首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

2.
Summary The uptake of labelled and unlabelled N by wheat was measured in a field experiment using 15N-labelled ammonium nitrate fertilizer. The dry matter yield and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The uptake of applied N by wheat ranged between 25 and 34%. Fertilizer N application increased the uptake of unlabelled soil N which was attributed to a positive priming effect or added N interaction. The added N interaction observed by applying 20, 60, and 120 kg fertilizer N was 11.4, 19.1, and 27.9 kg, corresponding to 26, 44 and 64%, respectively of the N taken up from unfertilized soil. The A values did not alter with the increase in fertilizer N application. The observed added N interaction may have been the result of pool substitution whereby added labelled fertilizer N stood proxy for unlabelled soil N. A significant correlation coefficient (r=0.996**) between the uptake of soil N and the dry matter yield showed that soil N was more important than fertilizer N in wheat production.  相似文献   

3.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

4.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

5.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

6.
The effect of acetylene (provided by wax-coated calcium carbide, CaC2) on N transformations in a red-brown earth was measured in a field experiment with irrigated wheat by determining the change in the concentration and 15N enrichment of the organic N and mineral N pools with time. The study was conducted in the Goulburn-Murray Irrigation region of south-eastern Australia using 0.3 m by 0.3 m microplots fertilized with 15N-labelled urea (10 g N m-2; 5 atom% 15N). Acetylene was effective in slowing the nitrification of both unlabelled and labelled N. Nitrate derived from the added fertilizer reached a maximum 19 days after sowing in the treatment without CaC2, whereas little nitrate accumulated in the 8 g CaC2 m-2 treatment. There was significant immobilization of the urea N by 19 days after sowing in all treatments, but the extent of immobilization was not affected by the acetylene. The addition of acetylene slowed net mineralization of labelled and unlabelled N from the organic N pool, and resulted in increased accumulation of both unlabelled and labelled N in wheat tops.  相似文献   

7.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

8.
Azam  F.  Ashraf  M.  Lodhi  Asma  Sajjad  M. I. 《Biology and Fertility of Soils》1990,10(2):134-138
Summary A pot experiment was conducted to study the N availability to wheat and the loss of 15N-labelled fertilizer N as affected by the rate of rice-straw applied. The availability of soil N was also studied. The straw was incorporated in the soil 2 or 4 weeks before a sowing of wheat and allowed to decompose at a moisture content of 60% or 200% of the water-holding capacity. The wheat plants were harvested at maturity and the roots, straw, and grains were analysed for total N and 15N. The soil was analysed for total N and 15N after the harvest to determine the recovery of fertilizer N in the soil-plant system and assess its loss. The dry matter and N yields of wheat were significantly retarded in the soil amended with rice straw. The availability of soil N to wheat was significantly reduced due to the straw application, particularly at high moisture levels during pre-incubation, and was assumed to cause a reduction in the dry matter and N yields of wheat. A significant correlation (r=0.89) was observed between the uptake of soil N and the dry matter yield of wheat with different treatments. In unamended soil 31.44% of the fertilizer N was taken up by the wheat plants while 41.08% of fertilizer N was lost. The plant recovery of fertilizer N from the amended soil averaged 30.78% and the losses averaged 45.55%  相似文献   

9.
黑土-春小麦中三种化学氮肥的去向   总被引:12,自引:3,他引:9  
金翔  韩晓增  蔡贵信 《土壤学报》1999,36(4):448-453
用^15N田间微区试验研究了黑土-春小麦中作基肥施用的尿素、碳 和硝酸钾三种氮肥的氮素去向。试验设在黑龙江省海伦市郊区,氮肥用量为纯N75kg/hm^2,施肥深度为10cm。结果表明,硝酸钾和尿素的氮素利用率相当,分别为58.4%和55.9%,显著高于碳铵(42.6%)。硝酸钾的土壤中的残留率(28.7%)显著低于碳铵(38.8%)和尿素(38.2%),氮素总损失在5.8% ̄18.6%之间,碳铵的  相似文献   

