首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解不同比例生物质炭的添加对猪粪和稻草堆肥过程中氮素损失及温室气体排放的影响,监测了堆置过程中铵态氮、硝态氮、氨挥发及温室气体的变化。试验设猪粪秸秆对照(B0)以及猪粪秸秆中添加5%(B1)、10%(B2)、15%(B3)生物质炭共4个处理。结果表明:添加生物质炭能够提高堆体温度,缩短堆肥周期,B3处理的堆体比B0处理提前3 d进入高温期;高温期B0、B1、B2、B3各处理堆体中NH+4含量分别比初始值增加6.6%、41.8%、51.9%、48.6%。与B0相比,添加生物质炭能够显著增加高温期堆体NH+4含量,减少高温期NH+4向NH3的转化,显著降低堆肥过程中的氨挥发,其中B1、B2、B3氨挥发累计量比B0分别减少23.1%、68.6%、78.4%;B2处理与B0相比能够显著减少CO_2排放总量,而B1、B3处理效果不显著,但能够显著减少堆肥过程中CH4的排放;与B0相比,添加生物质炭处理CH4排放总量降低16.3%~23.5%,且可显著降低堆肥过程中N_2O的排放,其中B2、B3的N2O排放总量比B0减少70.7%。  相似文献   

2.
生物质炭对蔬菜废弃物堆肥化过程氮素转化的影响   总被引:8,自引:4,他引:8  
为了研究添加生物质炭对蔬菜废弃物堆肥化处理过程中氮素转化特征的影响,分析堆肥过程中氮素的转化及损失规律,用西红柿茎蔓、玉米秸秆和猪粪按一定比例混合后添加不同比例的生物质炭,进行了为期30 d的堆肥发酵试验。结果表明,添加生物质炭能够提高堆体温度,使堆体快速进入高温期,延长高温持续时间,可降低挥发性氨的累积释放量,减少堆肥过程中的氮素损失,从而提高堆肥产品全氮的含量,并可促进堆肥后期NH_4~+-N向NO_3~--N转化,提高非酸水解态氮的含量。添加生物质炭有利于堆肥的腐熟,在堆肥第18 d添加较高比例的生物质炭的处理其NH_4~+-N/NO_3~--N≤0.5,堆肥产品达到腐熟。综合保氮和腐熟效果,蔬菜废弃物在堆肥化过程中以添加10%的生物质炭为最佳。  相似文献   

3.
为探索稻壳和磷石膏两种固体废弃物资源化利用的新途径,以稻壳和油枯为发酵堆体原料,研究添加磷石膏对堆肥基质化发酵进程及腐熟后基质品质的影响。磷石膏添加量基于堆体有机物料(干重)的10%、20%、30%、40%和50%(分别记为A10、A20、A30、A40和A50),以磷石膏添加量为0作为对照(CK)。结果表明,磷石膏的添加促进了堆肥温度的快速升高,但其添加量超过有机物干物质的40%时会导致堆肥高温时间变短;以堆肥过程中水溶性NH_4~+-N、C/N、T_(C/N)值[(不同时期C/N)/(初始C/N)]和种子发芽指数(GI)作为堆肥腐熟的判断标准来综合判断堆肥腐熟进程,表明添加磷石膏可以促进堆肥发酵进程,其中A40处理的堆肥发酵效果最好。从基质化利用的角度来看,堆体腐熟结束时,A40处理的全磷和全钾含量均显著高于其他处理,堆体容重、持水孔隙度、通气孔隙度等指标均达到了理想性基质的要求。A40处理腐熟后的堆肥更适合作为作物栽培基质。  相似文献   

