首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以富硒黑木耳中的硒多糖为考察指标,采用超声–微波提取法,分别设超声时间、微波时间、超声功率、微波功率、料液比5个单因素试验,再选择对富硒黑木耳中硒多糖提取率有显著影响的4个因素(超声时间、微波时间、微波功率和料液比)进行响应面分析,优化富硒黑木耳硒多糖的提取工艺条件。结果表明:采用超声–微波提取富硒黑木耳中硒多糖,在超声时间26 min、微波时间22 min、微波功率350 W以及料液比1∶58(g/m L)时,硒多糖提取率最高,为11.79%,与传统水提法相比,提高了4.1%,提取时间缩短了56.67%。以传统水提法提取的富硒黑木耳中硒多糖为对照,进一步研究超声–微波提取富硒黑木耳中硒多糖的总还原力以及对羟基自由基和DPPH自由基的清除率,结果表明,超声–微波提取的富硒黑木耳硒多糖和传统水提法提取的硒多糖的还原力吸光值分别为0.431和0.410,对羟基自由基清除的半抑制浓度(IC50)值分别为3.81、4.91 mg/m L,对DPPH自由基清除的IC50值分别为4.59、5.70 mg/m L,说明超声–微波提取的富硒黑木耳硒多糖抗氧化活性优于传统水提法提取的硒多糖。  相似文献   

2.
采用微生物发酵法提取铁皮石斛中的多糖,探讨料液比和pH对多糖提取率的影响,并评价多糖的体外抗氧化活性。2因素3水平正交法优化的铁皮石斛多糖提取,料液比为1∶90(g/mL),pH为5,在此条件下的多糖提取率为42.86%;探究微生物发酵铁皮石斛多糖对羟自由基和DPPH自由基的清除作用,结果显示,微生物发酵法制备的铁皮石斛粗多糖具有一定的抗氧化性,且自由基清除率在一定范围内随浓度增加而增强。  相似文献   

3.
为优化枸骨总皂苷的提取工艺,研究枸骨总皂苷的抗氧化活性。用超声-微波协同萃取法,以提取时间、提取功率、料液比为考察因素,在单因素试验基础上,采用响应曲面法(response surface methodology,简称RSM)BoxBenhnken中心组合试验设计,优化枸骨总皂苷的提取工艺;采用清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picryylhydrazyl,简称DPPH)自由基能力分析枸骨总皂苷的抗氧化活性。结果表明,采用超声-微波协同萃取法,在提取时间180 s、提取功率100 W、料液比1 g∶30 m L、乙醇体积分数80%的条件下,枸骨总皂苷的提取率为3.739 3%;抗氧化试验结果表明,枸骨总皂苷浓度为62.24μg/m L时,对DPPH自由基的清除率为24.22%,表明响应曲面法优化了枸骨总皂苷的提取工艺,枸骨总皂苷具有一定的抗氧化活性。  相似文献   

4.
[目的]优化糯高粱多糖提取工艺,并分析其抗氧化活性,为糯高粱食品开发利用提供理论依据.[方法]以国窖红1号糯高粱籽粒为材料,在单因素试验的基础上,采用响应面法优化其多糖提取工艺,并测定所提取多糖清除DPPH自由基和羟基自由基的能力.[结果]建立了料液比(X1)、微波功率(X2)和提取时间(X3)与糯高粱多糖提取率(Y)的回归模拟方程:Y=6.43277+0.26425X1+0.89398X2+0.35226X3-0.09537X1X2-0.14083X1X3-0.10898X2X3-1.39713X12-1.35532X22-0.26889X32,回归方程模型极显著(P<0.01),R2=0.999885,方程拟合程度高.糯高粱多糖提取的最佳工艺条件为:料液比1:400、微波功率480 W、提取时间110 s,在此条件下,得到多糖平均值为6.48%,与预测值(6.68%)相对误差为2.91%.糯高粱多糖的DPPH自由基清除率随多糖质量浓度的增加先增后减,多糖质量浓度为0.4 mg/mL时,清除率最高达54.38%,低于对照2,6-二叔丁基对甲酚(BHT)的清除率;羟基自由基清除率随多糖质量浓度的增加而增加,多糖质量浓度为0.10 mg/mL时达最大值(94.70%),高于相同质量浓度对照BHT的清除率.[结论]采用响应面法优化的工艺条件可用于糯高粱多糖提取,且糯高粱多糖具有较强的抗氧化活性,可用于健康食品开发.  相似文献   

