 139.9 ± 38.9 for the MB3, AMB, and K1 kaldnes media, respectively. Influent TAN concentrations varied by the feed load rate and ranged from 0.55 to 0.93 mg/L and 0.83 to 1.87 mg/L for the low and higher feed loads, respectively. The percent TAN removal rates for the MB3 media was the highest of the three media types at both the low and high feed load rates averaging 12.3% and 14.4%, respectively. The MB3 media was selected for use in the moving bed biofilters because of the greater VTR and removal efficiency results for use in the 0.11 m3 moving bed biofilters of the hatchery recirculating aquaculture system.  相似文献   

2.
A laboratory-scale recirculating aquaculture system for fluidised bed biofilter evaluation was engineered. The design included all components found in typical full-scale commercial production systems. The system included two identical units each with oxygenation, UV treatment, cooling, biofiltration and a particulates separation device. Water from the two systems was mixed in a degassing unit. A 1 month test period after biofilter maturation revealed stable concentrations of total ammonia nitrogen (TAN), nitrite and nitrate within the system. Mean nitrification rate was 0.27 and 0.21 g TAN m−2 day−1. Oxygen consumption in the biofilters ranged between 56 and 64% due to nitrifying activity. Mass balances on nitrogen indicated that 48%, added via the feed, was converted to nitrate within the system, with 6% of the added nitrogen being found in the sludge. The remaining 43% was either used during fish growth, left the system, as organic nitrogenous compounds (or unidentified nitrogenous compounds), via the outlet, or was lost to the atmosphere. At least 61% of the nitrate produced was generated by the biofilters. The system proved to be an exceptional set-up for evaluation of the performance of fluidised bed biofilters, allowing both pre- and post-filter measurements of various water quality criteria.  相似文献   

3.
Predicting the performance of biofilters is an engineering challenge that is critical to both designers and managers. The task is complicated by the wide variety of water quality expectations and environmental conditions displayed by a recirculating aquaculture system (RAS). A myriad of biofilters designs have been generated reflecting approaches of engineers attempting to maximize specific surface area and oxygen transfer within the context of a biofilm management strategy. A rating strategy is presented for biofilters to facilitate the identification of appropriate matches between biofiltration formats and RAS applications. As a foundation, a previously proposed RAS classification system based upon salinity, temperature and trophic levels is upgraded to create 17 systems classifications. A biofilter classification system identifies seven combinations of trophic level and pH which should be sufficient to serve the RAS demands. Temperature and salinity are neglected as a means of simplifying the approach. An experimental methodology based upon chemical feeds is proposed to represent the steady-state RAS performance of the biofilters. Data is summarized by linear analysis of filter performance for concentration ranges below 1.0 g TAN m−3 and simple averaging is proposed for higher trophic levels. Input from the aquacultural engineering community and RAS aquaculturists is required to further refine the approach prior to endorsement.  相似文献   

4.
Monod kinetics are widely used to model nitrifying biofilters. However, these kinetics are incapable of representing the collapse of volumetric TAN conversion rate (VTR) under high organic loadings. Failure to recognize the underlying heterotrophic interference can lead to calibration issues as a single Monod function is applied across contrasting levels of carbon loading. This, plus an historic bias towards the analysis of peak carrying capacities leave modelers poorly prepared to serve the needs of a mariculture industry demanding oligotrophic designs for broodstock maturation and larval/fingerling production. Consequently, data was generated by a Monte Carlo technique under the assumption of heterotrophic inhibition to nitrification. The data was used to compare the accuracy of calibration of the Monod relationship using the traditional Lineweaver–Burke and Eadie–Hofstee calibration methods against direct linear regression for low substrate (mesotrophic/oligotrophic) regimes. The results indicate that a simple linear relationship with a zero intercept, calibrated on data ranging from 0.1 to 0.5 g-TAN m−3, is most suitable for the representation of the mesotrophic/oligotrophic performance of nitrifying biofilters based on a comparison of SSE for both the Monte Carlo and field data analyzed herein. Additionally, the coefficient of variation was found to be between 7 and 8% for the parameter τ, which is the slope of the linear relationship between total ammonia nitrogen (TAN) and VTR while the CV for the Monod parameters ranged between 22 and 143% for VTRmax and between 29 and 137% for the apparent half-saturation constant showing the improved stability of the linear model to that of the Monod model.  相似文献   