4.
生物质炭对城市污泥堆肥温室气体排放的影响   总被引:1,自引:0,他引:1  
采用城市脱水污泥为研究对象,设置两种堆肥处理(试验组:添加水稻生物质炭;对照组:未添加生物质炭),考察污泥堆肥过程温室气体动态变化特征以及添加生物质炭的影响。结果表明:生物质炭能提高堆体温度、延长堆体高温期、加快堆体腐熟,减少堆体TC(总碳)、TOC(总有机碳)和氮素损失(特别是减少NH_4~+-N的损失),两种处理TC、TOC和TN(总氮)均呈显著性差异(P0.05)。CH_4排放主要集中在高温期和降温期,占CH_4总排放量的76.40%~82.40%,添加生物质炭会促进CH_4排放。CO_2排放主要集中在高温期和降温期,占排放总量的78.77%~78.83%,添加生物质炭能减少CO_2排放。超过84%的N_2O排放集中在腐熟期,添加生物质炭能减少堆肥过程中N_2O排放,试验组N_2O累积排放量比对照组低18.94%。添加生物质炭对污泥堆肥处理具有一定的温室气体减排作用,试验组与对照组CO_2排放当量(以干污泥计)分别为60.21 kg·t~(-1)和67.19 kg·t~(-1),添加生物质炭能减排温室气体10.39%。  相似文献   

5.
玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响   总被引:4,自引:2,他引:2  
为探明玉米秸秆粉末、新鲜和老化(自然老化、高温老化、冻融循环老化)玉米秸秆生物炭对黄土高原石灰性农田土壤氨挥发的影响,将不同材料按2%(质量比)与土壤充分混匀,开展为期29 d的室内静态土壤培养实验,研究土壤氨挥发速率的日变化以及整个培养期间的氨挥发累积量。同时,为探究不同材料对土壤氨挥发影响的机理,测定了培养初态和终态土壤样品的无机氮含量、氨氧化速率和氨氧化细菌数量,并研究了不同材料对水中NH_4~+-N的吸附特性。结果表明,在整个培养过程中,与未添加外源材料处理相比,添加冻融循环老化生物炭或高温老化生物炭处理的氨挥发累积量减少了30%,添加自然老化生物炭或新鲜生物炭处理的氨挥发累积量减少了23%,添加玉米秸秆粉末处理的氨挥发累积量减少了19%。施氮肥后1~10 d为土壤氨挥发的主要阶段,该阶段氨挥发累积量占整个培养过程氨挥发累积量的90%以上。不同材料对土壤氨挥发影响的机理研究表明,冻融循环老化生物炭和高温老化生物炭较强的氨挥发抑制作用与其较强的土壤氨氧化促进作用以及NH_4~+-N吸附能力有关。本研究有助于深刻理解新鲜和老化玉米秸秆生物炭还田对石灰性农田土壤氨挥发的影响,为降低土壤氨挥发提供有效途径,为生物炭在黄土高原的农业工程应用提供理论借鉴。  相似文献   

6.
炭基辅料对羊粪好氧堆肥中氮素损失的影响   总被引:4,自引:1,他引:3  
养殖废弃物(羊粪)的堆肥化处置是现代"草-羊-田"农牧循环生产的重要环节,为探讨羊粪高温好氧堆肥中氮素损失的有效控制技术,研制了一种炭基辅料,与羊粪和稻草混合后进行了34 d的堆肥试验。试验设置2个处理:羊粪与稻草高温好氧堆肥(CK)、CK基础上添加质量比15%的炭基辅料(CA)。监测了堆肥体的温度、NH_3挥发速率、N_2O排放通量、各形态氮素含量等参数变化情况,分析了炭基辅料对羊粪堆肥过程中氮素转化及损失的影响。结果表明,与CK处理相比,添加炭基辅料促进了堆肥后第1~7 d堆肥温度快速上升,对堆肥后第8~34 d的堆温影响较小;堆肥34 d后,CK、CA处理的NH_3挥发累积量分别为368.38、175.63 mg·kg-1,N_2O排放累积量分别为50.38、88.94 mg·kg-1,CA处理的NH_3挥发累积量显著小于CK处理(P0.05),而2个处理之间的N_2O排放累积量差异性不显著(P0.05),羊粪堆肥过程中NH_3挥发是氮素损失的主要途径;CK、CA处理的氮素损失率分别为50.49%、32.63%,添加炭基辅料显著降低了羊粪堆肥体的氮素损失率(P0.05),炭基辅料应用于羊粪有机肥生产,氮素损失率可减少35.37%。  相似文献   

