首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Aflatoxins are a group of very carcinogenic mycotoxins that can be found on a wide range of food commodities including nuts, cereals, and spices. In this study, the first LC-MS/MS stable isotope dilution assay (SIDA) for the determination of aflatoxins in foods was developed. The development of this method was enabled by easily accessible isotope-labeled (deuterated) aflatoxins B2 and G2, which were synthesized by catalytic deuteration of aflatoxin B1 and G1, purified, and well-characterized by NMR and MS. All four aflatoxins of interest (B1, B2, G1, and G2) were quantified in food samples by using these two labeled internal standards. The response factors (RF) of the linear calibrations were revealed to be matrix independent for labeled aflatoxin B2/aflatoxin B2 and labeled aflatoxin G2/aflatoxin G2. For labeled aflatoxin B 2/aflatoxin B 1 and labeled aflatoxin B2/aflatoxin G1 matrix-matched calibration was performed for the model matrices almonds and wheat flour, showing significant differences of the RFs. Limits of detection (LOD) were determined by applying a statistical approach in the presence of the two model matrices, yielding 0.31 microg/kg (aflatoxin B1), 0.09 microg/kg (aflatoxin B2), 0.38 microg/kg (aflatoxin G1), and 0.32 microg/kg (aflatoxin G2) for almonds (similar LODs were obtained for wheat flour). Recovery rates were between 90 and 105% for all analytes. Coefficients of variation (CV) of 12% (aflatoxin B1), 3.6% (aflatoxin B2), 14% (aflatoxin G1), and 4.8% (aflatoxin G2) were obtained from interassay studies. For further validation, a NIST standard reference food sample was analyzed for aflatoxins B1 and B2. The method was successfully applied to determine trace levels of aflatoxins in diverse food matrices such as peanuts, nuts, grains, and spices. Aflatoxin contents in these samples ranged from about 0.5 to 6 microg/kg.  相似文献   

2.
Enhanced surveillance of foodborne mycotoxins by immunochemical assay   总被引:8,自引:0,他引:8  
Mycotoxins are a chemically diverse group of fungal secondary metabolites with a wide range of toxic effects. Conventional thin-layer and instrumental methods of mycotoxin analysis are time-consuming and make routine safety and quality control screening of these compounds in agricultural commodities difficult. As an alternative, specific polyclonal and monoclonal antibodies have been raised against mycotoxin-protein conjugates and used in sensitive radioimmunoassays (RIAs) and enzyme-linked immunosorbent assays (ELISAs). One of the simplest ELISA approaches involves competition for a solid-phase antibody between a mycotoxin-enzyme conjugate and an unconjugated mycotoxin in the sample extract. ELISAs have been developed for aflatoxins B1 and M1, zearalenone, T-2 toxin, and deoxynivalenol, which are highly specific, rapid (10 min), easily adaptable for analyzing large numbers of samples, and directly applicable to assaying methanol-water extracts of a wide range of foods. Several commercial mycotoxin ELISAs using this approach (most typically for aflatoxin B1) are currently being marketed. Since ELISAs will be used in large part by personnel with limited technical expertise, individual kits must be critically evaluated by analytical chemists for suggested sampling procedures, efficiency of extraction, cross-reactivity, mycotoxin recovery, assay reproducibility, and product shelf-life prior to routine use in food safety and quality control screening.  相似文献   

3.
A screening method for aflatoxins was collaboratively tested on 11 different agricultural and food products: white and yellow corn, peanuts, peanut butter, pistachio nuts, peanut meal, cottonseed meal, chicken, pig, and turkey starter rations, and dairy cattle feed. The method involves a rapid extraction and cleanup procedure followed by the detection of total aflatoxins (B1 + B2 + G1 + G2) as a fluorescent band on the Florisil layer of a Velasco-type minicolumn. The results of 32 collaborators from 10 different countries are presented. Samples containing 0, 5, 10, 15, 20, and 25 mug aflatoxins/kg were analyzed. Eighty-four per cent of the negative samples and 89% of the samples containing 10-25 mug total aflatoxins/kg were correctly identified. This method has been adopted as official first action for the detection of aflatoxins in corn, peanuts, peanut butter, peanut meal, cottonseed meal, mixed feeds, and pistachio nuts.  相似文献   