5.
Three kinds of locally available plastic biofilter media with different configurations (plastic rolls, PVC pipes and scrub pads) were evaluated for their efficiency in organic waste removal from the effluents of an intensive recirculating tilapia culture system. A set of three types of solid-removing filters consisting of screened sedimentation; upflow sand as well as plastic bead filtration accomplished the mechanical filtration. Values of critical metabolic wastes like total ammonia nitrogen (TAN) (0.92 ppm) and nitrite-nitrogen (NO2-N) (0.22 ppm) were found to be well within the acceptable limits, while other water quality parameters in the culture water were also maintained within the normal range by the filtration system. Removal rates of 3.46 g TAN/m3 per day and 0.77 g NO2-N/m3 per day, as well as TAN and NO2-N removal efficiencies of 29.37 and 27.3% respectively, were established to be the best for the plastic-roll biofilter medium as compared to PVC-pipe and scrub-pad media. Percent removal of TAN and NO2-N per pass of the biofilter (25.49 and 26.3% respectively) and the specific TAN and NO2-N removal rates (43 and 9.6 mg/m2 per day) of plastic rolls were also found to be superior to the other two biofilter media. Pieces of PVC pipes as biofilter medium is recommended to be used in the biofilters in view of their cheaper cost.  相似文献   

6.
The effect of water velocity on nitrification rates in fixed bed biofilters was investigated in three freshwater pilot scale RAS with rainbow trout. Removal of total ammonia nitrogen (TAN) and nitrite-nitrogen were assessed by NH4Cl spikes and tested at four different water velocities in the biofilters (1.4, 5.4, 10.8 and 16.2 m h−1) under identical conditions. Water velocities below 10.8 m h−1 significantly reduced TAN- and nitrite removal rates. The surface specific TAN removal rates correlated with the TAN concentrations at the water velocities 10.8 and 16.2 m h−1, and the first order surface removal rate constant was estimated at 0.45 m h−1. However, no correlations between TAN removal and TAN concentrations were found at the lowest velocities. Up to five-fold elevated nitrite levels were found in the RAS when biofilters were operated at 1.4 m h−1 compared to the trials at other water velocities, substantiating the significant effect of water velocity on both nitrification processes. The importance of biofilter hydraulics documented in this pilot scale RAS probably have implications for design and operation in larger scale RAS.  相似文献   

7.
Laboratory data and information from the literature were used to develop an equation that models ammonia removal by submerged biofilters. The equation is based on the half-order/zero-order kinetics model and fixed biofilm nitrification, which indicates that the nitrification rate is a linear function of the ammonia concentration at ammonia concentrations <2.0 mg/l. Input data for the equation include easily gathered information of flow rate, biofilter size, maximum permissible ammonia level, biofilter influent and biofilter effluent ammonia concentrations, temperature, and ammonia production rate. The equation can be used to determine the carrying capacity of the submerged biofilters, to estimate biofilter sizes needed to support various fish loads, and to investigate the effects of changes in biofilter system parameters on carrying capacity. Comparisons of the predicted and actual carrying capacities of several experimental biofilters indicated that the equation accurately predicted carrying capacity under most conditions. Studies of the sensitivity of the equation to changes in system parameters demonstrated that flow rate limits biofilter performance and suggested an approach for determining cost-effective flow rates for biofilter operation.  相似文献   

