首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
[目的]研究添加不同量的污泥有机肥对生长在铅锌尾矿中的黑麦草、白三叶、草木樨、沙打旺4种植物生长状况和对Pb,Zn,Cu,Cr,Cd累积的影响,以期为合理利用污泥有机肥改良、修复尾矿库提供理论依据。[方法]采用盆栽试验的方法。[结果]20g/kg处理水平下,4种植物株高、根长、地上鲜重、根鲜重均达到最大。施肥处理下,供试的4种植物叶绿素a+b含量均比对照高。随着改良剂含量的增加,黑麦草、白三叶丙二醛含量呈下降趋势。黑麦草、白三叶、草木樨体内Pb,Zn,Cd含量在10g/kg处理水平下达到最大,在20g/kg水平下降低。[结论]随着有机肥添加量的增加,重金属量向植物体内转移减少,有利于缓解重金属的毒害作用。  相似文献   

2.
EDTA对铅污染土壤上芥菜生长及铅积累特性的影响   总被引:5,自引:0,他引:5  
采用盆栽实验研究了EDTA对Pb污染土壤上芥菜生长及Pb积累特性的影响。结果表明,单独Pb处理对芥菜生物量没有明显的影响,但高Pb处理(2000mg kg-1 Pb)芥菜地上部含水量显著降低;Pb处理芥菜体内Pb含量随土壤Pb浓度的增加而明显增加,根系Pb含量高于地上部Pb含量;3mmol kg-1 EDTA处理能促进土壤Pb溶解,增加土壤有效Pb含量,影响芥菜的正常生长,芥菜地上部生物量下降,高Pb浓度处理比低Pb浓度处理更明显;EDTA处理14天芥菜地上部和根系Pb积累量都比不加EDTA的对照明显增加,地上部Pb总量增加到对照的13.1~80倍;EDTA处理芥菜地上部与根系Pb含量的比值上升,表明EDTA处理促进Pb向地上部运输,这种促进作用因土壤Pb浓度的不同而略有差异。  相似文献   

3.
以雄安新区安新县重金属污染农田土壤为供试土壤,以Cd超积累植物红叶菾菜(Beta vulgaris var. cicla L.)为供试植物,设置不同浓度EDTA和柠檬酸(0,2.5,5,7.5,10 mmol kg?1)处理进行盆栽试验,探究螯合诱导-红叶菾菜修复Cd、Pb污染土壤的可行性。结果表明:(1)与对照相比,添加EDTA螯合剂使红叶菾菜生长及生物量均受到抑制,一定浓度柠檬酸处理能显著促进植物生长,5 mmol kg?1柠檬酸处理对植物株高、茎粗及生物量与对照相比的上升比例分别为4.52%、44.07%和50%;(2)添加EDTA螯合剂后土壤中Cd、Pb有效态含量相比对照分别提高了108.61% ~ 235.39%、67.98% ~ 224.16%,柠檬酸处理后土壤Cd、Pb有效态含量最大提高了180.07%、186.01%,EDTA对土壤重金属的活化效率显著高于柠檬酸;(3)通过对红叶菾菜地上部Cd、Pb含量及富集系数比较发现,EDTA更能促进红叶菾菜对Pb的吸收,柠檬酸更能促进红叶菾菜对Cd的吸收;(4)螯合剂处理后土壤中铵态氮、有效磷、速效钾含量显著增加。就本文试验条件、供试材料而言,螯合诱导-红叶菾菜修复铅镉复合污染土壤是可行的。  相似文献   