10.
ABSTRACT

Green manure is an efficient nitrogen (N) source when used as an alternative to chemical fertilizer. However, the N taken up by rice derived from green manure, chemical fertilizers or soil native N in complex nutrient systems is unclear. A pot experiment with partial substitution of urea with Chinese milk vetch (a green manure) implemented with 15N-labeled urea and Chinese milk vetch was set up to study the sources of N in rice and the fate of the fertilizers. The dry weights, N contents, N uptake, and urea N use efficiency were notably higher (by 15–16%, 4–13%, 22–30% and 182%-203%, respectively) in the Chinese milk vetch applied with urea treatment than in the urea alone treatment. The uptake of N from Chinese milk vetch and the use efficiency of Chinese milk vetch N were increased with reductions in the urea input amount. The application of Chinese milk vetch substantially changed the fate of urea: higher amounts of urea N were taken up by rice (approximately 29%) and remained as residue in the soil (approximately 15%) in the related treatments than in the treatment with urea alone (10% and 9%). More urea N than Chinese milk vetch N was taken up by rice (29% vs 20%, respectively) and lost (56% vs 14%, respectively), but less urea N than Chinese milk vetch N remained as residue in the soil (15% vs 66%, respectively). The partial substitution of chemical fertilizer with green manure is an effective method of promoting rice growth by supplying N for rice uptake and promoting more efficient N use.  相似文献   

11.
Abstract

A field study with maize (Zea mays L.) was conducted in the 1988/89 cropping season to investigate the fate of 15NO3-N-labelled NH4 15NO3 applied at 40, 80 and 120 kg N ha?1 (unlabelled N applied at 0, 80, 160 and 240 N ha?1) with and without lime. The investigations were conducted in northern Zambia at Misamfu Regional Research Centre, Kasama on a Misamfu red sandy loam soil. The experimental design was a split plot arrangement with four replications with main plots receiving 0 and 2 Mg ha?1 dolomitic limestone, while subplots received fertilizer N at various rates. Significant (p < 0.001) grain and DM yield responses to applied N up to 160 kg ha?1 were observed. At higher rates little or no crop responses were observed and fertilizer use efficiency declined. Partitioning of amounts of total N and 15N in plants was in the order of seed = tassel > leaf> cob = earleaf> stem. Fertilizer N rates showed a highly significant (p < 0.001) effect on plant uptake of labelled N. Lime and its interaction with N rates had no effect on all measured parameters. Leaching of NO3-N fertilizer to lower soil depths was in proportion to the rate of N applied, with highly significant (p < 0.001) differences among soil depths. Although higher concentrations of fertilizer-15N were recovered in the 0–20 cm depth the recovered portion at lower soil depths was still significant. Total recovery of labelled N by plant and by soil after crop harvest averaged 75, 55 and 54% of originally applied fertilizer-15N at 40, 80 and 120 kg N ha?1, respectively. Corresponding unaccounted for 15N was 25, 45 and 46%. The most probable loss mechanism could have been by leaching to depths greater than 60 cm, gaseous losses to the atmosphere and root assimilation.  相似文献   

12.
Abstract

In a lysimeter study it was found that moderate rates of ammonium nitrate increased utilization percentages in spring wheat, and the leaching was 10% or less of added N. Over-optimal rates reduced utilization percentages and increased leaching to almost 50% of the highest doses. Late split application of calcium nitrate increased the percentage of N in grain. Furthermore, leaching of N was not reduced, but occurred somewhat later in the fall and winter seasons. Leaching of Cl? was more rapid and that of SO4 2- was delayed relative to the leaching of NO3 ?. Rather large negative N balances were obtained, also after over-optimal application rates, and total N content of the soil was reduced. Compared with the N0 treatment, differences in soil N residues amounted to 15–25% of added N in seven years. Gaseous losses had apparently taken place both from the added N and from soil N according to the total-N analysis.  相似文献   

13.
Summary A pot experiment was conducted to compare the yields from five commercially cultivated varieties (Bas-198, Bas-370, Bas-Pak, Bas-385, and IR-6) of rice (Oryza sativa L.) and to establish the relative significance of soil N and fertilizer N (15N-labelled ammonium sulphate) in affecting crop performance. Another aim was to study the interaction of fertilizer N and soil N as influenced by different rice varieties. Among the five varieties tested, Bas-Pak gave the maximum dry matter and N yield. The N-use efficiency (percentage of applied N taken up by the plants) of different varieties ranged between 33.7 and 43.7%, Bas-Pak being the most efficient. Significant losses of fertilizer N occurred from the soil-plant system. The maximum N loss (52.1% of applied N) was observed with IR-6 and the minimum loss (39.2%) with Bas-Pak. A substantial increase in the uptake of soil N following the application of fertilizer and an interaction between the two N sources were observed with all varieties except Bas-385. The interaction was attributed to greater root proliferation following the application of fertilizer. It was concluded that a varietey with greater potential to use soil N is likely to give a better yield and that, of the two N sources, the availability of soil N was more important in determining the yield performance of different varieties of rice.  相似文献   