4.
High-titer rabbit polyclonal antibodies to aflatoxin M(1) (AFM1) were produced by utilizing AFM1-bovine serum albumin (BSA) conjugate as an immunogen. An indirect competitive enzyme-linked immunosorbent assay was standardized for estimating AFM1 in milk and milk products. To avoid the influence of interfering substances present in the milk samples, it was necessary to prepare AFM1 standards in methanol extracts of certified reference material (CRM) not containing detectable AFM1 (< 0.05 ng/g). The reliability of the procedure was assessed by using CRM with AFM1 concentrations of < 0.5 and 0.76 ng/g. Also, assays of milk samples mixed with AFM1 ranging in concentration between 0.5 and 50 ng/L gave recoveries of > 93%. The relative cross-reactivity with aflatoxins (AF) and ochratoxin A, assessed as the amount of AFM1 necessary to cause 50% inhibition of binding, was 5% for AFB1 and much less for AFB2, AFG1, and AFG2; there was no reaction with ochratoxin A. AFM1 contamination was measured in retail milk and milk products collected from rural and periurban areas in Andhra Pradesh, India. Of 280 milk samples tested, 146 were found to contain < 0.5 ng/mL of AFM1; in 80 samples it varied from 0.6 to 15 ng/mL, in 42 samples from 16 to 30 ng/mL, and in 12 samples from 31 to 48 ng/mL. Most of the milk samples that contained high AFM1 concentrations were obtained from periurban locations. The results revealed a significant exposure of humans to AFM1 levels in India and thus highlight the need for awareness of risk among milk producers and consumers.  相似文献   

5.
Resistance to mycotoxin contamination was compared in field samples harvested from 45 commercial corn (maize) hybrids and 5 single-cross aflatoxin-resistant germplasm lines in years with high and moderate heat stress. In high heat stress, mycotoxin levels were (4.34 +/- 0.32) x 10(3) microg/kg [(0.95-10.5 x 10(3) microg/kg] aflatoxins and 11.2 +/- 1.2 mg/kg (0-35 mg/kg) fumonisins in commercial hybrids and 370 +/- 88 microg/kg (140-609 microg/kg) aflatoxins and 4.0 +/- 1.3 mg/kg (1.7-7.8 mg/kg) fumonisins in aflatoxin-resistant germplasm lines. Deoxynivalenol was detected (one-fourth of the samples, 0-1.5 mg/kg), but not zearalenone. In moderate heat stress, mycotoxin levels were 6.2 +/- 1.6 microg/kg (0-30.4 microg/kg) aflatoxins and 2.5 +/- 0.2 mg/kg (0.5-4.8 mg/kg) fumonisins in commercial hybrids and 1.6 +/- 0.7 microg/kg (0-7 microg/kg) aflatoxins and 1.2 +/- 0.2 mg/kg (0.5-3.0 mg/kg) fumonisins in aflatoxin-resistant germplasm lines. The results are consistent with heat stress playing an important role in the susceptibility of corn to both aflatoxin and fumonisin contamination, with significant reductions of both aflatoxins and fumonisins in aflatoxin-resistant germplasm lines.  相似文献   