4.
通过温室盆栽试验比较2种螯合剂(EDTA和NTA)的不同施用方式(包括单施和混施,收获前1周一次性施用、收获前2周一次性和分2次施用)对紫茉莉和百日草修复铅污染土壤的强化效应。结果表明:与未加螯合剂的对照相比,螯合剂施用对花卉植物的株高、茎粗和干重均没有显著的影响,但植株地上部铅含量和铅富集系数显著增加;2种花卉植物相比,紫茉莉的地上部平均铅含量和铅富集系数均较百日草低,而铅转移系数则明显高于百日草;不同的螯合剂施用方式相比,收获前2周加入螯合剂处理的植株地上部平均铅含量和铅富集系数均高于收获前1周加入螯合剂的处理,而具体的处理效应则取决于花卉植物的种类以及螯合剂的施用次数和浓度配比;紫茉莉的铅转移系数与其地上部铅含量和铅富集系数的规律性基本一致,且以先施EDTA后施NTA(NTA∶EDTA浓度比1∶2)处理的铅转移系数最高,而百日草的铅转移系数则与其地上部铅含量和铅富集系数的规律性不同。综合植株地上部铅含量和铅富集系数及铅转移系数的结果来看,紫茉莉以收获前2周先施EDTA、1周后再施用NTA、且NTA∶EDTA浓度比为1∶2时,对于铅污染土壤能达到最佳的修复效果。  相似文献   

5.
通过盆栽试验研究了铅锌尾矿污染土壤中施用有机肥、石灰、蛭石和白云石等4种改良剂对光叶紫花苕生长发育、叶绿素及重金属Cu、Cd、Pb、Zn积累特性的影响,并分析了施用改良剂后土壤pH和有效态重金属含量的变化。结果表明,与对照相比,不同改良剂及其不同施用水平均能不同程度地提高土壤pH,显著降低土壤各重金属有效态含量,并显著抑制了Cd、Pb向光叶紫花苕地上部转移,降低了重金属在光叶紫花苕植株地上部的积累,改善了光叶紫花苕的生长和发育,光叶紫花苕株高、地上部鲜重和地下部鲜重、叶绿素含量均有不同程度增加,其中株高和地上部鲜重增加达到显著水平。4种改良剂的不同处理水平对光叶紫花苕地下部重金属含量影响均达显著水平。  相似文献   

6.
螯合剂对大叶井口边草Pb、Cd、As吸收性影响研究   总被引:5,自引:0,他引:5  
用室内土培试验方法,研究在采自田间的Pb、Cd、As、Zn和Cu复合污染土壤上种植大叶井口边草条件下,外源分别添加0、1.5、3、6、12 mmol/kg乙二胺二琥珀酸(EDDS)、氨三乙酸(NTA)和乙二胺四乙酸(EDTA)对大叶井口边草吸收Pb、Cd和As的影响。结果表明,3种螯合剂处理对大叶井口边草生物量没有显著影响,说明大叶井口边草对3种螯合剂耐性较强;6、12 mmol/kg EDTA处理能极显著提高土壤Pb有效态浓度,进而促进大叶井口边草对Pb的吸收。大叶井口边草地上部Pb吸收量最高达(47.4 ± 1.7)mg/kg,是对照的3.66倍。6、12 mmol/kg EDTA处理能极显著地提高土壤中Cd的有效性,但未促进大叶井口边草地上部对Cd吸收。6 mmol/kg EDDS和3 mmol/kg NTA显著提高了土壤中As有效态浓度,进而提高大叶井口边草地上部对As的吸收,大叶井口边草地上部吸收As最高达(276 ± 10) mg/kg。6 mmol/kg EDTA和6 mmol/kg EDDS处理下大叶井口边草提取的Pb、As量最大,分别为(317 ± 53) μg/盆和(873 ± 41)μg/盆,说明6 mmol/kg EDDS处理下大叶井口边草对复合污染土壤中As的修复具有较大的潜力。  相似文献   