8.
Florfenicol (Aquaflor®) is the only U.S. Food and Drug Administration (FDA) approved drug for treating diseased fish reared in recirculating aquaculture systems (RAS). Treating diseased fish in RAS is challenging because of the potential to damage nitrifying bacteria in the biofilters. Impaired nitrification can lead to concentrations of ammonia and nitrite that compromise fish welfare. The objective of this study was to determine the effects of a FDA‐approved parasiticide and fungicide, Parasite‐S® (formalin), on biofilter nitrification. Stable biofilters were exposed once to 0, 9.25, 18.5, 37, or 55.5 mg/L formaldehyde. Total ammonia nitrogen (TAN) and nitrite nitrogen were monitored daily before and throughout the study to quantify biofilter function. Formaldehyde concentrations ≥37 mg/L increased TAN and nitrite nitrogen concentrations, and nitrification did not recover to pre‐exposure concentrations up to 8 day postexposure. On the basis of those results, a second trial was conducted. Stable biofilters were exposed once or on four consecutive days to 9.25 or 18.5 mg/L formaldehyde. Biofilters repeatedly exposed to formaldehyde showed signs of impairment and had variable recovery relative to single exposures. Results of this study may help identify formaldehyde concentrations that can be safely applied to RAS when treating diseased fish.  相似文献   

9.
复合生物过滤技术在水产养殖废水处理中的应用研究进展   总被引:1,自引:1,他引:1  
介绍了复合生物过滤技术的概念、原理、特点,以及植物滤器与微生物滤器复合生物过滤技术、动物滤器与植物滤器或微生物滤器过滤等主要几种复合生物过滤技术在实际生产中的应用,探讨了复合生物过滤技术在养殖废水处理中的发展趋势。  相似文献   

10.
Marine recirculation aquaculture system (RAS) is a prominent technology within fish farming. However, the nitrifying bacteria in the biofilter have low growth rates, which can make the biofilter activation a long and delicate process with periods of low nitrification rates and variations in water quality. More knowledge on the microbial development in biofilters is therefore needed in order to understand the rearing conditions that favour optimal activation of the biofilters. In this case study, we investigated the activation of two biofilters in a marine RAS for Atlantic salmon post‐smolt associated with either high or low stocking densities of fish by monitoring the microbial communities and chemical composition. The results showed that the microbial communities in both biofilters were similar during the first rearing cycle, despite variations in the water quality. Nitrifying bacteria were established in both biofilters; however, the biofilter associated with low stocking density had the highest relative abundance of ammonia‐oxidizing Nitrosococcus (1.0%) and nitrite‐oxidizing Nitrospira (2.1%) at the end of the first rearing cycle, while the relative abundance of ammonia‐oxidizing Nitrosomonas (2.3%–2.9%) was similar in both biofilters. Our study showed that low fish stocking density during the first rearing cycle provided low and steady concentrations of ammonium, nitrite and organic load, which can stimulate rapid development of a nitrifying population in new marine RAS biofilters.  相似文献   

11.
Nitrification kinetics of biofilm as affected by water quality factors   总被引:12,自引:0,他引:12  
Various types of fixed film biofilters have been used in recirculating aquaculture systems under different water quality and operating conditions. The effectiveness of the nitrification process can be evaluated by nitrification kinetics. Nitrification in the bacterial film of the biofilter involves physical, chemical and biological processes that are governed by a variety of parameters such as substrate and dissolved oxygen concentrations, organic matters, temperature, pH, alkalinity, salinity and turbulence level. The impacts of these parameters upon nitrification kinetics make predicting the performance of a biofilter for a given application an engineering challenge. Knowing the performance of a biofilter is critical for both designers and managers. This paper summarizes the current knowledge on nitrification kinetics as affected by the aforementioned factors based on literature and the results from the authors’ laboratories. These factors were ranked according to their significance of impact on biofilter nitrification performance. The information presented can be used as a reference for the design and operation of biofilters in recirculating aquaculture systems.  相似文献   