5.
香菇多糖提取条件的优化研究   总被引:1,自引:0,他引:1  
研究了采用微波协同高压热水浸提法从香菇中提取活性多糖的最适条件。通过单因素试验和正交试验,探讨了料液比、微波功率、微波处理时间、高压浸提时间及高压浸提温度对香菇多糖提取率的影响,并以香菇多糖提取率为评价指标,优化提取工艺。试验结果表明,微波协同高压热水浸提法提取香菇多糖的最适条件:料液比为1∶50(g∶mL),微波功率为640 W,微波处理时间为6 min,高压浸提温度为115℃,高压浸提时间为100 min。在此条件下,香菇多糖的提取率为13.8%。  相似文献   

6.
采用单因素试验和正交试验对白毫银针茶毫中茶多糖的提取工艺进行优化,并对其抗氧化性进行研究。结果表明,微波辅助提取的最佳工艺条件为料液比1∶20(g∶m L),微波功率540 W,微波时间7 min。在此条件下,茶毫多糖的提取率为6.89%。浓度为0.22 mg/m L的多糖溶液对·OH的清除率达到38.40%,茶毫多糖对·OH的清除率随多糖浓度的增加而增大,白毫银针茶毫多糖具有一定的抗氧化活性。  相似文献   

7.
采用微波辅助提取白背毛木耳(Auricularia polytricha)多糖,通过单因素试验和正交试验对多糖提取工艺参数进行优化,并研究所提取的多糖对羟基自由基和超氧阴离子自由基的清除作用。结果表明:多糖的最佳提取工艺参数为微波时间3.0 min、料液比1∶45(g/m L)、微波功率640 W;在此条件下多糖平均提取率为14.87%,平均加样回收率为98.25%;多糖对羟基自由基和超氧阴离子自由基的清除率最大分别为44.57%和60.68%。本试验首次测定了白背毛木耳多糖的抗氧化活性,为白背毛木耳多糖的开发利用提供了依据。  相似文献   

8.
采用微波预处理(功率为250 W,时间为30 s)超声波辅助提取法提取香菇多糖,以正交试验优化工艺条件,且通过测定香菇多糖的总抗氧化能力、1,1-二苯基-2-三硝基苯肼(DPPH)自由基和羟自由基清除能力,研究其体外抗氧化活性。结果表明,最佳工艺参数为料液比1 g∶20 m L、超声功率80 W、超声温度60℃、超声时间20 min,在此优化条件下,香菇多糖提取率最高,为7. 16%。香菇多糖具有良好的抗氧化活性,其总抗氧化能力随着质量浓度的升高而明显增强,在其质量浓度为25 mg/m L时,其DPPH自由基、羟自由基清除率分别达到76. 22%、92. 41%。  相似文献   

9.
采用超声-微波协同萃取法提取刺山柑叶片多糖,并考察了提取温度、时间、料液比3因素对多糖提取率的影响。正交试验结果表明,超声-微波协同萃取法提取多糖的适宜条件为提取温度80℃,料液比1∶40(g∶mL),提取时间10min,提取率为8.88%。  相似文献   

10.
为优化枸杞多糖超声波辅助提取工艺并比较不同产地枸杞药材的质量差异,以多糖提取率为指标,在料液比、回流时间、超声时间3个单因素基础上,采用L9(34)正交试验进行提取工艺的优化研究。同时,测定不同产地枸杞子水分、总灰分、浸出物含量,按优化后的工艺提取并测定多糖提取率,比较抗氧化活性,作为药材质量评价项目。结果表明:超声波辅助提取枸杞多糖的最佳工艺条件为料液比1 g∶50 mL,回流时间120 min,超声时间70 min。同时,宁夏枸杞多糖提取率更高,为21.39%,总抗氧化能力、DPPH自由基清除率及羟自由基清除率均高于河北枸杞,为枸杞多糖的开发利用提供了试验依据。  相似文献   

11.
[目的]优化微波直提法和微波-索氏提取法提取芦笋老茎中多糖的工艺。[方法]以多糖提取率为考察指标,通过正交试验优化2种提取方法的提取工艺。[结果]微波直提法的最佳工艺条件为:料液比为1∶30,提取时间为20 min,提取温度为60℃,微波功率为600 W,在此条件下多糖的提取率为4.35%;微波-索氏提取法的最佳工艺条件为:料液比为1∶33,微波时间为10 min,微波功率为600W,提取温度为70℃,在此条件下多糖的提取率为2.29%。[结论]微波直提法具有提取效率高,提取温度低,能量消耗小等特点,可用于实际生产中。  相似文献   

