首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the role of reactive oxygen species (ROS) in the regulation of intracellular Ca2+ induced by angiotensin II (Ang II) in the primarily cultured medullary neurons. METHODS: Primarily cultured medullary neurons were prepared from 14-day-old embryos of Sprague-Dawley rats in the study. The identification of medullary neurons was assessed by double-labeling immunofluorescence. To explore the role of ROS, mainly the superoxide (O2·), the O2·generation was measured using the fluorogenic probe dihydroethidium (DHE). To determine intracellular free calcium concentration ([Ca2+]i), the neurons were loaded with the Ca2+-specific dye Fura-2/AM. The cell viability after adding Ang II was also examined using CCK-8 assay. RESULTS: Most of the cultured cells were medullary neurons, more than 80% of which were glutamate positive neurons. Ang II (5 μmol/L) increased the level of ROS within 10 min in the medullary neurons. Ang II at 5 μmol/L induced a significant[Ca2+]i increase in the medullary neurons, and the effect of Ang II occurred rapidly and reached a peak within 20 min after administration. The level of[Ca2+]i started to decline after washout. The Ca2+ elevation induced by Ang II was significantly decreased by apocynin or TEMPOL. No significant difference in the cell viability between control group and 5 μmol/L Ang II treatment group was observed. CONCLUSION: ROS is involved in the regulation of[Ca2+]i induced by Ang II in the primarily cultured medullary neurons, suggesting a potential intracellular signaling mechanism involved in the Ang II-mediated oxidant regulation of central neural control of blood pressure.  相似文献   

2.
AIM: To investigate the effect of hydrogen sulfide (H2S) on the reactive oxygen species (ROS) level in medullary neurons induced by angiotensin II (Ang II). METHODS: Primarily cultured rat medullary neurons were divided into 5 groups as follows: control group, Ang II group, sodium hydrosulfide(NaHS) group, NaHS with Ang II group, and PD98059 (an inhibitor of p-ERK1/2) with Ang II group. ROS production was measured with dihydroethidium (DHE) staining. The expression of p-ERK1/2 and ERK1/2 was determined by Western blotting. The activity of neurons was detected by CCK-8 assay. RESULTS: Ang II at concentration of 100 nmol/L significantly increased ROS level in the neurons, but the effect was inhibited by NaHS at concentrations of 50~200 μmol/L, while NaHS alone had no influence on the ROS level in neurons. Additionally, PD98059 also depressed the ROS level in neurons induced by Ang II. Furthermore, the enhanced expression of p-ERK1/2 in the neurons induced by Ang II was significantly reduced by NaHS. CONCLUSION: H2S remarkably inhibits the ROS level in the neurons induced by Ang II via activation of MAPK signal pathways, especially p-ERK1/2, indicating that H2S rescues neurons from oxidative stress through declining the enhanced expression of p-ERK1/2.  相似文献   