7.
大豆秸秆生物炭对铅锌尾矿污染土壤的修复作用   总被引:3,自引:0,他引:3  
采用盆栽空心菜的方法,研究了大豆桔杆生物炭对铅锌尾矿污染土壤的修复作用。污染土壤中Cu、Zn、Pb和Cd含量分别为50,400,1 119,3.4mg/kg。结果表明:土壤无论是否受到铅锌尾矿污染,添加3%生物炭(w/w)均能显著提高土壤pH;3%生物炭能够抑制铅锌尾矿污染导致的土壤pH降低。大豆桔杆生物炭对尾矿污染土壤和未污染土壤中重金属有效态的影响不同,与未污染土壤相比,3%生物炭的钝化作用不能抵消铅锌尾矿污染导致的重金属有效态含量的增加。铅锌尾矿污染抑制空心菜生长;施加3%生物炭可以消除铅锌尾矿污染对空心菜生长的抑制作用。生物炭显著降低污染土壤空心菜根部重金属含量,而对地上部分的影响,不同元素表现出不同的特点;3%生物炭能够阻控铅锌尾矿污染土壤中Cu、Zn、Pb和Cd向空心菜地上部迁移富集。大豆桔杆生物炭对空心菜吸收重金属的影响,在铅锌尾矿污染土壤和未污染土壤上表现不同,存在元素之间的拮抗作用以及由于生物炭提高空心菜生物量所产生的稀释作用。在研究设置条件下,与未污染土壤相比,从空心菜生物量和可食部分吸收重金属含量来评价,施加3%大豆桔杆生物炭可以修复铅锌尾矿导致的土壤污染。  相似文献   

8.
用室内土培试验方法,在采自田间的Pb、Cd和As复合污染土壤中单作或间作龙葵和大叶井口边草条件下,筛选出修复Pb-Cd-As复合污染土壤较好的种植方式为间作。进一步在间作方式下,研究了外源添加不同浓度EDDS(乙二胺二琥珀酸)、NTA(氨三乙酸)和EDTA(乙二胺四乙酸)对植物吸收Pb、Cd和As的影响。结果表明,间作显著促进了龙葵地上部对Cd的吸收量和大叶井口边草地上部对As的吸收量,间作龙葵地上部吸收Cd和大叶井口边草地上部吸收As含量分别是单作龙葵和大叶井口边草的1.3倍和1.4倍,说明间作龙葵和大叶井口边草比单作更有利于修复Pb-Cd-As复合污染土壤。间作条件下,大叶井口边草对螯合剂的耐性比龙葵更强。3、6、12mmol.kg-1EDTA能极显著增加土壤中Pb、Cd有效态含量,从而促进龙葵地上部对Pb吸收和大叶井口边草地上部对Pb、Cd吸收。EDTA比NTA具有更强的提高土壤Pb、Cd有效态的能力,但对土壤As有效态促进作用与EDTA相比,NTA效果极显著,1.5、3mmol.kg-1NTA处理极显著提高土壤As有效态含量及促进龙葵和大叶井口边草地上部对As吸收。  相似文献   

9.
铅锌尾矿砂重金属含量高,对环境危害大。为了减缓铅锌尾矿砂的重金属污染风险,采用室内培养实验方法,在铅锌尾矿砂中添加油菜秸秆、芒草秸秆、水稻秸秆、石灰和磷酸一铵等钝化剂,并通过DTPA及Tessier连续提取铅、锌、镉的化学形态,评价钝化剂对铅、锌、镉的移动性和生物有效性的影响。结果表明,油菜秸秆、芒草秸秆、水稻秸秆、石灰和磷酸一铵均显著地降低Cd的生物有效性及其迁移能力;磷酸一铵、油菜秸秆均能有效地降低尾矿砂中Pb的生物有效性及其迁移能力,尤其是磷酸一铵有极显著的效果;油菜秸秆、芒草秸秆、水稻秸秆和磷酸一铵均能有效地降低尾矿砂中Zn的生物有效性及其迁移能力。尾矿砂中DTPA态Cd、Zn与交换态、碳酸盐结合态Cd、Zn极显著正相关,DTPA态Pb与碳酸盐结合态Pb极显著正相关。从Pb、Cd、Zn生物有效态含量的减少方面考虑,油菜秸秆和磷酸一铵是较好的铅锌尾矿砂原位钝化剂。  相似文献   