14.
Biogas plants in Germany are producing an increasing amount of biogas residues to be recycled via agricultural crop production. To test whether the wide range of various substrates used in the anaerobic digestion can affect the chemical composition and nutrient availability, seven biogas residues derived from different substrates were investigated with respect to their N supply to ryegrass. Both the short‐term and the long‐term N availability were studied in a 309‐d pot experiment lasting for five successive growth cycles each starting with a fertilizer application. The organic fertilizers were applied based on an equal amount of ammonium‐N (300 mg N per pot) and compared to mineral N from ammonium nitrate of equal dosage. Biogas residues varied greatly in their chemical composition (ammonium‐N 0.20% to 0.51%, Ntotal 0.36% to 0.75%, and Corg 1.85% to 4.75% in fresh matter). After the first growth cycle, the N availability of the biogas residues applied based on ammonium‐N was at least equal to that from ammonium nitrate. Differences in N offtake after one fertilizer application were negatively correlated to the Corg : Norg ratio of the organic fertilizers. After five successive fertilizer applications, the N utilization of most of the organic fertilizers was increased compared to that of the mineral fertilizer. It is concluded that biogas residues provide plant‐available N at least corresponding to their ammonium content and that the accumulation of organic N in soil through repeated application of biogas residues contributes to N release.  相似文献   

15.
Experiments with 15N labelled fertilizers often show that plants given fertilizer N take up more N from the soil than plants not given N—the priming effect or ‘added nitrogen interaction’(ANI). This paper is a theoretical study of ANIs and how they can affect the interpretation of experiments with 15N labelled fertilizers. ANIs can be ‘Real’, if for example, fertilizer N increases the volume of soil explored by roots, or ‘apparent’, caused by pool substitution or by isotope displacement reactions. Pool substitution is the process by which added labelled N stands proxy for native unlabelled N that would otherwise have been removed from that pool. Microbial immobilization of N, whether driven by the decomposition of soil organic matter or by the decomposition of plant roots, can lead to pool substitution and is the dominant cause of apparent ANIs. Denitrification and plant uptake of N can also, under special circumstances, lead to pool substitution and thus give rise to apparent ANIs. Isotope displacement reactions, in which the added labelled N displaces native unlabelled N from a ‘bound’ pool, can lead to apparent ANIs but are only likely to be of significance in exceptional circumstances. The relationship between ANIs, ‘A’ values and N fertilizer uptake efficiencies are examined by means of a simple model for uptake of 15N-labelled fertilizer by a crop. A positive ‘apparent’ ANI is accompanied by an ‘A’ value that changes as fertilizer applications increase. Likewise, a positive ‘apparent’ ANI also causes fertilizer uptake efficiency to appear lower when measured by the uptake of 15N than when measured by the non-isotopic ‘difference’ method.  相似文献   

16.
Abstract

Up to 50% of nitrogen (N) fertilizer can remain in soil after crop harvest in dryland farming. Understanding the fate of this residual fertilizer N in soil is important for evaluating its overall use efficiency and environmental effect. Nitrogen-15 (15N)-labeled urea (165 kg N ha?1) was applied to winter wheat (Triticum aestivum L.) growing in three different fertilized soils (no fertilizer, No-F; inorganic nitrogen, phosphorus and potassium fertilization, NPK; and manure plus inorganic NPK fertilization, MNPK) from a long-term trial (19 years) on the south of the Loess Plateau, China. The fate of residual fertilizer N in soils over summer fallow and the second winter wheat growing season was examined. The amount of the residual fertilizer N was highest in the No-F soil (116 kg ha?1), and next was NPK soil (60 kg ha?1), then the MNPK soil (43 kg ha?1) after the first winter wheat harvest. The residual fertilizer N in the No-F soil was mainly in mineral form (43% of the residual 15N), and for the NPK and MNPK soils, it was mainly in organic form. The loss rate of residual 15N in No-F soil over summer fallow was as high as 48%, and significantly (P < 0.05) higher than that in the NPK soil (22%) and MNPK soil (19%). The residual 15N use efficiency (RNUE) by the second winter wheat was 13% in the No-F soil, 6% in the NPK soil and 8% in the MNPK soil. These were equivalent to 9.0, 2.0 and 2.2% of applied 15N. The total 15N recovery (15N uptake by crops and residual in 0–100 cm soil layer) in the MNPK and NPK soils (84.5% and 86.6%, respectively) were both significantly higher than that in the No-F soil (59%) after two growing seasons. The 15N uptake by wheat in two growing seasons was higher in the MNPK soil than in NPK soil. Therefore, we conclude that a high proportion of the residual 15N was lost during the summer fallow under different land management in dryland farming, and that long-term combined application of manure with inorganic fertilizer could increase the fertilizer N uptake and decrease N loss.  相似文献   