7.
为探讨海南燥红壤N_2O和CO_2排放对生物炭添加的响应,通过室内培养试验分析生物炭加入后对土壤化学性质、NH_4~+-N和NO_3~--N含量以及N_2O和CO_2排放通量及累积排放量的影响。试验设置CK(不施生物炭)、B1(2%生物炭)、B2(4%生物炭)、B3(6%生物炭)4个处理。结果表明:添加生物炭后,土壤有机质、全氮和速效钾含量显著提高,较CK增幅分别为67.4%~246.6%、38.6%~90.9%和696.0%~1 764.7%。相比于CK,不同量生物炭添加后均导致了NH_4~+-N和NO_3~--N含量降低,总体上,不同处理NH_4~+-N浓度表现为CKB3B2B1,NO_3~--N含量表现为CKB1B2B3;随培养时间增加,各处理NH_4~+-N浓度呈下降趋势,NO_3~--N含量呈上升趋势。生物炭施用延后了N_2O排放通量出现峰值的时间。各处理之间N_2O和CO_2排放通量的变化过程大致表现出一致的趋势,即随培养时间延长,N_2O排放通量先升高后降低,CO_2排放通量先升高后趋于稳定。和CK相比,生物炭添加不同程度地促进了N_2O和CO_2排放,B1、B2和B3处理下N_2O累积排放量分别增加了399.2%、494.2%和194.5%,CO_2排放总量分别增加了87.6%、153.3%和147.6%。本研究结果显示,生物炭施用短期内促进了土壤N_2O和CO_2的排放通量。  相似文献   

8.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

9.
生物炭添加对猪粪堆肥氮素形态和损失的影响   总被引:2,自引:0,他引:2  
【目的】探讨生物炭添加下猪粪堆肥过程氮素形态的变化,为堆肥过程中氮素损失控制提供科学依据。【方法】本研究利用强制反应箱研究在猪粪堆肥中添加0%、3%、6%和9%的生物炭(重量比,干基计)对氮素形态变化以及氮素损失的影响。【结果】各处理在堆肥过程中全氮和硝态氮含量呈上升趋势,至堆肥结束全氮含量增加了3.68%~5.43%;可溶性总氮和铵态氮呈先上升后下降的趋势,随着生物炭添加量的提高堆料中铵态氮降幅减小。不同堆肥处理氮素损失率介于20.69%~28.18%,3%和6%生物炭添加处理的氨挥发量分别比未添加生物炭处理的高8.98%和46.30%,而9%生物炭添加处理的氮素损失率和氨挥发量最低。【结论】猪粪堆肥过程中添加生物炭可使堆体快速升温,并延长高温期,堆料中铵态氮向硝态氮转化。硝态氮含量随生物炭添加量呈增加的趋势,氮素损失率随着发酵时间延长呈增加的趋势。  相似文献   

10.
生物质炭对伊乐藻堆肥过程氨挥发的作用效应研究   总被引:4,自引:3,他引:1  
针对水生植物堆肥过程中氮素损失严重的现状,探讨以生物质炭为添加剂的堆肥体氨挥发控制技术,以伊乐藻和稻草为供试材料,采用静态高温好氧堆肥的方法,在生物质炭不同添加比例条件下,监测了伊乐藻与稻草混合堆置过程中氨挥发及其影响因素的变化动态。结果表明:整个堆肥过程中,氨累积挥发量与生物质炭添加比例关系密切(P0.01),与不添加生物质炭的常规对照处理相比,添加比例为5%、10%的处理增加了氨的累积挥发量,而添加比例为15%、20%的处理降低了氨的累积挥发量;不同堆肥时间段,生物质炭不同添加比例处理0~3 d的氨累积挥发量均大于对照,4~6 d的氨累积挥发量,除添加比例5%处理外,均小于对照;伊乐藻堆肥体的氨挥发速率与堆温、铵态氮含量具有显著的偏相关性,其偏相关性均达到P0.05的显著水平;增加生物质炭添加比例,不仅提高了堆肥温度,对堆肥体的氨挥发损失具有负向的促进作用,同时也降低了堆肥体的铵态氮含量,对堆肥体的氨挥发损失具有正向的抑制作用,生物质炭对伊乐藻堆肥体氮素的氨挥发损失具有促进与抑制双重性的作用效应。  相似文献   