10.
盆栽试验比较研究了EDTA和易降解的EDDS对复合污染土壤中Cu、Zn、Pb、Cd的活化能力及印度芥菜对4种重金属的吸收与转运特征。结果表明:施用量相同的条件下,EDDS活化土壤Cu的能力与EDTA相当;而EDDS活化土壤Zn、Pb、Cd,尤其是活化土壤Pb、Cd的能力小于EDTA,这与两种螯合剂与不同重金属形成螯合物的稳定常数相一致。向复合污染土壤中施入3mmol/kg和6mmol/kgEDDS均可诱导印度芥菜叶中超量积累Cu。本研究中3mmol/kgEDDS的不同施用方式(单次施,分2次和4次施)对印度芥菜叶片Cu含量的影响差异不显著。各处理印度芥菜叶中的重金属浓度要远高于茎中的浓度,茎中的Cu浓度随土壤溶液Cu浓度线性增加,而叶中Cu的浓度随土壤溶液Cu浓度先增加后下降。  相似文献   

11.
共培养对土壤重金属污染植物修复的调控作用   总被引:2,自引:0,他引:2  
A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretions (citric acid), and a control with E. splendens only were used to compare the mobility of heavy metals in chelating agents with a co-culture and to determine the potential for co-culture phytoremediation in heavy metal contaminated soils. The root uptake for Cu, Zn, and Pb in all treatments was significantly greater (P < 0.05) than that of the control treatment. However with translocation in the shoots, only Cu, Zn, and Pb in plants grown with the EDTA treatment and Zn in plants co-cropped with the A. sinicus treatment increased significantly (P < 0.05). In addition, when a co-culture in soils with heavy and moderate contamination was compared, for roots in moderately contaminated soils only Zn concentration was significantly less (P < 0.05) than that of heavily contaminated soils, however, Cu, Zn, and Pb concentrations of shoots were all significantly lower (P < 0.05). Overall, this "co-culture engineering" could be as effective as or even more effective than chelating agents, thereby preventing plant metal toxicity and metal leaching in soils as was usually observed in chelate-enhanced phytoremediation.  相似文献   

12.
Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan,and occur widely in association with plants in heavy metal stress environment.However,little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress.In this study,Gaeumannomyces cylindrosporus,which was isolated from Pb-Zn mine tailings in China and had been proven to have high Pb tolerance,was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth,photosynthesis,and the translocation and accumulation of Pb in plant under stress of different Pb concentrations.The growth indicators (height,basal diameter,root length,and biomass) of maize were detected.Chlorophyll content,photosynthetic characteristics (net photosynthetic rate,transpiration rate,stomatal conductance,and intercellular CO2 concentration),and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined.Inoculation with G.cylindrosporus significantly increased height,basal diameter,root length,and biomass of maize seedlings under Pb stress.Colonization of G.cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants.Although inoculation with G.cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants,the translocation factor of Pb in plant body was significantly decreased.The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated.The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb,caused by DSE fungal colonization,were efficient strategies to improve Pb tolerance of host plants.  相似文献   

13.

Purpose

The aim of this study was to quantify the effect of enhanced agronomic practices on cadmium (Cd) accumulation in the high-biomass energy plant Napier grass (Pennisetum purpureum Schumach).

Materials and methods

Potted-plant experiments were performed to investigate the effects of ammonium fertilizers and chelating agents, alone or in combination, on the growth, accumulation of Cd, and phytoextraction efficiency of P. purpureum on Cd-contaminated soil. The fertilizers included ammonium nitrate, ammonium sulfate, and ammonium chloride. The chelating agents included ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).

