首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Post-weaning multisystemic wasting syndrome (PMWS) associated with PCV2 is one of the most costly diseases currently faced by the swine industry. The development of effective vaccines against PCV2 infection has been accepted as an important strategy in the prophylaxis of PMWS.

Methods

In the present study, a PK-15 cell-adapted formalin-inactivated prototype vaccine candidate was prepared using a strain of PCV2 from China. Inactivation of the virus was accomplished using a standard formalin inactivation protocol. The protective properties of the inactivated PCV2 vaccine were evaluated in piglets. Ten 28-day-old pigs were randomly assigned to two groups, each with five. Group 1 was vaccinated intramuscularly with the inactivated virus preparation; Group 2 received sterile PBS as a placebo. By 28 days post-vaccination (DPV), Groups 1 and 2 were challenged intranasally and intramuscularly with 5 × 107 TCID50 of a virulent PCV2 isolate.

Results

The vaccinated pigs seroconverted to PCV2 and had high levels of serum antibodies to PCV2 at 28 days after vaccination, whereas the control pigs remained seronegative. No significant signs of clinical disease were recorded following the challenge with PCV2, but moderate amounts of PCV2 antigen were detected in most lymphoid organs of the control pigs. PCV2 was detected in two out of the five vaccinated pigs. Furthermore, pathological lesions and viremia were milder in the vaccinated group.

Conclusions

The obtained results indicate that the inactivated PCV2 virus vaccine with an oil adjuvant induce an immunological response in pigs that appears to provide protection from infection with PCV2. The vaccine, therefore, may have the potential to serve as a vaccine aimed to protect pigs from developing PMWS.  相似文献   

2.
Seven vaccines prepared from pathogenic strains of different origin of Leptospira interrogans [serovars icterohaemorrhagiae (one strain) and copenhageni (6 strains)] were examined in protection tests on golden hamsters. Two of the copenhageni strains were used for challenge. The organs (kidneys, spleen, liver) in the vaccinated animals surviving challenge were protected to a varying degree. Low rates of survival were associated with a high incidence of Leptospira-positive findings, partly connected with focal lesions of the kidneys. On the other hand, in the groups in which all the animals survived, it was not possible to culture leptospires from their organs or to detect leptospiral antigen in these organs by immunohistochemical investigation. A protection of the organs that prevents vaccinated animals from shedding leptospires after infection clearly depends on the vaccine dose administered and the efficacy of the vaccine which can be measured in potency tests based on the survival rate as the relevant parameter.  相似文献   

3.
Two commercial marker vaccines against classical swine fever virus (CSFV) and companion diagnostic tests were examined in 160 conventional pigs. To test the vaccines in a "worst case scenario", group of 10 weaners were vaccinated using a single dose of an E2 (gp55) based vaccine at days -21, -14, -10 or -7, and subsequently challenged at day 0. The challenge virus was CSFV 277, originating from a recent outbreak of classical swine fever (CSF) in Germany. In all groups, only 5 out of 10 pigs were challenged; the remaining 5 pigs served as vaccinated contact controls. Also, three control groups, each consisting of 10 non-vaccinated pigs, were challenged in parallel to the vaccinated animals. CSFV could be isolated from all non-vaccinated pigs. Among these pigs 40% displayed a chronic course of the infection (virus positive for more than 10 days). Pigs vaccinated 21 or 14 days before challenge displayed no clinical signs of CSFV after challenge. However, they were still able to replicate CSFV when challenged, as measured by reisolation of CSFV from leukocytes of the directly challenged pigs. CSFV could be isolated from the leucocytes of 25% of the pigs vaccinated 21 days before challenge and 50% of the pigs vaccinated 14 days before challenge. Chronic infection was not observed, but transmission to one vaccinated contact pig occurred. From all pigs vaccinated 10 or 7 days before challenge, CSFV could be reisolated. We observed a chronic course of infection in 5% of pigs vaccinated 10 days before challenge and in 30% of pigs vaccinated 7 days before challenge. The mortality rate was 20% in the pigs vaccinated 10 days before challenge, and varied between 20 and 80% in pigs vaccinated 7 days prior to challenge. The contact animals had lower mortality (0-20%) than directly challenged pigs, probably mirroring the delayed time point of infection. There was thus some protection against clinical illness by both marker vaccines, but not a solid protection against infection and virus shedding. The efficacy of the vaccine was best if used 3 weeks before challenge and a clear correlation between time interval from vaccination to challenge and the level of virus shedding was observed. Each vaccine had its own accompanying discriminatory ELISA, but 18% of the virus positive pigs never seroconverted in these tests.  相似文献   

4.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

5.
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0112-9) contains supplementary material, which is available to authorized users.  相似文献   