12.
The potential benefit of integrating mangrove and shrimp farms to protect ponds against erosion, to enhance the productivity of supply water and also to treat pond effluents has been pointed out previously. Agrosoledad, a 286‐ha shrimp farm located on the Caribbean coast of Colombia, was constructed behind a 1‐km‐wide mangrove area. Farm effluents are partially recirculated through a 120‐ha mangrove wetland used as a biofilter. A 3‐month study compared the concentrations of suspended solids and inorganic nutrients in the supply canal, the pond drainage and the biofilter. Suspended solids increased in pond drainage compared with supply water, but they were drastically reduced in the biofilter. In contrast, dissolved inorganic nitrogen and phosphorus concentrations were not different in supply water and pond drainage, but they increased in the biofilter because of the presence of a large marine bird community. Additionally, a significant decrease in dissolved oxygen and pH was observed in the biofilter. The study demonstrated the efficiency of the system to eliminate suspended solids from the effluent. However, nutrient dynamics showed that the possible use of mangrove wetlands as biofilters for effluent treatment will be less predictable than expected.  相似文献   

13.
Total ammonia nitrogen (TAN) concentration is often a key limiting water quality parameter in intensive aquaculture systems. Removing ammonia through biological filtration is thus the first objective in recirculating aquaculture system design. In this study, the performance characteristics of a steady-state nitrification biofilm were explored using a series of reactors. Four nitrification kinetics parameters were estimated using the data collected from the experimental system, including minimum TAN concentration, half saturation constant, maximum TAN removal rate and maximum specific bacterial growth rate. Experimental data showed that a minimum TAN concentration was needed to support a steady-state nitrification biofilm. For the temperature of 27.2°C, the mean minimum TAN concentration was 0.07 mg/l. For a single substrate-limiting factor, the relationship between TAN removal rate (R) and TAN concentration (S) was represented by an empirical equation [R=1859(S−0.07)/(S+1.93)]. The characteristics of nitrite oxidation were also demonstrated by the experiment system. The results of this study will help to better understand the characteristics of nitrification biofilters applied in recirculating aquaculture systems.  相似文献   

14.
The study investigated the growth performance of abalone from juvenile to marketable size in a commercial-scale recirculating aquaculture system. The rearing system consisted of 12 raceways (4.0 × 0.8 × 0.6 m) with a protein skimmer and a submerged biofilter for juveniles and 10 raceways (6.6 × 1.3 × 0.6 m) with a protein skimmer and a trickling biofilter for on-growing. Sea mustard (Undaria pinnatifida) and kelp (Laminaria japonica) were fed to the abalone. The total weight of abalone in the recirculating aquaculture system at the juvenile stage increased from 22.0 kg (average shell length 24.5 mm) to 75.5 kg (average shell length 42.5 mm) after 180 days. Feed conversion ratios increased slightly from 13.7 for the first 90 days to 16.3 thereafter. The shell growth rate of juvenile abalone between 24.5 mm and 34.8 mm was 3.4 mm month−1, while for juveniles between 34.8 mm and 42.5 mm it was 2.6 mm month−1. The total weight of abalone in the recirculating aquaculture system for the on-growing stage increased from 100.0 kg (average shell length 44.0 mm) to 433.3 kg (average shell length 72.7 mm) after 570 days. The feed conversion ratios for the first 173 days, the next 320 days, and the last 570 days were 19.6, 22.1, and 24.8, respectively. The growth rate of the average shell length during the on-growing period was 1.5 mm month−1. Total ammonia nitrogen (TAN) concentrations were stabilized below 0.12 mg l−1 in the juvenile recirculating system and 0.14 mg l−1 in the on-growing recirculating system after conditioning of the biofilters.  相似文献   