Results and discussion

The addition of ammonium fertilizers and chelating agents generally stimulated growth of P. purpureum, and the shoots accounted for 90.1–94.1% of the total biomass. The concentrations of Cd in different parts of P. purpureum plants were in the order root > leaf > stem. Ammonium chloride alone showed effectiveness in increasing root and shoot Cd concentrations compared to other amendments alone. Both EDTA alone and NTA alone significantly decreased root Cd concentration and increased shoot Cd concentration, while EDTA alone was more efficient on shoot and total Cd accumulation than that by NTA alone. The total accumulation of Cd in P. purpureum ranged from 1.10 to 2.05 mg per plant with 47.3–73.5% of Cd accumulation concentrated in shoots. The results indicate that P. purpureum can remove more Cd through phytoextraction than that by other hyperaccumulators.

Conclusions

Ammonium chloride led to the highest total Cd accumulation. Ammonium chloride applied alone or in combination with either EDTA or NTA resulted in the most effective agronomic approaches for P. purpureum phytoextraction of soil Cd.
  相似文献   

14.
In order to provide a sound experimental background for the remediation of metal-contaminated soil by chelators, the desorption/complexation/dissolution characteristics of Cd from kaolin as a representative soil component by four chelators (NTA, EDTA, EGTA and DCyTA) have been investigated as a function of solution pH. For all chelating agents under examination, the ratio of Cd (desorbed from kaolin) to chelator was found to be 1:1. The chelation/dissolution of Cd was strongly dependent on the solution pH for NTA and EDTA. In the NTA system, 100% Cd dissolution occurred only at a pH = 8 and pH < 3.2; under weakly acidic conditions only 45% of the Cd on kaolin was dissolved due to readsorption of CdNTA- complex on kaolin. At a pH ≥ 10, Cd dissolution decreased, due to Cd hydroxide precipitation. Only 85% of the total Cd on kaolin desorbed under weakly acidic conditions in the EDTA system, indicating metal complex readsorption similar to that found in the Cd-NTA system. Zeta potential measurements showed that the surface charge of Cd-loaded kaolin became more negative after addition of EDTA and NTA with a shift in the pH at the point of zero charge to a lower value. As compared to the EDTA and NTA systems, DCyTA and EGTA complexed strongly with Cd (100% Cd dissolution) over a wide pH range (2.5–12.0). The zeta potential of kaolin did not change and no Cd readsorption was found after addition of EGTA and DCyTA. The capacity of the four chelators for removing Cd from kaolin was found to be in the order DCyTA > EGTA > EDTA > NTA.  相似文献   

15.
Chelating agents are commonly used to enhance the phytoremediative ability of plants. The type of chelating agent applied and the selection of plant species are important factors to consider for successful phytoremediation. This study investigates the effects of four different rates (0, 2, 4, 8 mmol kg?1) of ethylenediaminetetraacetic acid (EDTA) on lead (Pb) dissolution, plant growth, and the ability of two spring wheat varieties (Auqab-2000 and Inqalab-91) to accumulate Pb from contaminated soils in a pot study. The results indicated that the addition of EDTA to the soil significantly increased the aqueous solubility of Pb and that wheat variety Inqalab-91 was more tolerant to Pb than Auqab-2000. Application of EDTA at 8 mmol kg?1 resulted in biomass yield, photosynthetic rate, and transpiration rate significantly lower in Auqab-2000 than in Inqalab-91. Although EDTA enhanced the uptake of Pb by both wheat varieties, Auqab-2000 accumulated significantly more Pb in the shoots than Inqalab-91. The results of the present study suggest that under the conditions used in this experiment, EDTA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat. High concentrations of Pb were found in leachates collected from the bottom of columns treated with EDTA. Application of EDTA in the column leaching experiment increased the concentration of Pb in leachate with increasing EDTA dosage (0–8 mmol kg?1). These results suggest that EDTA addition for enhancing soil cleanup must be designed properly to minimize the uncontrolled release of metals from soils into groundwater.  相似文献   