6.
Uptake and elimination of aflatoxins (AFs) by rainbow trout ( Oncorhynchus mykiss ) during a long-term (21 days) dietary exposure were studied to assess contamination by AFs in aquaculture fish fed AF-containing feed. The uptake factor (UF) of aflatoxin B(1) (AFB(1)) in muscle ranged from 0.40 × 10(-3) to 1.30 × 10(-3). AFB(1) concentrations in liver were 165-342 times higher than in muscle. AFs from feed were more highly accumulated in liver than in muscle. Aflatoxicol (AFL) and aflatoxin M(1) (AFM(1)) were detected in muscle and liver and also in the rearing water. AFL concentrations were higher than AFM(1) by 2 orders of magnitude in muscle, and AFL was a major metabolite of AFB(1). The elimination rate constants (α) of AFB(1) and AFL in muscle (1.83 and 2.02 day(-1), respectively) and liver (1.38 and 2.41 day(-1), respectively) were very large. The elimination half-life (t(1/2)) of AFB(1) was 0.38 days (9.12 h) in muscle and 0.50 days (12.00 h) in liver. The elimination half-life of AFL in muscle and liver was 0.34 day (8.16 h) and 0.29 day (6.96 h), respectively. These data show that AFs are eliminated rapidly and are not biomagnified in fish. Thus, AFB(1) concentration in muscle of fish fed AFB(1)-containing feed (ca. 500 μg/kg) decreased to below the detection limit (20 ng/kg) of the most sensitive analytical method at 1.54 days (36.96 h) after the change to uncontaminated feed.  相似文献   

7.
A comparative study on the natural occurrence of aflatoxins and Fusarium toxins was conducted with corn samples from high- and low-incidence areas for human primary hepatocellular carcinoma (PHC) in Guangxi, China. In samples from the high-risk area, aflatoxin B(1) was the predominant toxin detected in terms of quantity and frequency, with its concentration ranging between 9 and 2496 microg/kg and an 85% incidence of contamination. Among the samples, 13 (76%) exceeded the Chinese regulation of 20 microg/kg for aflatoxin B(1) in corn and corn-based products intended for human consumption. Significant differences in aflatoxin B(1), B(2), and G(1) and total aflatoxin concentrations in corn between the areas were found (P < 0.05). The average daily intake of aflatoxin B(1) from corn in the high-risk area was 184.1 microg, and the probable daily intake is estimated to be 3.68 microg/kg of body weight/day, 3.20 times the TD(50) in rats. Corn samples from both areas were simultaneously contaminated with fumonisins B(1), B(2), and B(3). Aflatoxin B(1) may play an important role in the development of PHC in Guangxi.  相似文献   

8.
The methanol-water extraction system used in AOAC Method II for aflatoxins extracts both the aflatoxins and zearalenone from corn. Using this methanol-water extraction system as a base, a rapid screening procedure has been developed for these mycotoxins. The methanol-water extract is defatted with hexane and the pigments are precipitated with copper carbonate. The aflatoxins and zearalenone are subsequently extracted into chloroform and are then detected by half-plate TLC. An elapsed time of about 1 hr is required to analyze 1 sample. The sensitivity of the method is about 2 mu-g/kg for aflatoxin B-1 and 100 mu-g/kg for zearalenone.  相似文献   

9.
Screening for aflatoxins (Afs), isolation and identification of Aspergillus flavus, and the effect of decaffeination and roasting on the level of contamination in coffee beans are studied. The percent frequency of A. flavus ranged between 4 and 80% in green coffee beans (GCB), whereas in ground roasted coffee beans (GRCB), it ranged between 1 and 71%. Aflatoxins were detected in 76.5 and 54.6% of the infected samples with averages of 4.28 and 2.85 microg/kg of GCB and GRCB, respectively. Roasting was demonstrated to lower the concentration of Afs in GCB. The Afs levels were reduced by approximately 42.2-55.9% depending on the type and temperature of roasting. The highest yields of Afs were detected in the decaffeinated green coffee beans (24.29 microg/kg) and roasted coffee beans (16.00 microg/kg). The growth of A. flavus in liquid medium containing 1 or 2% caffeine was reduced by 50%, and the level of aflatoxin in the medium was undetectable.  相似文献   