11.
玉米秸秆生物炭对土壤无机氮素淋失风险的影响研究   总被引:9,自引:11,他引:9  
采用室内土柱模拟淋溶方法,研究生物炭对不同土层土壤淋溶液体积以及铵态氮(NH+4-N)和硝态氮(NO-3-N)淋失量的影响。实验所用的生物炭以玉米秸秆(炭化温度500℃)为原料制成,分别按照炭土质量比0(T1)、1%(T2)、2%(T3)和4%(T4)施用于褐潮土中。结果表明:淋溶实验过程中,淋溶初期生物炭对土壤NH+4-N和NO-3-N的固持作用比较明显,且对NH+4-N的固持主要发生在0~10 cm土层,而对NO-3-N的固持主要发生在10~40 cm;生物炭能够有效增加土壤的持水能力,与不添加生物炭处理(T1)相比,T2、T3、T4处理的土柱累积淋溶液体积分别减少了10%、20%、26%,无机氮素淋失量显著降低,分别减少27%、48%、61%;无机氮素淋失量的减少主要来自NO-3-N,相对于不添加生物炭处理,T2、T3、T4处理NO-3-N累积淋失量分别为62.4、44.4、34.5 mg,分别减少了28%、49%、58%。总的来说,土壤中添加玉米秸秆生物炭能够有效降低土壤无机氮素的淋失风险。  相似文献   

12.
以污泥和秸秆为基本堆肥原料,向其中添加不同比例的沸石(5%和10%),采用密闭室动态吸收法,分析了污泥堆肥过程中的氨挥发速率以及氨挥发的相关影响因素。结果表明:堆肥中添加5%和10%的沸石,与对照相比显著降低了氨挥发累积速率27.9%和48.7%,并且延迟1 d出现氨挥发峰值。沸石添加剂对氨挥发影响因素温度、pH 值、EC 和NH4+-N 均有显著影响,添加沸石缩短堆肥高温期3 d,降低堆肥中后期堆体温度(降幅为0.17~13.5 益),增加堆体0.09~0.22 个pH 单位,维持堆肥更低电导率(1 876.7~2 636.7 uS·cm-1),降低堆体NH4+-N 9.07%~22.2%。污泥堆肥中添加沸石降低了氨挥发累积速率,保留了堆体中的有效氮,在堆肥工程中具有较为广阔的应用前景。  相似文献   

13.
生物炭对茶园酸性红壤氮素养分淋溶的影响   总被引:2,自引:1,他引:1  
福建省山地茶园水土流失严重,高坡度开垦茶园会造成土壤养分淋失,引起土壤酸化。为研究生物炭对茶园酸性土壤氮素养分淋溶的影响,采用室内土柱模拟试验,设置对照CK(C0N0)、单施常规量氮肥(C0N1)、单施两倍量氮肥(C0N2)、常规施氮肥增施2%生物炭(C1N1)、常规施氮肥增施5%生物炭(C2N1)5个处理,研究不同生物炭和氮肥添加处理下茶园酸性土壤氮素养分淋溶变化和规律。结果表明,常规施肥条件下,随着生物炭添加量增大,淋滤液体积显著降低,全氮、硝态氮、铵态氮的淋失量显著降低。添加生物炭处理土柱中NO-3-N和NH+4-N的淋溶开始时间均晚于未添加生物炭处理土柱,且NO-3-N的浓度峰值较NH+4-N的出现早。与C0N1相比,生物炭施用处理(C1N1和C2N1)显著提高了土壤pH,NO-3-N的淋溶量分别降低了60%和77%,NH+4-N的淋溶量分别降低了40%和39%。就不同氮素形态而言,C1N1和C2N1处理中均先检测到NO-3-N,说明生物炭对NH+4-N的固持能力大于NO-3-N。研究表明在茶园酸性红壤中添加生物炭可减缓氮素损失,提高土壤养分含量,结果为茶园酸性红壤的土壤改良提供理论依据和参考意义。  相似文献   

14.
为研究过磷酸钙不同添加量对蔬菜废弃物堆肥过程中氨气和温室气体排放的影响,以生菜的废弃菜叶和玉米秸秆为原料,以过磷酸钙肥料为添加剂,进行了27 d的曝气供氧堆肥,对堆肥过程中的氨挥发和温室气体排放(N_2O、CH_4和CO_2)进行了监测.试验共设6个处理,除CK处理(不添加过磷酸钙)外,其余处理依次根据混合物料初始总氮物质量的5%、10%、15%、20%和25%的比例添加过磷酸钙。结果表明:添加过磷酸钙对减少堆肥过程中的氨挥发和温室气体排放均有明显效果,氨挥发总量较CK减少了4.0%~16.7%,总温室气体CO_2排放当量减少了10.2%~20.8%。堆肥过程中排放的NH_3对温室效应的贡献相对较大,各处理NH_3的CO_2排放当量为59.90~81.58kg/t,占4种气体总CO_2排放当量的69%~77%。蔬菜废弃物堆肥过程中适量添加过磷酸钙是减少氨挥发和温室气体排放并提高堆肥品质的有效措施。  相似文献   