3.
AIM: To investigate the protective effect of astragaloside IV (ASIV) on angiotensin II (Ang II)- induced apoptosis of H9c2 cardiomyocytes. METHODS: H9c2 cardiomyocytes were treated with different concentrations of Ang II and ASIV. The effects of Ang II and ASIV on the viability of H9c2 cells was measured by CCK-8 assay. The optimum concentration of Ang II was 1 μmol/L and the concentrations of ASIV were 25, 50 and 100 μmol/L. The H9c2 cells was divided into 6 groups:control group, ASIV group, Ang II group, Ang II+ASIV (25 μmol/L) group, Ang II+ASIV 50 (μmol/L) group and Ang II+ASIV (100 μmol/L) group. The morphological changes of the H9c2 cells were observed under inverted phase-contrast microscope. Apoptosis was detected by TUNEL assay. The generation of reactive oxygen species (ROS) was detected by DCFH-DA staining. The protein expression of Bax, Bcl-2, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was determined by Western blot. H9c2 cardiomyocytes were transfected with negative control shRNA (NC) or Nrf2-shRNA (shRNA), and the cells were divided into 8 groups:NC+control group, NC+AngⅡgroup, NC+ASIV group, NC+AngⅡ+ASIV group, shRNA+control group, shRNA+AngⅡgroup, shRNA+ASIV group and shRNA+AngⅡ+ASIV group. ROS level was detected by ROS detection kit. The protein expression of Nrf2 and HO-1 was determined by Western blot. RESULTS: Ang II decreased the viability of H9c2 cells in a concentration-dependent manner (P<0.05). ASIV reversed the effect of Ang II on the viability of H9c2 cells in a concentration-dependent manner (P<0.05). Compared with control group, the apoptotic rate, the level of ROS and the protein expression of Bax in Ang II group were increased significantly, while the protein expression of Bcl-2, Nrf2 and HO-1 was decreased significantly (P<0.05). Compared with Ang II group, ASIV reversed the increase in apoptotic rate of H9c2 cells induced by Ang II in a concentration-dependent manner, reduced ROS level, down-regulated the protein expression of Bax and up-regulated the protein expression of Bcl-2, Nrf2 and HO-1 (P<0.05). After shRNA transfection, the effects of ASIV decreasing ROS production induced by Ang II and up-regulating the expression of Nrf2 and HO-1 were eliminated. CONCLUSION: ASIV protects H9c2 cardiomyocytes from apoptosis induced by Ang II, which may be related to reducing ROS generation and mediating the Nrf2/HO-1 signaling pathway.  相似文献   

4.
AIM: To study the effects of apelin-13 on oxidative stress induced by high uric acid in 3T3-L1 adipocytes and its underlying mechanisms. METHODS: 3T3-L1 adipocytes were stimulated with uric acid at 10 mg/dL for 48 h. Some of the adipocytes were administered with 1 μmol/L apelin-13 in the presence of uric acid at 10 mg/dL. The adipocytes stimulated with 100 μmol/L H2O2 were served as positive controls. The intracellular reactive oxygen species (ROS) concentrations were detected by flow cytometry. The biochemical kits were used to measure the activities of superotide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and NADPH oxidase (NOX) activity, and the content of malondialdehyde (MDA) in the cell lysate and the supernatant. The mRNA levels of renin-angiotensin system (RAS) components, including angiotensinogen (AGT), angiotensin-converting enzyrne1 (ACE1), angiotensin II type 1 receptor (AT1R) and AT2R, as well as angiotensin II receptor -like 1 (APJ) were measured by real-time PCR. The concentrations of angiotensin II (AngⅡ) in the cell lysate and the supernatant were measured by ELISA. RESULTS: Adipocytes stimulated with uric acid at 10 mg/dL had lower activities of antioxidant enzymes (SOD, GSH-PX and CAT) and higher levels of NOX activity and MDA content (P < 0.05). Accordingly, the intracellular ROS levels were found to be dramatically increased. However, apelin-13 administration attenuated uric acid-induced oxidative stress in the 3T3-L1 adipocytes. Uric acid at 10 mg/dL upregulated the mRNA expression of local RAS, enhanced AngⅡ concentrations both in the cell lysate and the supernatant, and down-regulated the mRNA level of APJ in the adipocytes (P < 0.05). Conversely, apelin-13 partially reversed these parameters. CONCLUSION: Apelin-13 attenuates oxidative stress induced by uric acid, may be via down-regulation of local RAS expression in the 3T3-L1 adipocytes.  相似文献   