12.
首次提取千年健中的总黄酮,并测定其抗氧化活性。对千年健中总黄酮的微波提取工艺进行了优化,最佳提取工艺为:以50%的乙醇为提取剂,微波辅助提取,功率为414 W,提取时间60 s,料液比1∶13。此条件下,黄酮提取率可达1.79%。千年健提取物具有较强的清除羟自由基能力,对羟自由基的清除率随提取物浓度的增大而增强,抗氧化活性增强。当千年健提取物浓度为100 mg/L时,对羟自由基的清除率为53.9%。同等条件下,千年健提取物对羟自由基的清除率是抗坏血酸的76.3%。  相似文献   

13.
[目的]通过比较提取率和抗氧化活性,从3种多糖提取方法中筛选出适合荔枝干多糖的提取方法。[方法]优化热水浴、微波超声协同和纤维素酶活法各提取参数条件,比较三者在多糖得率、含量以及对ATBS和DPPH自由基清除方面的差异。[结果]热水浴法多糖提取率随温度升高而逐渐增加,但温度较高时其升幅降低;微波超声协同法液料比变化对提取率有影响,但提升幅度较小;纤维素酶活法也存在类似现象。在最优条件下纤维素酶活法具有最低的提取率和最高的多糖比率。另外,纤维素酶提取法所得多糖清除ATBS自由基能力较强,其次为热水浴法,最后为微波超声协同法。[结论]热水浴法具有提取率高、操作简便、多糖含量和抗氧化活性较高等优势,更适合于荔枝干多糖的提取。  相似文献   

14.
枸杞多糖提取条件优化及体外抗氧化活性研究   总被引:1,自引:0,他引:1  
为了优化枸杞(Lycium chinense)中多糖的提取工艺并研究其抗氧化活性,以宁夏枸杞为原料,以水提醇沉为提取方法来研究其提取工艺。通过单因素试验,考察不同料液比、浸提温度、浸提时间、浸提p H、提取次数、醇沉时间、醇沉时乙醇的加入量等诸多因素来优化枸杞多糖的提取率;通过抗脂质过氧化能力的测定以及对超氧阴离子自由基清除作用的测定对枸杞多糖的抗氧化能力进行研究。结果表明,在提取枸杞多糖时,料液比为1∶35(g∶m L),温度为90℃,p H为11,浸提3 h,提取2次,合并提取液,加3倍体积95%乙醇沉淀6 h时,提取效果最佳,提取率为18.56%。另外,在提取时,采用超声波辅助提取30 min,可提高多糖提取率。抗氧化结果显示,枸杞多糖具有一定的抗氧化活性。  相似文献   

15.
为探讨用超声-微波协同提取法提取二色补血草多糖的工艺条件,并确定其抗氧化功能的特性,以水为提取剂,通过正交试验对二色补血草多糖的提取工艺进行了筛选。通过测定羟自由基的清除率确定二色补血草多糖的抗氧化功能,结果认为:料液比1:60、提取温度70℃、提取时间600s为二色补血草多糖的最佳提取工艺,提取量可达46.45mg/g;二色补血草多糖对羟自由基有明显的清除作用,且随着多糖浓度的增加,清除效果增强。与传统热水浸提法相比,超声-微波协同提取法可以大大缩短提取时间,提高提取的效率;二色补血草多糖具有明显的抗氧化功能。  相似文献   

16.
[目的]优化提取荷叶多糖的最佳工艺参数及研究其抗氧化作用,为荷叶多糖的提取和利用提供技术参考.[方法]以荷叶为原料,采用单因素试验及正交试验设计,从提取时间、提取温度、料液比等方面,对荷叶多糖的提取工艺进行优化;并研究荷叶多糖对羟基自由基(·OH)和超氧阴离子自由基(O2-·)的清除作用.[结果]热水浸提荷叶多糖的最佳工艺条件为:浸提时间2.0 h,浸提温度75℃,固液比1∶30.荷叶多糖对·OH和O2-·均有明显的清除作用,且清除率随多糖浓度增加而增大,其最高清除率分别为51.6%和23.1%.[结论]在最佳提取工艺条件下,荷叶多糖的提取率为9.95%;荷叶多糖抗氧化作用明显.  相似文献   