10.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

11.
The aim of this work was to develop an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B(1) in pig feed. The test consisted of three main components: conjugate pad, membrane, and absorbent pad. The membrane was coated with two capture reagents, that is, aflatoxin B(1)-bovine serum albumin conjugate and rabbit anti-mouse antibodies. The detector reagent consisted of colloidal gold particles coated with affinity-purified monoclonal anti-aflatoxin B(1) antibodies, which saturated the conjugate pad. A comparison of several extraction methods for the pig feed matrix is presented. A mixture of methanol/water (80:20, v/v) gave the best recoveries. After sample extraction and dilution, the dipstick was put in the sample solution at the conjugate pad side and developed for 10 min. Analyte present in the sample competed with the aflatoxin B(1) immobilized on the membrane for binding to the limited amount of antibodies in the detector reagent. Thus, the line color intensity of an aflatoxin B(1)-positive dipstick is visually distinguishable from that of an aflatoxin B(1)-negative sample. The visual detection limit for aflatoxin B(1) is 5 microg/kg. The major advantages of this one-step striptest are that results can be obtained within 10 min and that all reagents are immobilized on the lateral flow dipstick.  相似文献   

12.
A previously published method for ochratoxin A was evaluated and proved appropriate for simultaneous determination of aflatoxins, ochratoxin A, sterigmatocystin, and zearalenone, with considerable savings in time and reagent costs. The detection limits were 2, 5, 15, and 55 micrograms/kg, respectively. The recoveries and coefficients of variation obtained with artificially contaminated samples were 91-101% and 0-16% for aflatoxin B1, 98-117% and 0-17% for sterigmatocystin, and 96-107% and 0-17% for zearalenone, respectively. The coefficients of variation for naturally contaminated samples (aflatoxins in rice and ochratoxin A in beans) ranged from 0 to 8%. The method was used to survey 296 samples that included 10 cultivars of dried beans, 8 types of corn products, 3 types of cassava flour, and both polished and parboiled rice between May 1985 and June 1986 in Campinas, Brazil. Only aflatoxin B1 (9 samples, 20-52 micrograms/kg), aflatoxin G1 (4 samples, 18-31 micrograms/kg), and ochratoxin A (5 samples, 32-160 micrograms/kg) were found. The average contamination percentage was 4.7%; beans showed the highest (6.6%) and rice showed the lowest (3.3%) incidence rates. Zearalenone and sterigmatocystin were not detected. Positive samples were confirmed by chemical derivatization, corroborated by development in 3 solvent systems.  相似文献   

13.
A simple method is proposed for determination of aflatoxins in vegetable oils. The method was successfully applied to both crude and degummed oils. The oil sample, dissolved in hexane, was applied to a silica column and washed with ether, toluene, and chloroform; aflatoxins were eluted from the column with chloroform-methanol (97 + 3). As quantitated by thin layer chromatography and liquid chromatography, the oils analyzed contained aflatoxin B1 at levels of 5-200 micrograms/kg. Recoveries of aflatoxin B1 standards added to aflatoxin-free oils were between 89.5 and 93.5%, with coefficients of variation of 6.3-8.0%.  相似文献   

14.
A chemical cleanup procedure for low-level quantitative determination of aflatoxins in major economically important agricultural commodities using HPLC has been developed. Aflatoxins were extracted from a ground sample with MeOH/H2O (80:20, v/v), and after a cleanup step on a minicolumn packed with Florisil, aflatoxins were quantified by HPLC equipped with a C18 column, a photochemical reactor, and a fluorescence detector. Water/MeOH (63:37, v/v) served as the mobile phase. Recoveries of aflatoxins B1, B2, G1, and G2 from peanuts spiked at 5, 1.7, 5, and 1.7 ng/g were 89.5+/-2.2, 94.7+/-2.5, 90.4+/-1.0, and 98.2+/-1.1, respectively (mean+/-SD, %, n=3). Similar recoveries, precision, and accuracy were achieved for corn, brown and white rice, cottonseed, almonds, Brazil nuts, pistachios, walnuts, and hazelnuts. The quantitation limits for aflatoxins in peanuts were 50 pg/g for aflatoxin B1 and 17 pg/g for aflatoxin B2. The minimal cost of the minicolumn allows for substantial savings compared with available commercial aflatoxin cleanup devices.  相似文献   