5.
6.
AIM:To investigate whether hydrogen sulfide (H2S) protects the hearts against inflammatory responses induced by acute myocardial ischemia in isolated rat hearts. METHODS:Rat acute myocardial ischemia injury was induced by ligation of the left anterior descending coronary artery for 4 h, and the normal perfusate was replaced with NaHS (5 μmol/L, 10 μmol/L and 20 μmol/L) perfusate accordingly in NaHS groups 2 h after ischemia. The changes of cardiac function in the myocardial ischemic injury rats were observed. The mRNA expression of TNF-α, IL-1β, IL-6, IL-10 and ICAM-1 was detected by real-time PCR. The protein level of nuclear factor-κB (NF-κB) in the myocardial tissues was detected by Western blotting. RESULTS:The cardiac function in ischemia group was lower than that in sham group (P<0.01). Compared with ischemia group, perfusion of NaHS resulted in the improvement of the cardiac function (P<0.05 or P<0.01). Compared with sham group, the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 in the cardiac tissues was significantly increased, and the mRNA expression of IL-10 in the cardiac tissues was significantly decreased in ischemia group (P<0.01). Compared with ischemia group, the perfusion of NaHS significantly decreased the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 (P<0.05 or P<0.01). The perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly increased the mRNA expression of IL-10 (P<0.01). The protein level of NF-κB in ischemia group was markedly higher than that in sham group (P<0.01). Compared with ischemia group, the perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly decreased the expression of NF-κB (P<0.05 or P<0.01). CONCLUSION:H2S protects the hearts against acute ischemia injury through inhibition of NF-κB activation and subsequent down-regulation of NF-κB-dependent inflammatory gene expression.  相似文献   

7.
AIM: To study the protective effect of anti-aging Klotho protein on human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG).METHODS: HUVECs were cultured in vitro, and divided into PBS control group, 5.5 mmol/L glucose group, 33.3 mmol/L glucose group, 0.1 μmol/L Klotho+33.3 mmol/L glucose group, 1 μmol/L Klotho+33.3 mmol/L glucose group, and 10 μmol/L Klotho+33.3 mmol/L glucose group. The viability of the HUVECs was measured by MTT assay. The content of malondialdehyde (MDA), and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) in cell culture supernatants were observed. The production of reactive oxygen species (ROS) in HUVECs was analyzed by flow cytometry. The levels of nitric oxide (NO), endothelin (ET-1), intercellular adhesion molecule-1 (ICAM-1) in HUVEC culture medium were detected by ELISA. The protein expression of nuclear factor-kappa B (NF-κB) in the HUVECs was determined by Western blot. RESULTS: Compared with PBS control group, 33.3 mmol/L glucose significantly decreased the HUVEC viability, increased ROS, LDH and MDA levels, reduced the activities of SOD and GSH, decreased the NO secretion, and induced the ET-1 and ICAM-1 secretion and the protein expression of NF-κB in HUVECs. When HUVECs were treated with Klotho protein at different concentrations combined with 33.3 mmol/L glucose, the cell viability was increased significantly, the ROS, LDH and MDA levels were decreased significantly, the antioxidant SOD and GSH activities were significantly increased, the secretion of NO was increased, but ET-1 and ICAM-1 releases and protein expression of NF-κB were significantly reduced.CONCLUSION: Anti-aging Klotho protein promotes the viability of HUVECs treated with HG, reduces the oxidative damage and ROS production, and restores the normal secretory function of HUVECs, thus playing a protective role in vascular endothelial cells through reducing the protein expression of NF-κB.  相似文献   

8.
AIM:To investigate the therapeutic effect and the mechanism of neuregulin-1β (NRG-1β) on the rat model of myocardial hypertrophy induced by pressure overload.METHODS:Eight weeks after coarctation of abdominal aorta, the Wistar rats were randomly divided into 4 groups: myocardial hypertrophy (model) group, sham operation (sham) group, NRG-1β treatment group (intravenous injection of NRG-1β at dose of 10 μg/kg daily for 7 d) and NRG-1β+Herceptin (HERCE) treatment group [intravenous injection of NRG-1β (10 μg/kg) plus HERCE (10 μg/kg) daily for 7 d]. The characteristics of heart functions were evaluated by the methods of hemodynamics and echocardiography. Masson staining was employed to observe the pathological changes of myocardial tissues. The concentration of angiotensin II (Ang II) in myocardial tissues was measured by radioimmunoassay. The level of tumor necrosis factor α (TNF-α) in myocardial tissues was detected by ELISA. The mRNA expression of B-cell lymphoma/leukemia-2 (bcl-2) and bcl-2-associated X protein (bax) in the myocardium was determined by RT-PCR. RESULTS:The left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) were higher, while the left ventricular end-systolic diameter (LVESD) and left ventricular end-diastolic diameter (LVEDD) were smaller in NRG-1β group than those in model group. The left ventricular end-systolic pressure (LVESP) and maximal rate of increase/decrease in left ventricular pressure (±dp/dtmax) were higher, and left ventricular end-diastolic pressure (LVEDP) was significantly lower in NRG-1β group than those in model group. Compared with model group, treatment with NRG-1β decreased collagen volume fraction (CVF), reduced the Ang II and TNF-α, increased bcl-2 mRNA expression, and decreased bax mRNA expression in myocardial tissues. No difference of the above parameters between model group and NRG-1β+HERCE treatment group was observed. CONCLUSION:NRG-1 reduces the expression of Ang II and TNF-α in myocardial tissues in pressure-overload rats, thus reducing Ang II and TNF-α mediated myocardial interstitial remodeling. Increase in the mRNA expression of bcl-2 and decrease in the mRNA expression of bax by NRG-1 inhibit myocardial cell apoptosis, which is responsible for its role of improving cardiac function of myocardial hypertrophy induced by pressure overload.  相似文献   