15.
From an environmental point of view, hydrogen peroxide (HP) has beneficial attributes compared with other disinfectants in terms of its ready degradation and neutral by‐products. The rapid degradation of HP can, however, cause difficulties with regard to safe and efficient water treatment when applied in different systems. In this study, we investigated the degradation kinetics of HP in biofilters from water recirculating aquaculture systems (RAS). The potential effect of HP on the nitrification process in the biofilters was also examined. Biofilter elements from two different pilot‐scale RAS were exposed to various HP treatments in batch experiments, and the HP concentration was found to follow an exponential decay. The biofilter ammonia and nitrite oxidation processes showed quick recuperation after exposure to a single dose of HP up to 30 mg L?1. An average HP concentration of 10–13 mg L?1 maintained over 3 h had a moderate inhibitory effect on the biofilter elements from one of the RAS with relatively high organic loading, while the nitrification was severely inhibited in the pilot‐scale biofilters from the other RAS with a relatively low organic loading. A pilot‐scale RAS, equipped with two biofilter units, both a moving‐bed (Biomedia) and a fixed‐bed (BIO‐BLOK®) biofilter, was subjected to an average HP concentration of ~12 mg L?1 for 3 h. The ammonium‐ and nitrite‐degrading efficiencies of both the Biomedia and the BIO‐BLOK® filters were drastically reduced. The filters had not reverted to pre‐HP exposure efficiency after 24 h, suggesting a possible long‐term impact on the biofilters.  相似文献   

16.
Design and management of conventional fluidized-sand biofilters   总被引:2,自引:0,他引:2  
Fluidized-sand beds are an efficient, relatively compact, and cost-competitive technology for removing dissolved wastes from recirculating aquaculture systems, especially in relatively cool or coldwater applications that require maintaining consistently low levels of ammonia and nitrite. This paper describes several types of flow injection mechanisms used in commercial fluidized-sand biofilters and provides criteria for design of flow distribution mechanisms at the bottom of the fluidized bed. This paper also summarizes the most critical aspects of sand selection, as well as methods for calculating or experimentally measuring fluidization velocities and pressure drop for a given filter sand size distribution. Estimates of nitrification rate, ammonia removal efficiency, carbon dioxide production, and oxygen consumption across fluidized-sand biofilters are also provided for various conditions. Fluidized-sand biofilter operational and management practices are also described.  相似文献   

17.
This study investigated how removal rates of urea, ammonia, and nitrite in laboratory scale moving bed biofilters were affected by long-term feed loading. To generate different loadings, five identical freshwater flow-through systems (100 l/h) with rainbow trout (Oncorhynchus mykiss) were fed increasing fixed rations of a commercial diet. The filtered effluent from each system was lead through a moving bed biofilter installed end-of-pipe. After an acclimatization period of four months, the moving bed biofilters were spiked separately with urea, ammonia and nitrite in batch mode in three successive trials to investigate degradation kinetics. Results showed that urea, in addition to ammonia and nitrite, was degraded although the substrate limited/dependent removal rate of urea (first order kinetic) was lower than that of ammonia and nitrite. Degradation of urea could be described as first order kinetics below 2.5 mg N/l. Degradation of total ammonia nitrogen (TAN) and nitrite was substrate independent (zero order kinetic) above 2 mg N/l and subsequently substrate dependent as substrate concentrations in the bulk water declined. The transition zone from zero to first order degradation was elevated with increase in long-term biofilter loading. For ammonia and nitrite, a significant increase in the zero order removal rate constants related to long-term loading were observed up to a long-term feed loading of 207 g/d, corresponding to 69 g feed/m2 filter media/d and an TAN + urea-N concentration of 2.70 mg N/l. Long-term feed loading had no obvious effect on first order removal rate constants of any of the three nitrogenous compounds. Degradation of urea resulted in generation of ammonia demonstrating that urea degradation contributes to the ongoing nitrification activity in aquaculture biofilters. For all three types of spiking (urea, ammonia and nitrite) accumulation of nitrate was observed in the moving bed biofilters, sustaining that nitrification had occurred.  相似文献   

18.
Competition between heterotrophic and nitrifying bacteria is of major practical importance in aquaculture biofilter design and operation. This competition must be understood to minimize the negative impact of heterotrophic bacteria on an aquaculture system. On the other hand, the heterotrophic population is suspected of having a positive effect against pathogenic bacteria. Little information is available on the bacterial communities present within aquaculture systems, except for nitrifying bacteria, but a combination of traditional aquacultural engineering research methods and novel microbiological techniques offers new opportunities for the study of these communities.