15.
将辣椒秸秆通过高温热解的方法制备成辣椒秸秆生物炭,与酸化土壤共培养,探讨辣椒秸秆生物炭对酸化土壤交换性能及土壤酶活性等的影响。结果表明,添加辣椒秸秆生物炭能显著提高酸化土壤pH,提高幅度与辣椒秸秆生物炭的添加量呈正比;土壤交换性Al~(3+)含量与辣椒秸秆生物炭添加量呈显著负相关;添加辣椒秸秆生物炭能显著影响土壤NO_3~--N和NH_4~+-N。土壤交换性Na~+和交换性K~+与辣椒秸秆生物炭添加量呈显著正相关;交换性K~+的变化与辣椒秸秆生物炭中K元素呈极显著正相关;交换性Ca~(2+)、交换性Mg~(2+)与辣椒秸秆生物炭添加量之间相关性不显著;总盐基离子、土壤阳离子交换量(CEC)与辣椒秸秆生物炭添加量之间呈显著正相关。土壤脲酶、蔗糖酶与辣椒秸秆生物炭添加量呈正相关;土壤酸性磷酸酶、蛋白酶、过氧化氢酶与辣椒秸秆生物炭添加量之间相关性不显著;土壤酶的几何平均数(GMea)表明添加辣椒秸秆生物炭可以显著改善酸化土壤质量。试验为开拓辣椒秸秆利用途径、改善酸化土壤及提高土壤肥力等方面提供提供科学依据。  相似文献   

16.
水稻秸秆预处理对猪粪高温堆肥过程的影响   总被引:2,自引:0,他引:2  
通过预处理技术打破秸秆中的木质纤维素复杂结构,能够有效加速秸秆的分解过程。为了探讨不同秸秆预处理方法对秸秆与畜禽粪便混合堆肥效率的影响,通过添加秸秆腐熟剂(B)和氢氧化钙(C)分别对水稻秸秆进行10 d(B1、C1)和20 d(B2,C2)的预处理静态堆置,以无预处理的秸秆为对照(CK),与猪粪按比例混合后进行好氧堆肥。运用红外光谱(IR)、扫描电镜(SEM)对预处理前后的水稻秸秆进行了分析,并通过比较不同处理堆肥过程中温度、p H、水溶性铵态氮/水溶性硝态氮(NH+4-N/NO-3-N)、电导率(EC)、T值[(C/N)终点/(C/N)起点]和种子发芽率(GI)的变化来研究不同预处理方法对堆肥腐熟过程的影响,通过对比堆肥产物总养分含量来进一步确定最优的秸秆预处理方式。结果显示,秸秆腐熟剂预处理能够有效破坏水稻秸秆细胞壁和复杂的纤维结构,使其内部组织暴露、出现大量的孔隙和微孔道。氢氧化钙预处理也能对水稻秸秆结构产生破坏,但其内部组织暴露较少,几乎没有微孔;秸秆腐熟剂对水稻秸秆进行预处理,其破坏性强于氢氧化钙处理,且处理时间越长效果越好。相比对照,秸秆腐熟剂处理后能够缩短堆肥高温期8~13 d。堆肥结束后,所有秸秆预处理的堆体p H均降至8.5以下;B1、B2、C2的NH+4-N/NO-3-N小于0.5,符合腐熟评价标准,但CK和C1未达到腐熟标准;除B2外各处理T值均低于0.6,所有处理的GI均在堆肥第28 d达到50%。秸秆预处理后的堆体总养分含量均高于CK(CK、B1、B2、C1、C2的总养分分别为11.09%、11.49%、13.29%、11.75%、11.37%),其中B2总养分含量显著高于其他处理。总体来看,秸秆预处理可以加快堆体的腐熟过程,提高堆肥产物质量,其中采用秸秆腐熟剂预处理20 d的效果最为明显。  相似文献   