9.
AIM: To investigate the effect of macrophage peroxisome proliferator-activated receptor α (PPARα) activation on macrophage inflammation-induced activation and migration of cardiac fibroblasts. METHODS: Mouse bone marrow-derived macrophages were treated with vehicle, PPARα agonist WY14643 (10 μmol/L), angiotensin Ⅱ (Ang II; 1 μmol/L) or Ang II+WY14643 for 24 h, and the supernatants were collected as conditioned medium (CM) to stimulate cardiac fibroblasts for additional 24 h. The mRNA levels of PPARα, interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in the macrophages as well as fibrotic markers collagen type Ⅰ alpha 2 chain (Col1a2), collagen alpha 1 chain (Col3a1) and actin alpha 2 (Acta2) in the cardiac fibroblasts were detected by RT-qPCR. The protein levels of IL-6 and IL-1β in the macrophages as well as collagen I, collagen III and α-smooth muscle actin (α-SMA; encoded by Acta2 gene) in the cardiac fibroblasts were determined by Western blot. Wound-healing assay was applied to eva-luate the migration ability of cardiac fibroblasts. RESULTS: Ang II significantly increased the mRNA levels of pro-inflammatory factors, such as IL-6, IL-1α and TNF-α, but decreased the mRNA level of PPARα in the macrophages. Administration of PPARα agonist WY14643 dramatically decreased Ang II-induced mRNA levels of IL-6, IL-1β and TNF-α in the macrophages, and significantly decreased Ang II-induced protein expression of IL-6 and pro-IL-1β in the macrophages. The CM from Ang II-treated macrophages significantly up-regulated the mRNA levels of Col1a2, Col3a1 and Acta2 in the cardiac fibroblasts, which were inhibited by the CM from WY14643-treated macrophages. The same results were observed in the protein levels of collagen I, collagen III and α-SMA in the cardiac fibroblasts. Moreover, the CM from Ang II-treated macrophages significantly promoted cardiac fibroblast migration, whereas the CM from WY14643-treated macrophages markedly inhibited macrophage inflammation-induced cardiac fibroblast migration. CONCLUSION: WY14643-activated PPARα inhibits activation and migration of cardiac fibroblasts by attenuating Ang II-induced macrophage inflammatory response.  相似文献   