The heterotrophic bacterial population activity and the nitrification efficiency of a submerged biological filter were studied for an influent TAN concentration of 2 mg/l and varying C/N ratios. The TAN removal rate was found to be 30% lower at a C/N ratio of 0.5 than at a C/N ratio of 0. For higher C/N ratios the reduction in nitrification efficiency was 50% while the attached bacterial abundance was doubled. Moreover, results confirm that abundance of sheared and attached bacteria are correlated. It is not known to what extent biofilter configuration might influence the relationship between heterotrophic and nitrifying bacteria, and further work will be carried out with moving bed and fluidized filters. A better understanding of the role of the heterotrophic bacteria in RAS will help to optimize any positive “biocontrol” effect and to minimize the microbial degradation of rearing water and the reduction of nitrification rates.  相似文献   


19.
The red seaweed Asparagopsis armata (Harvey; Rhodophytae, Bonnemaisoniaceae) produces biologically active secondary metabolites that are valuable natural ingredients for cosmetics and medicine and its cultivation may therefore be a profitable venture. The tetrasporophyte of this species (“Falkenbergia rufolanosa”) was successfully tank-cultivated as a continuous biofilter for the effluent of a commercial fish farm in southern Portugal. Optimal stocking density for highest biomass yield and a low level of other algal species in winter and late spring was 5×g centrifuged fresh weight l− 1. The effect of total ammonia nitrogen supply (TAN flux) on biofiltration and biomass yield was investigated in winter and spring. Results revealed that A. armata is currently the seaweed-biofilter with the highest TAN removal of up to 90 μmol l− 1 h− 1 at a TAN flux of about 500 μmol l− 1 h− 1. In the tanks used, this is equivalent to a removal of up to 14.5 g TAN m− 2 day− 1. At a lower TAN flux of about 40 μmol l− 1 h− 1, TAN removal by A. armata is more than double to what is reported at this flux for another successful seaweed biofilter, the genus Ulva. Monthly variation of A. armata biomass yield peaked in May and was lowest in January. At TAN fluxes between 300 and 400 μmol l− 1 h− 1, an average water temperature of 21.7 °C and a total daily photon flux density of 47 Mol m− 2, seaweed yield was over 100 g DW m− 2 day− 1 with a recorded maximum of 119 g. During spring, autumn and early summer, the biomass of A. armata within the experimental tanks doubled every week. A model for the up scaling of this finfish integrated aquaculture of A. armata varies the investment in biofilter surface area and estimates the return in biofiltration and biomass yield. Highest TAN removal efficiencies will only be possible at low TAN fluxes and a very large biofilter area, resulting in a low production of biomass per unit area. To remove 50% of TAN from the effluent (1 mt Sparus aurata; 21 °C), 28 m2 of biofilter, designed to support a water turnover rate of 0.8 Vol h− 1 would be necessary. This system produces 6.1 kg FW (1.5 kg DW) of A. armata per day and has the potential to turn biofiltration into an economically sustained, beneficial side effect.  相似文献   

20.
The reciprocating biofilter is automatically dewatered at regular and frequent intervals, in contrast to the conventional upflow submerged biofilter which is continually inundated. Reciprocating biofilters were compared with submerged biofilters in terms of ability to maintain water quality in small-scale fish holding units. In the first trial the reciprocating filter systems averaged 35% more fish in terms of numbers, 59% more fish in terms of weight, and a 45% greater feeding rate. In the second trial the reciprocating filter systems averaged 29% more fish in terms of numbers, 33% more fish in terms of weight, and a 29% greater feeding rate. Superior performance of the reciprocating filters appeared to be the results of resistance to clogging and improved aeration of the filter substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号