15.
Aflatoxins are the only mycotoxins with legal limits for spices in the European Union. A further limit for ochratoxin A is expected to be adopted soon. Thus, rapid simultaneous methods for quantifying the five mycotoxins are sought. Liquid extraction, immunoaffinity column cleanup, and HPLC-FD with a wavelength program were optimized for the analysis of the five mycotoxins in paprika, a complex fatty matrix. The limits of detection ranged from 0.3 to 0.6 microg/kg. Repeatability (RSDr) ranged from 7.9 to 13.4%, and recoveries were between 61.4 and 77.8%, in both cases at the lower spike level. Aflatoxins, when found, were far below the two legal limits of 5 microg/kg for aflatoxin B 1 and 10 microg/kg for total aflatoxins. Ochratoxin A was more frequently found, with a mean of 11.8 microg/kg, and in a more varied range (SD = 18.9 microg/kg). When an automation of the precolumn derivatization step was attempted, the procedure proved to be unfeasible, but experience derived from this trial and from the general employment of this reaction enables some comments on the possibilities and limitations of this procedure and on research for an alternative one to be made.  相似文献   

16.
Sensitive and selective enzyme-linked immunosorbent assays (ELISAs) in the immobilized antigen format were developed for fenoxycarb (1), an insect growth regulator (IGR). The parent molecule [ethyl 2-(4-phenoxyphenoxy)ethylcarbamate] was derivatized at several positions to obtain haptens (2-5) that were used to produce protein conjugates and rabbit polyclonal antisera. Amino derivatives of fenoxycarb at the terminal and internal rings (2 and 3, respectively) were linked to carrier proteins by azo coupling. Carboxyalkyl-spacer groups were attached to the ethyl group and the nitrogen atom of the target compound (1) to obtain haptens 4 and 5, respectively. Hapten-homologous ELISAs based on protein conjugates of compounds 2 and 4 determined fenoxycarb in the mid-ppb range (IC(50), 102 and 95 ppb, respectively). A more sensitive hapten-heterologous ELISA (IC(50), 17 ppb; detection limit 0.5 ppb) involved the antiserum raised against a conjugate of hapten 2 and the plate-coating antigen obtained from compound 3. These assays displayed no significant interferences with photodegradation products of fenoxycarb, the IGRs methoprene and pyriproxyfen, and a variety of pesticides including the pyrethroids fenvalerate and cypermethryn, the phenoxyacetic acid herbicide 2,4-D, DDT, and the nitrodiphenyl ether herbicides acifluorfen and fluorodifen.  相似文献   

17.
Enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for the detection of triazole fungicides have been developed. With this aim, hapten-protein conjugates, containing the common triazole and chlorinated aromatic moieties, were prepared. From mice immunized with these conjugates, several monoclonal antibodies (MAbs) with the ability to sensitively bind several triazoles with different specificity were obtained. Both analyte- and class-specific ELISAs were developed. The hexaconazole-specific immunoassay can determine this fungicide with a limit of detection of 0.3 mug/L in standard buffer. The so-called triazole-specific immunoassay allowed for the detection of tetraconazole, penconazole, cyproconazole, and myclobutanil, with limits of detection in the 0.1-0.7 mug/L range. These immunoassays were applied to the determination of triazoles in spiked fruit juices. Samples were adequately diluted to minimize the matrix effects. Coefficients of variation were below 30%, and recoveries ranged from 62 to 135%. Therefore, the developed immunoassays can determine triazole fungicides in fruit juices down to the maximum residue limits currently legislated, without any sample treatment other than dilution.  相似文献   