10.
AIM: To investigate the effects of selenium (Se) compounds on the generation of nitric oxide (NO) and reactive oxygen species (ROS), and the activity of nitric oxide synthase (NOS) in umbilical cord mesenchymal stem cells (MSCs). METHODS: MSCs were cultured in the medium of DMEM/F12 containing 10% FBS and exposed to the compounds of selenium , selenocysteine (Se-Cys) or nano-selenium (Nano-Se) at concentrations of 0.1 μmol/L to 0.5 μmol/L. The concentration of NO and the activity of NOS in treated MSCs were detected by the method of nitrate reductase assay. The fluorescent intensity of ROS was determined by DCFH-DA probe. RESULTS: The production of NO was (18.13±6.80) μmol/L in the control MSCs,(20.93±5.68) μmol/L in the MSCs treated with Se(Ⅳ) at concentration of 0.1 μmol/L and (16.73±5.03) μmol/L in the MSCs treated with Se(Ⅳ) at concentration of 0.5 μmol/L for 24 h. The production of NO was (17.20±9.11) μmol/L (P<0.05) in the MSCs treated with Se(IV) at concentration of 0.1 μmol/L and (9.98±4.35) μmol/L (P<0.01) in the MSCs treated with Se(IV) at concentration of 0.5 μmol/L for 48 h, which was significantly lower than that in the control MSCs . No inhibitory effect of Nano-Se and Se-Cys on the production of NO in MSCs was observed. Compared with the control MSCs, Se(Ⅳ) at concentrations of 0.1 μmol/L and 0.5 μmol/L significantly inhibited the generation of ROS and the activity of NOS in MSCs at 24 h and 48 h. CONCLUSION: Se(Ⅳ) inhibits NO/ROS production and NOS activity in a dose-dependent manner in MSCs.  相似文献   

11.
12.
13.
AIM: The study was undertaken to explore the dynamic changes of the concentration of nitric oxide(NO) in ischemic myocardium and its mechanism.METHODS: In vivo myocardial ischemia of mice and in vitro perfused isolated heart of rat were used in the experiment. The effects of severity and time of ischemia on NO production, NOS activity and mRNA were examined, respectively. RESULTS: There was a considerable difference (P<0.01) in the concentration of NO between ischemia group [(9.12±1.40) μmol/L] and control group [(20.16±1.67) μmol/L] after Pit(30 U/kg) administration, and the concentration of NO of ischemic group significantly decreased [(9.17±1.33) μmol/L] compared with control group [(19.90±1.95) μmol/L] after 30 minutes of ischemia. Also, the concentration of NO after Pit(20 U/L) administration in K-H and 15 min of ischemia was (15.41±2.00) μmol/L and (15.09±2.00) μmol/L respectively in vitro, significantly lower than control group [(23.83±2.33) μmol/L and (23.63±2.52) μmol/L]. In addition, compared with control group, the number of NOS positive cells, NOS activity as well as mRNA expression in atrial muscle and ventricular muscle of ischemic group were markedly reduced, respectively. CONCLUSION: Myocardial ischemia could reduced the NO level in myocardium, down-regulation of NOS mRNA could be the possible mechanism.  相似文献   

14.
AIM:To explore the effects of tetrahydroxystilbene-2-O-β-D-glucoside (TSG) from Polygonum multiflorum on the apoptosis and the mRNA expression of bcl-2, bax and caspase-3 in human umbilical vein endothelial cells (HUVECs) treated with homocysteine (Hcy). METHODS:Cultured HUVECs were treated with Hcy (3 mmol/L) to establish a Hcy-damaged model. HUVECs in TSG treated groups were pre-incubated with TSG at concentrations of 1 μmol/L and 10 μmol/L for 2 h before treated with Hcy. Cell nuclear damage was detected by Hoechst 33342 staining. Cell apoptosis was determined by flow cytometry. The mRNA expression of bcl-2, bax and caspase-3 was measured by real-time fluorescence quantitative RT-PCR. RESULTS: After treatment with Hcy at concentration of 3 mmol/L, the nuclear damage and apoptotic rate of HUVECs were higher than that in normal group. The expression of bcl-2 was lower, and the expression of Bax and caspase-3 was higher than that in normal group. On the other hand, pre-incubation with TSG at concentrations of 1 μmol/L and 10 μmol/L decreased the nuclear damage and cell apoptosis, increased the expression of bcl-2, and decreased the expression of bax and caspase-3 as compared with the cells only treated with Hcy. CONCLUSION:TSG reduces the apoptosis of HUVECs induced by Hcy, and the mechanism might be associated with regulating the expression of bcl-2, bax and caspase-3.  相似文献   