6.
Abstract

Fry of rainbow trout Oncorhynchus mykiss were exposed to serotype VR-299 of infectious pancreatic necrosis virus (IPNV) by using a standardized immersion challenge. In concurrent experiments, fish were monitored for 11 d for excretion of IPNV or monitored for 9 d for excretion and transmission of IPNV to susceptible rainbow trout fry. Immersion-challenged fish began excreting virus within 2 d after challenge. The rate of IPNV excretion per fish increased steadily from about day 4 to day 8 and then decreased. Virus concentrations in tissues of immersion-challenged fish increased exponentially. Susceptible fish became infected with IPNV within 4 d after being introduced to immersion-challenged fish (e.g., 2 d after the challenged fish began excreting virus). By 9 d, 84% of the susceptible fish were infected with IPNV.  相似文献   

7.
Summary

A standardized test was developed to compare the efficacy of Aujeszky's disease virus (ADV) vaccines under laboratory conditions. Per test 3 groups of 6 to 8 sero‐negative pigs were used. The first vaccination was done at 10 weeks of age. One group was vaccinated once, another was vaccinated twice and the 3rd served as control. Pigs were challenge exposed to the virulent NIA‐3 strain of ADV 12 weeks after the first vaccination. Apart from mortality, average periods of growth arrest, fever and virus shedding after challenge were used as parameters to evaluate vaccine efficacy.

Two inactivated and 4 attenuated vaccines were tested. Two attenuated vaccine viruses were excreted after vaccination. Despite maximal standardization, a considerable variation still existed between the experiments in mortality and growth arrest periods of control pigs after challenge. However, the controls were always more severely affected than the vaccinated pigs. All vaccines except one were effective in preventing death after challenge, but none conferred complete protection. Most vaccinated pigs still lost weight, developed fever and shed virus after challenge. Revaccination after 3 or 4 weeks had little effect, particularly with the attenuated vaccines. The results of the present study indicate that 2 of the attenuated vaccines conferred the best protection, I attenuated vaccine appeared to be as effective as the 2 inactivated ones, and the 4th attenuated vaccine was least effective.  相似文献   

8.
OBJECTIVE: To evaluate protection resulting from use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine against systemic infection and clinical disease in calves challenged with type 2 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV 1 (WRL strain). Calves in both groups were challenged intranasally with BVDV type 2 isolate 890 on day 21. Rectal temperatures and clinical signs of disease were recorded daily, and total and differential WBC and platelet counts were performed. Histologic examinations and immunohistochemical analyses to detect lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to BVDV type 2, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV type 1 vaccine protected against systemic infection and disease after experimental challenge exposure with BVDV type 2. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

9.
Four immunisation protocols based on inactivated and attenuated commercially available marker vaccines for bovine herpesvirus type 1 (BHV-1) were compared. The first group of calves were vaccinated with an attenuated vaccine administered intranasally and an inactivated vaccine injected subcutaneously, four weeks apart; the second group were vaccinated twice with the attenuated vaccine, first intranasally and then intramuscularly; the third group were vaccinated twice subcutaneously with the inactivated vaccine; and the fourth group were vaccinated twice intramuscularly with the attenuated vaccine. A control group of calves were not vaccinated. The cellular and humoral immune responses were highest in the two groups which received at least one injection of the inactivated vaccine. Virological protection was observed in all the vaccinated groups after a challenge infection and reactivation by treatment with dexamethasone, but the calves which received one dose of the inactivated vaccine as a booster or two doses of the inactivated vaccine excreted significantly less of the challenge virus than the calves which were vaccinated only with the attenuated preparation.  相似文献   

10.
In each challenge 30 sea bass juveniles (mean weight 3.3 +/- 0.2 g SD) were used. During the whole experiment (water T: 18 +/- 1 degrees C) the fish were held in four 50l seawater independent recirculation systems (one fish group per 50l system). The protection to the pathogen Vibrio anguillarum was tested on booster vaccinated sea bass (Dicentrarchus labrax L.) juveniles. The vaccination was performed by immersion for 60 s in a commercial anti-V. anguillarum vaccine suspension. Booster vaccination took place 60 days after the initial immunization. Thirty days after the booster vaccination all the fish received intraperitoneally (IP) 3.0 x 10(6) cfu/fish (colony forming units) virulent V. anguillarum bacteria. The booster vaccination showed a strong protection effect on the challenged sea bass. In the next 20 days after the challenge the mortality was 0% among the booster vaccinated sea bass, 10% among the once vaccinated fish and 50% in the control group (unvaccinated fish). No mortality was observed among the unvaccinated sea bass injected IP with sterile normal saline by the challenge.  相似文献   