17.
Experiments were conducted to study the effect of soil applications of kunai grass (Imperata cylindrica) biochar (0 and 10 t/ha) and laboratory grade urea (0, 200 and 500 kg N/ha) and their co‐application on nitrogen (N) mineralization in an acid soil. The results of an incubation study showed that the biochar only treatment and co‐application with urea at 200 kg N/ha could impede transformation of urea to ammonium‐N (NH4+‐N). Soil application of biochar together with urea at 500 kg N/ha produced the highest nitrate‐N (NO3?‐N) and mineral N concentrations in the soil over 90 days. Co‐application of urea N with biochar improved soil N mineralization parameters such as mineralization potential (NA) and coefficient of mineralization rate (k) compared to biochar alone. In a parallel study performed under greenhouse conditions, Chinese cabbage (Brassica rapa L. ssp. chinensis L.) showed significantly greater (< 0.05) marketable fresh weight, dry matter production and N uptake in soil receiving urea N at 500 kg/ha or co‐application of biochar with urea N compared to the control. Application of biochar only or urea only at 200 kg N/ha did not offer any short‐term agronomic advantages. The N use efficiency of the crop remained unaffected by the fertilizer regimes. Applications of biochar only at 10 t/ha did not offer benefits in this tropical acid soil unless co‐applied with sufficient urea N.  相似文献   

18.
Abstract

A field experiment was conducted to test the new approach for estimating crop nitrogen (N) uptake from organic inputs. The soil was prelabeled with 15N by applying 15N fertilizer to sunflower crop (Helianthus annuus L. var. Viki). The 14N plots, which received unlabelled fertilizer, were also set up. At harvest, 15N labeled residues were added to the unlabeled soils at a rate of 73 kg N ha?1 (direct technique) and unlabeled residues were added to the 15N‐labeled soils at the same rate (indirect technique). Control plots without residues were also established. All plots were sown with the wheat (Triticum aestivum L. var merchouch)–fababean (Vicia faba L.)–wheat (Triticum aestivum L. var merchouch) cropping sequence.

In the cropping sequence, the first, second and third crop derived respectively 12.01, 2.4, and 1.93 kg N ha?1 from crop residues estimated by the direct method and 14.77, 3.3, and 1.85 kg N ha?1 estimated by the indirect method. The results showed no significant difference between the two techniques, which suggests that the new soil prelabeling technique compares well with the direct technique.  相似文献   

19.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

20.
Tomatoes (Lycopersicon esculentum Mill.) were grown in 9.46‐L plastic pots in a glasshouse for evaluation of their growth and nitrogen (N) losses through leaching. Plants were fertilized with either ammonium nitrate (AN) or one of three slow‐release N fertilizers. The slow‐release N fertilizers were Georgia Pacific liquid 30‐0‐0 (L30), Georgia Pacific granular 42‐0‐0 (N42), and Georgia Pacific granular 24‐0‐0 (N24). Each fertilizer was applied at 112 low N rate (L) and 224 high N rate (H) kg N ha?1. The pots were filled with either a sandy soil from Florida or a loam soil from Georgia. Increasing the N rate did not influence shoot biomass at 19 days after transplanting (DAT) and increased biomass production at 77 DAT. Shoot biomass differed significantly among fertilizer treatments. The accumulation of N in shoots was significantly influenced by fertilizer source, rate, and soil type. The plants grown in the loam soil accumulated significantly more N than those grown in the sandy soil with the same treatment. In the loam soil, the highest and lowest N accumulations occurred in the N42‐H and N24‐L treatments, respectively; and in the sandy soil the corresponding treatments were AN‐H and N24‐L. The amount of N leached varied with the different fertilizers, soils, and time. The net leaching of N ranged from ?0.4% to 6.3% of the fertilizer N applied for the loam soil and 6.5% to 32.9% for the sand soil. The net amount of N leached from the loam soil at both high and low application rates declined in the following order: AN > N24 > N42 > L30; the corresponding order for the sandy soil was AN‐H > N42‐H > L30‐H > N24‐H. L30 had the least leaching potential, and ammonium nitrate had the most. Slow‐release fertilizers had significantly less leaching N than did ammonia nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号