17.
为优化羊粪堆肥腐熟度与温室气体减排协同的技术工艺参数,以2种不同热解温度制备的稻壳生物炭为堆肥辅料,与羊粪、食用菌渣混合,进行了43 d的堆肥试验。设置了3个处理,羊粪与食用菌渣质量比9∶1混合体作为预备物料,在预备物料上分别添加450、650℃热解的稻壳生物炭(占预备物料质量百分比15%)为BC450、BC650处理,在预备物料上添加未热解炭化的稻壳(与稻壳生物炭同等体积)为CK处理。监测了堆肥温度、腐熟度指标(NH4+-N/NO3--N、EC值、种子发芽指数)、温室气体(CH4、CO2、N2O)排放的变化动态,分析了不同热解温度稻壳生物炭对堆肥腐熟度与温室气体减排的协同效果。结果表明:添加450、650℃热解的稻壳生物炭,缩短了堆肥体NH4+-N/NO3--N、T值、EC值及种子发芽指数达到腐熟度推荐值的所需时间,与CK处理相比,BC450、B...  相似文献   

18.
不同原料生物炭对铵态氮的吸附性能研究   总被引:4,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   

19.
为探索城市污泥无害化利用,于60℃恒温条件下利用花生壳炭和城市污泥、秸秆进行好氧高温堆肥试验。试验设置4个处理,即:CK(不添加花生壳炭)、3个花生壳炭不同添加量处理,分别为CK堆体干基质量的10%(H1)、20%(H2)、30%(H3),监测了堆肥过程中p H值、电导率(EC)、全氮(TN)、铵态氮(NH4+-N)、硝态氮(NO3--N)、全磷(TP)、速效磷(AP)、全钾(TK)、速效钾(AK)、以及重金属Cu、Zn全量及其分级形态分配率等相关数据的变化。结果表明,与初始值相比,堆肥结束后CK、H1、H2和H3堆体EC值增长率分别为113.20%、98.98%、89.62%和79.82%; p H值增长率分别为1.13%、4.63%、5.06%和6.51%。试验结束时TN含量损失率分别为18.96%、16.25%、12.51%和12.44%; NH4+-N损失率分别为89.20%、87.11%、84.11%和82.43%; NO3--N损失率分别为45.51%、44.10%、30.01%和19.08%; TP增长率分别为19.72%、42.03%、62.26%和89.99%,AP损失率分别为11.04%、10.69%、9.67%和1.76%。由于花生壳炭中富含大量钾素,堆肥结束后,TK增长率分别为63.59%、81.21%、91.14%和94.05%,AK含量增长率分别为23.21%、11.58%、2.11%和3.21%。30%花生壳炭添加的堆体,Cu的生物可利用态减少比例最大值为9.72%,但对Zn只能降低其活化程度,且只有H3可降低2.03%的生物可利用态锌。说明花生壳炭具有降低堆肥EC值和提高p H值的作用,其凭借自身多孔的特点能够改善堆肥环境,促进堆体养分的吸附固持。同时,花生壳炭的碱性和大量的羧基、羟基等官能团,对降低生物可利用态重金属具有积极作用。  相似文献   

20.
不同C/N比条件是鸡粪和稻壳高温堆肥腐熟度过程的关键因素。试验通过控制鸡粪和稻壳的添加量调节堆体初始C/N(20、25、30 3个处理),研究不同碳氮比对堆肥过程中堆体温度、pH值、EC、C/N、腐殖酸等理化指标的影响,探索鸡粪和稻壳高温堆肥的最适C/N。研究结果表明,在堆肥过程中,各处理的C/N呈下降趋势,堆肥结束后3个处理最终C/N分别为14、17和18,除初始C/N为20的A1处理略低于标准,其余两处理均达到腐熟度标准。各处理的pH值先降低后快速升高最后又降低,堆肥结束后pH值分别为8.36、8.4和8.28,均满足堆肥产品标准。3个处理的GI值分别为52%、95.1%和76.6%,只有C/N为25的A2达到完全腐熟标准,而且A2处理的堆体腐殖酸含量也较高,因此建议鸡粪稻壳初始C/N比为25。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号