11.
OBJECTIVE: To evaluate protection against systemic infection and clinical disease provided by use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine in calves challenged with NY-1 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV type 1 (WRL strain). Calves in both groups were challenged intranasally with NY-1 BVDV on day 21. Calves' rectal temperatures and clinical signs of disease were recorded daily, total and differential WBC and platelet counts were performed, and serum neutralizing antibody titers against NY-1 BVDV were determined. Histologic examinations and immunohistochemical analyses to detect gross lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to NY-1 BVDV, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV vaccine protected calves against systemic infection and disease after experimental challenge exposure with NY-1 BVDV. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

12.
Despite intensive research efforts, progress in the development of effective anti-Fasciola hepatica vaccine has not been satisfactory. However, it has been found that cysteine proteinases of F. hepatica are very important candidates for a vaccine antigen because of their role in fluke biology and in the host-parasite relationship. In our previous experiments we found that recombinant cysteine proteinase which we have cloned from adult F. hepatica (CPFhW) can protect rats against the liver fluke infection when administered intramuscularly or when given intranasally in the form of cDNA. In the present experiments we aimed to evaluate the protectivity of the mucosal vaccination in calves and lambs with inclusion bodies containing recombinant CPFhW using different vaccination doses and various sites of antigen delivery. Female calves vaccinated intranasally with two doses of 300 microg of the recombinant CPFhW showed 54.2% protection against the subsequent challenge of 400 metacercariae (mc). Flukes which developed in vaccinated calves showed a reduction of reproductive potential. Male Corriedale lambs vaccinated at the age of 4 months demanded three doses of the antigen to gain 56.5% of protection to a challenge with 250 mc of F. hepatica. Vaccinated animals showed significantly lower blood eosinophil counts. No correlation was found between serum and mucosal IgG or IgA reacting with F. hepatica ES antigens and the protection level.  相似文献   

13.
The level of antigen-specific interferon-gamma (IFN-gamma) production can be used as an indicator of cellular immunity. In this study, we investigated the role of cellular immune response in protection against classical swine fever virus (CSFV). Pigs were vaccinated once with CSFV vaccine and challenged 6 days post-vaccination (dpv). Vaccinated animals had significantly higher CSFV-specific IFN-gamma secreting cells than the unvaccinated pigs (p<0.05) at the time of challenge and were protected against CSFV infection, whereas the control pigs died within 14 days post-infection (dpi). In the second experiment, pigs were vaccinated once with either CSFV vaccine or CSFV vaccine combined with Aujeszky's disease (AD) vaccine and challenged at 140 dpv. All vaccinated pigs developed both CSFV-specific, cellular and antibody responses and were protected against CSFV infection. However, differences in cellular, but not antibody, responses were observed in the two vaccinated groups. The group vaccinated with CSFV vaccine developed a significantly higher number of CSFV-specific, IFN-gamma secreting cells (p<0.05), exhibited a shorter fever period and less pathological changes, when compared with the group vaccinated with the combined vaccine. The kinetics of IFN-gamma production, following challenge in the two vaccinated groups, were also different. Taken together, our results indicated that CSFV-specific, IFN-gamma production could be detected early after antigen exposure and correlated with protection against CSFV challenge. Our findings highlight the role of cellular immune responses in porcine anti-viral immunity.  相似文献   

14.
Brook trout fry (Salvelinus fontinalis) were not protected from infectious pancreatic necrosis virus (IPNV) challenge by immersion vaccination with inactivated, purified virus at concentrations of 10(7) to 10(9) pfu/ml. Mortalities in vaccinated groups were higher than for the unvaccinated control group and appeared to be dose-dependent. A challenge protocol for adult brook trout was developed for future vaccine trials. A single intraperitoneal injection of virulent, purified virus was sufficient to make long-lasting carriers of 16 month-old trout. Fish underwent a transient viremia, identified by virus isolation from plasma and leucocytes. Feces were the most reliable samples for identification of IPNV carriers by non-sacrificial testing. Many fish in the remaining infected group were still carriers 12 and 27 weeks post-infection.  相似文献   

15.
Abstract

Little scientific information is available to assess whether White Sturgeon Acipenser transmontanus can become infected and potential carriers of infectious pancreatic necrosis virus (IPNV). To assess this risk, monitoring results of adult and progeny White Sturgeon were examined from waters historically stocked with salmonid fish known to be IPNV carriers. From 1999 through 2004 White Sturgeon from a total of 30 separate families whose parentage came from waters historically stocked with IPNV carrier fish were tested. Duplicate groups of 25 juvenile Snake River White Sturgeon were waterborne exposed to 1.0×104 50% tissue culture infective dose (TCID50)/mL of water for 1 h and an additional group was injected intraperitoneally with 1.0×105 TCID50/fish. A negative control group was handled similarly but was not exposed to the virus. No morbidity was detected in any of the treatment groups or the negative control. At 34, 40, 47, and 54 d postexposure to IPNV, virus reisolation was attempted on five fish from each group, and an additional five fish from each group were examined for histological changes consistent with an IPNV infection. At 34 and 40 d postinjection with IPNV, 20% (one of five) of the fish tested positive for the virus per sample interval; however, fish from groups that were waterborne-exposed to IPNV were all negative. At 47 and 54 d after exposure or injection with IPNV an additional five fish from each group were tested at each sample interval and all results were negative. Histological analysis of target tissue obtained from five fish per group at 34 and 54 d postinfection also failed to detect any consistent change associated with an IPNV infection. These results suggest that the risk of White Sturgeon to become infected and develop into potential carriers of IPNV is negligible.