15.
16.
AIM: We hypothesized that PPARγ ligands stimulate endothelial-derived nitric oxide (NO) release to protect the vascular wall. Thus, the purpose of this study is to investigate the effects of ciglitazone (Cig) and fenofibrate (Fen) on angiotensin Ⅱ (AngⅡ)-induced decrease in endothelial NO synthase (eNOS) expression and NO production in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were preincubated for 24 h with Cig (10-7, 10-6, 10-5, 10-4 mol/L) or Fen (10-5 and 10-4 mol/L), then incubated for 12 h with 10-7 mol/L AngⅡ. Total RNA was extracted, and the expression of mRNA and protein of eNOS was assessed by RT-PCR and Western blotting. NO production was measured by Griees method. RESULTS: In the presence of 10-7 mol/L AngⅡ for 12 h, NO production in cultured HUVECs was decreased (P<0.01). Cig and Fen pretreatments enhanced NO production (P<0.01) and antagonized Ang-induced decrease in eNOS mRNA and protein levels in HUVECs. CONCLUSION: PPARγ activator, ciglitazone, and PPARα activator, fenofibrate, antagonize Ang-induced decrease in endothelial NO production by directly upregulating eNOS expression.  相似文献   

17.
AIM: The present study was undertaken to investigate the effect of angiotensin II (AngⅡ) on expression of MMP-9 in THP-1 macrophages. METHODS: Macrophages converted from THP-1 monocytes by incubating with PMA (0.1 μmol/L) for 48 h were divided into PMA group; PMA+AngⅡ group (10-7mol/L, 1 h); PMA+AngⅡ+PDTC group (10 μmol/L, 30 min) and PDTC group. Western blotting was used to detect the MMP-9 and phosphorylation of NF-κB p65, and the expression of MMP-9 mRNA in THP-1 macrophages was measured by RT-PCR.RESULTS: Compared to control group, the expression of MMP-9 (1.06±0.11, P<0.05) and phosphorylation of NF-κB p65 (1.02±0.10, P<0.05) in THP-1 macrophages were expressed when treated with AngⅡ (10-7mol/L); and the expression of MMP-9 mRNA were upregulated (1.22±0.08, P<0.05). However, NF-κB inhibitor PDTC reduced the NF-κB p65 (0.99±0.12, P<0.01) and MMP-9 (1.04±0.14, P<0.01) expressions and decreased the expression of MMP-9 mRNA (0.90±0.06,P<0.01). CONCLUSION: NF-κB signaling pathway contributes to the expression of MMP-9 in THP-1 macrophage induced by AngⅡ.  相似文献   

18.
AIM: We hypothesize that peroxisome proliferator-activated receptor α(PPARα) agonists act directly on nitric oxide (NO) production in vascular endothelium. Thus, the purpose of this study is to investigate the effects of fenofibrate on endothelial NO synthase(eNOS) activity and its expression in cultured vascular endothelial cells. METHODS: Bovine aortic endothelial cells (BAECs) were treated with the PPARα activator fenofibrate. The eNOS activity and the expression of eNOS protein and its mRNA were determined. RESULTS: Our data show that fenofibrate increased eNOS activity in a dose-and time-dependent manner. At the concentration of 10 μmol/L or more, fenofibrate treatment caused a significant increase in eNOS activity. The maximal increase in eNOS activity(2.32±0.47 fold of the control) was observed with 50 μmol/L fenofibrate treatment for 48 h. Fenofibrate failed to increase eNOS activity at 1 and 12 h. RT-PCR analysis demonstrated that eNOS mRNA relative to β-actin mRNA significantly increased at concentrations of 5 μmol/L or more. It reached 2.08±0.33 fold of the control with 50 μmol/L fenofibrate. Significant increase in eNOS mRNA levels was observed after 6 h, and lasted for 48 h. The peak increase in eNOS mRNA levels(2.13±0.30 fold of the control,P<0.01) was observed with 50 μmol/L fenofibrate treatment for 12 h. Longer incubation of cells with 50 μmol/L fenofibrate caused no further increase. The treatment of BAECs with fenofibrate for 48 h demonstrated a concentration-dependent increase in eNOS protein levels as measured by Western blot analysis. Densitometric analysis indicated that there was a significant increase in eNOS to β-actin ratios after fenofibrate treatment at concentrations of 10,50 and 100 μmol/L(1.80±0.45, 2.70±0.42 and 2.20±0.32 fold of the control, respectively, P<0.01). The significant increase in eNOS protein levels was observed 12 h after treatment and lasted for 48 h. CONCLUSION: PPARα activator fenofibrate, enhances endothelial NO production by directly upregulating eNOS expression and activity.  相似文献   