17.
为优化黄芪碱溶多糖的提取工艺及其体外抗氧化活性,本研究在单因素试验的基础上,通过正交试验优化黄芪碱溶多糖的提取工艺,并通过Smirnoff法及邻苯三酚自氧化法研究其体外清除自由基能力。黄芪碱溶多糖最优提取工艺条件为提取温度70℃、提取时间130 min、料液比1∶20,此条件下提取率为(15.63±0.36)%。为研究黄芪碱溶多糖的抗氧化活性,进行了体外羟基自由基和超氧阴离子自由基清除试验,黄芪碱溶多糖随浓度(0.2~1.2 mg·mL~(-1))升高,对羟基自由基的清除率先升后降,当浓度为0.8 mg·mL~(-1)时清除率最高为(65.38±0.75)%,显著高于同浓度的Vc处理(P0.05),亦高于最高清除率的Vc处理(1.0 mg·m L~(-1));在低浓度下(0.5,1.0 mg·mL~(-1))碱溶多糖对超氧阴离子的清除率较高,分别为(49.26±0.06)%和(57.55±0.05)%,显著高于同浓度Vc处理(P0.05)。由此可见,本文优化工艺大大提高了黄芪多糖的提取率,且提取的碱溶多糖具有较好的抗氧化活性。  相似文献   

18.
采用正交试验比较乙醇浸提法、微波提取法和超声提取法提取枸杞黄酮的工艺及效率.乙醇浸提法最佳提取工艺为:料液比1g∶10mL、提取温度80℃、提取时间4h、乙醇浓度60%,提取率为1.71%;微波提取法最佳提取工艺为:料液比1 g∶10mL、微波功率560 W、微波时间90s、乙醇浓度80%,提取率为1.59%;超声提取法最佳提取工艺为:料液比1 g∶30 mL、超声功率80 W、超声时间15 min、乙醇浓度80%,提取率为1.84%.超声提取法效率最高,优于乙醇浸提法和微波提取法.  相似文献   

19.
[目的]优化雪胆水溶性和水不溶性多糖提取工艺,并分析其抗氧化活性,为雪胆多糖的开发利用提供参考依据.[方法]采用热水浸提法提取雪胆水溶性多糖、碱液浸提法提取雪胆水不溶性多糖,以多糖提取率为考察指标,通过单因素试验和正交试验优化2种雪胆多糖的提取工艺条件,同时测定雪胆多糖清除羟基自由基(·OH)、1,1-二苯基-2-三硝基苯肼(DPPH)自由基和超氧阴离子(O-2·)的能力及还原能力.[结果]影响热水浸提雪胆水溶性多糖的因素排序为提取温度>料液比>提取时间,最佳提取工艺条件为:料液比1:16、提取温度80℃、提取时间2.0 h,在此条件下,雪胆水溶性多糖提取率为(28.70±0.63)%;影响碱液浸提雪胆水不溶性多糖的因素排序为料液比>提取温度>提取时间,最佳提取条件为:料液比1:18、提取温度70℃、提取时间2.0 h,在此条件下,雪胆水不溶性多糖提取率为(31.43±0.42)%.雪胆水溶性多糖和水不溶性多糖对·OH和DPPH自由基均有较好的清除效果,2种雪胆多糖质量浓度为0.5 mg/mL时,对DPPH自由基的清除率在50.00%以上,质量浓度为0.1 mg/mL时,对·OH的清除率在50.00%以上;此外,2种多糖具有良好的还原能力和清除O-2·能力,均随多糖质量浓度的增加而增强.[结论]采用正交试验优化获得雪胆水溶性多糖热水浸提工艺和雪胆水不溶性多糖碱液浸提工艺,提取操作简便,方法可行,提取的2种多糖均具有较强的抗氧化活性,可作为天然抗氧化资源加以利用.  相似文献   

20.
浒苔多糖的微波辅助提取工艺及抗氧化活性研究   总被引:1,自引:0,他引:1  
采用微波辅助提取技术,研究了微波功率、液料比、提取温度和提取时间对浒苔多糖提取率的影响,并对不同提取方法进行了比较。在单因素试验的基础上,通过正交试验确定最佳提取工艺条件为微波功率700 W、提取温度70℃、液料比40:1和提取时间25 min。在此条件下,浒苔多糖提取率为10.79%。与传统热水浸提和超声提取比较,微波辅助提取浒苔多糖具有节能、快速和得率高等优点。抗氧化试验表明浒苔多糖在浓度0.5 mg/mL的条件下,对DPPH.和.OH的清除率为65.2%和41.2%,还原力为0.354。与阳性对照品BHT和GA相比,浒苔多糖对DPPH.的清除率略高于BHT。浒苔多糖可作为潜在的天然抗氧化剂应用于保健食品和医药工业中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号