18.
A study is presented for the quantitative fluorodensitometric analysis of aflatoxins in spices, in particular nutmeg (Semen myristicae). Samples were extracted with chloroform, followed by silica gel column cleanup according to the AOAC officail first action method, 26.019(a), and by 2-dimensional thin layer chromatography according to the antidiagonal technique. The method includes a confirmatory test for aflatoxins by hemiacetal formation. The concentrations of aflatoxins in samples were determined by measurement of the fluorescent intensities of the separated aflatoxin spots from sample and standards on the same chromato-plate with a reflectance flying-spot sensitometer. With such a technique, a coefficient of variation value of 5.22 plus or minus 1.24% (P = 99%) was calculated for a series of 5 standard B-1 spots and averaged for 13 TLC plates, demonstrating the precision of the chromatographic and densitometric procedures. An average recovery of 108.4 plus or minus 5.8% (P = 95%) was obtained for 11 spiked nutmeg extracts (5.0-20.0 mu-g B-1 added/kg), whereas an average recovery of 92.6 plus or minus 4.9 (P = 95%) was established for 13 spiked nutmeg samples (5.0-20.0 mu-g B-1 added/kg). The coefficient of variation of the complete analytical procedure for ground nutmeg was 8.80%. In a survey on the occurrence of aflatoxins in 40 commercial nutmeg samples (covering 12 different brands) in The Netherlands, aflatoxins were detected in 30 ground samples (32 ground samples analyzed) in concentrations ranging from 1.0 to 23.2 mu-g B-1/kg or 2.7 to 36.5 mu-g B-1 + B-2 + G-1 + G-2/kg, whereas no aflatoxins were present in whole nutmeg kernels (8 samples analyzed). The lowest level of detection was 1.0 mu-g B-1/kg. In addition, 50 commercial spices consisting of 19 different types of commodities other than nutmeg wer assayed for aflatoxins according to the same procedure. No aflatoxins were detected in these samples, with the exception of 1 sample of bay leaf which contained 5.1 mu-g B-1/kg.  相似文献   

19.
We have used monoclonal antibody technology to produce antibodies that recognize aflatoxins in order to develop noninvasive methods in conjunction with other chemical analytical techniques to monitor human exposure to environmental carcinogens. These methods require the ability to quantitate aflatoxins and their metabolites, including DNA and protein adducts, in readily accessible compartments such as serum and urine. The techniques permit efficient analysis of many samples in a relatively short time. Also, these monoclonal antibody affinity columns have been extremely useful for rapid isolation of aflatoxins from food and grain samples, as well as aflatoxin M1 from milk. Monoclonal antibody affinity methods are nondestructive to the aflatoxin molecule, so the sample aliquot can be used for confirmation. The use of monoclonal antibody preparative affinity columns represents a major, substantive breakthrough for analytical chemists and will be a generally applicable technology for isolation of many different substances.  相似文献   

20.
Two varieties of hulled rice artificially contaminated with aflatoxins at five different levels were processed by dehulling and polishing methods. Contamination levels ranged from 356 to 818 microg/kg and from 244 to 645 microg/kg in medium and long grain rice, respectively. After physical processing, four different milled fractions were obtained (hull, bran, polished broken grains, and polished whole kernels). The fractions were analyzed for total aflatoxins (B1, B2, G1, and G2) by enzyme-linked immunosorbent assay (ELISA). Aflatoxins were removed in fractions intended for human consumption (polished broken grains and polished whole kernels) at rates up to 97%. They were found throughout all fractions, but higher contamination levels were detected in hull and bran fractions than in unprocessed kernels and polished fractions. Regardless of the rice variety, the aflatoxin distribution pattern depended on the initial contamination level and type of milled fraction but not on the duration of polishing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号