19.
AIM: To investigate the effects of simvastatin on cigarette smoke extract (CSE)-induced expression levels of soluble endothelial cell protein C receptor (sEPCR) and membrane-associated endothelial cell protein C receptor (mEPCR ) in human umbilical vein endothelial cells (HUVECs). METHODS: Cultured HUVECs at passage 4 to 6 were randomly divided into control group, 5% CSE group, simvastatin groups and simvastatin+CSE groups. In simvastatin groups, HUVECs were incubated with simvastatin at the concentrations of 50, 100 and 200 μmol/L for 24 h. In simvastatin+CSE groups, the cells were treated with simvastatin at the concentrations of 50, 100 and 200 μmol/L for 2 h, and then exposed to CSE for 24 h. The protein level of sEPCR in the culture supernatants was measured by ELISA. The cells were collected for determining the mRNA expression of mEPCR by real-time PCR. RESULTS: Compared with control group, the protein level of sEPCR was significantly increased, and the mRNA expression of mEPCR was significantly decreased in 5% CSE group (both P<0.05). The protein levels of sEPCR were significantly increased, and the mRNA expression of mEPCR was significantly decreased in 100 μmol/L and 200 μmol/L simvastatin groups. However, the protein levels of sEPCR were lower, and the mRNA expression of mEPCR was significantly higher in 100 μmol/L and 200 μmol/L simvastatin groups than those in 5% CSE group. Compared with 5% CSE group, the protein levels of sEPCR in simvastatin+CSE groups were significantly decreased, but higher than those in control group and simvastatin group with corresponding concentration. On the contrary, the mRNA expression of mEPCR in simvastatin+CSE groups was significantly increased, but lower than that in control group and simvastatin group with corresponding concentration (all P<0.05). CONCLUSION: Simvastatin obviously increases the mRNA expression of mEPCR, decreases the protein level of sEPCR, and attenuates the CSE-induced endothelial injury in vitro .  相似文献   

20.
AIM: To investigate the protective effect of quercetin on angiotensin Ⅱ (AngⅡ)-induced cardiomyocyte hypertrophy and its possible mechanism. METHODS: Cardiomyocyte hypertrophy was induced by AngⅡ (100 nmol/L) in primary neonatal cardiomyocytes and H9c2 cells. The cells were treated with different concentration of quercetin (10 μmol/L, 20 μmol/L and 40 μmol/L) for 48 h and then the cardiomyocyte surface areas were measured by immunofluorescence. Proteasome activity was detected by fluorescent peptide substrate. The phosphorylated levels of GSK-3α/β and Akt in H9c2 cells were determined by Western blot. RESULTS: Compared with control group, the cardiomyocyte surface areas were both increased in primary cultured neonatal cardiomyocytes and H9c2 cells, while the surface areas were significantly decreased by quercetin, especially at concentration of 20 μmol/L compared with Ang Ⅱ group (P<0.05). Compared with control group, the chymotrypsin-like, trypsin-like and caspase-like activities of proteasome were all increased in H9c2 cells (P<0.05). The trypsin-like and caspase-like activities of proteasome were inhibited by 20 μmol/L and 40 μmol/L quercetin, while chymotrypsin-like activity was inhibited only at 20 μmol/L of quercetin compared with Ang Ⅱ group (P<0.05). In addition, phosphorylated levels of GSK-3α-Ser21, GSK-3β-Ser9 and Akt-Ser473 in Ang Ⅱ group were all increased compared with control group, which were obviously inhibited by in 20 μmol/L and 40 μmol/L quercetin (P<0.05). CONCLUSION: Quercetin decreases cardiomyocyte hypertrophy through proteasome inhibition, which may be related to the inhibition of Akt and therefore increasing activation of GSK-3α/β in H9c2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号