Received May 21, 2013; accepted July 8, 2013  相似文献   

16.
In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.  相似文献   

17.
Streptococcus iniae causes invasive infections in fresh and saltwater fish and occasional zoonoses. Vaccination against S. iniae is complicated by serotypic variation determined by capsular polysaccharide. A potential target for serologically cross-protective vaccines is the M-like protein SiMA, an essential virulence factor in S. iniae that is highly conserved amongst virulent strains. The present study determined how SiMA is regulated and investigated potential as a cross-protective vaccine for fish. Electrophoretic mobility shift suggested that SiMA is regulated by the multigene regulator Mgx via a binding site in the −35 region of the simA promoter. Moreover, expression of simA and mgx was highly correlated, with the highest level of simA and mgx expression during exponential growth under iron limitation (20-fold increase in relative expression compared to growth in Todd-Hewitt broth). Based on these results, a vaccination and challenge experiment was conducted in barramundi (Lates calcarifer) to determine whether SiMA is protective against S. iniae infection and cross-protective against a different capsular serotype. The challenge resulted in 60% mortality in control fish. Formalin-killed bacterins prepared from the challenge strain resulted in 100% protection, whereas bacterins prepared from a serotypically heterologous strain resulted in significantly reduced protection, even when culture conditions were manipulated to optimise SiMA expression. Moreover, recombinant SiMA protein was not protective against the challenge strain in spite of eliciting specific antibody response in vaccinated fish. Specific antibody did not increase oxidative activity or phagocytosis by barramundi macrophages. Indeed incubating S. iniae with antisera significantly reduced phagocytosis. Lack of specific-antibody mediated opsonisation in spite of 100% protection against challenge with the homologous vaccine suggests that other immune parameters result in protection of challenged fish.  相似文献   

18.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

19.
The relationship of Foot-and-Mouth Disease (FMD) virus antigen payload and single and double vaccinations in conferring protection against virus challenge in sheep was studied. Sheep vaccinated with half the cattle dose (1 ml) containing 15 and 3.75 μg of FMDV antigen with or without booster resisted virulent challenge on 21 days post vaccination or 7 days post booster. FMDV RNA could be detected in nasal secretions in 26% of vaccinated sheep (103.12 to 103.82 viral RNA copies) on day 35 post challenge. No live virus could be isolated after 5 days post challenge indicating that the risk of transmission of disease was probably very low. The finding showed that vaccines containing antigen payload of 1.88 μg may prevent or reduce the local virus replication at the oropharynx and shedding of virus from nasal secretions and thereby reduce the amount of virus released into the environment subsequent to exposure to live virus. Sheep with no vaccination or with poor sero conversion to vaccination can be infected without overt clinical signs and became carriers.  相似文献   

20.
ABSTRACT: Protection of cattle from alcelaphine herpesvirus-1 (AlHV-1)-induced malignant catarrhal fever (MCF) has been described previously, using an attenuated virus vaccine in an unlicensed adjuvant. The vaccine was hypothesised to induce a protective barrier of virus-neutralising antibody in the oro-nasal region, supported by the observation of high titre neutralising antibodies in nasal secretions of protected animals. Here we describe further analysis of this vaccine strategy, studying the effectiveness of the vaccine formulated with a licensed adjuvant; the duration of immunity induced; and the virus-specific antibody responses in plasma and nasal secretions. The results presented here show that the attenuated AlHV-1 vaccine in a licensed adjuvant protected cattle from fatal intranasal challenge with pathogenic AlHV-1 at three or six months. In addition, animals protected from MCF had significantly higher initial anti-viral antibody titres than animals that succumbed to disease; and these antibody titres remained relatively stable after challenge, while titres in vaccinated animals with MCF increased significantly prior to the onset of clinical disease. These data support the view that a mucosal barrier of neutralising antibody blocks infection of vaccinated animals and suggests that the magnitude of the initial response may correlate with long-term protection. Interestingly, the high titre virus-neutralising antibody responses seen in animals that succumbed to MCF after vaccination were not protective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号