16.
To increase the phytoextraction efficiency of heavy metals and to reduce the potential negative effects of mobilized metals on the surrounding environment are the two major objectives in a chemically enhanced phytoextraction process. In the present study, a biodegradable chelating agent, NTA, was added in a hot solution at 90°C to soil in which beans (Phaseolus vulgaris L., white bean) were growing. The concentrations of Cu, Zn and Cd, and the total phytoextraction of metals by the shoots of the plant from a 1 mmol kg?1 hot NTA application exceeded those in the shoots of plants treated with 5 mmol kg?1 normal NTA and EDTA solutions (without heating treatment). A significant correlation was found between the concentrations of metals in the shoots of beans and the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the application of a hot solution might play an important role in the process of chelate-enhanced metal uptake in plants. The application of hot NTA solutions did not significantly increase metal solubilization in soil in comparison with a normal application of solution of the same dosage. Therefore, the application of a hot NTA solution may provide a more efficient alternative in chemical-enhanced phytoextraction, although further studies of techniques of application in fields are sill required.  相似文献   

17.
张铮  钱宝云  程晓庆  刘彩凤  史刚荣 《核农学报》2011,25(3):602-608,587
以蓖麻(Ricinus communis L.)为研究对象,通过水培试验研究胺鲜酯(DA-6)和镉(Cd)对蓖麻生长和光合生理特性的交互作用,探讨DA-6浸种对植物Cd毒害是否具有缓解作用.研究结果表明,50μmol·L-1CdCl2对蓖麻幼苗生长和光合作用具有抑制作用.Cd处理显著降低蓖麻叶片的光合速率(Pn)、气孔...  相似文献   

18.
The bioavailability of heavy metals (Cd, Zn, Pb, Cu) and the abundance of arbuscular mycorrhiza (AM) were studied in two agricultural fields close to a Pb-Zn smelter and three fields outside the pollution zone all cultivated with maize (Zea mays L.). Metal extractability with ethylenediaminetetraacetic acid (EDTA)-NH4OAc and Ca(NO3)2, plant metal uptake, and mycorrhizal parameters (spore number, root colonization) were assessed at two growth stages (six-leaf and maturity). Despite regular liming, the availability of Cd, Zn, and Pb was markedly higher in the two metal-polluted fields than in the three uncontaminated fields. However, the AM abundance was not correlated with metal availability. Root colonization and spore numbers in the metal polluted fields were relatively high, though at plant maturity the former was significantly lower than in one of the uncontaminated fields. The very low AM abundance in the two other unpolluted fields was related to other factors, particular soil and plant P status and soil pH. AM root colonization did not substantially prevent plant metal accumulation, since the metal concentrations in maize grown on the polluted fields strongly exceeded normal values, and for Cd and Pb reached the limits of toxicity for animal feed.  相似文献   

19.

Purpose

Studying the rate of chelant degradation is important to select environmental friendly compounds to assist phytoextraction. The objective of the present study was to evaluate degradation rate of complexes formed between synthetic or organic chelants and Pb aiming to increase the efficiency of phytoextraction while reducing adverse effects resulting from the Pb leaching.

Materials and methods

The following six chelating agents were tested: citric acid P.A., commercial citric acid, glutamic acid P.A., monosodium glutamate, nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA), besides a control treatment (no addition of chelating agent); they were applied at a concentration of 10 mmol dm?3 in pots containing 1 dm3 of Pb-contaminated soil.

Results and discussion

The results of this study showed that commercial citric acid adequately solubilized Pb to levels suitable for plant uptake and showed relatively rapid biodegradation in soil. Therefore, this commercial product may be a highly promising alternative for phytoextraction studies in the field. EDTA and NTA demonstrated high Pb solubilization ability but degraded comparatively slowly; therefore, they are not recommended for use in phytoextraction due to environmental risks regarding metal leaching.

Conclusions

The results of this study showed that commercial citric acid adequately solubilized Pb to levels suitable for plant uptake and showed relatively rapid biodegradation in soil, which is associated with a low risk of groundwater contamination. Therefore, this environmental friendly and low-cost product may be a highly promising alternative for inducing Pb phytoextraction.
  相似文献   

20.
The application of chelating agents can be associated with phytoremediation in order to reduce the time required for remediation of heavy metal contaminated soils. The present work has the purpose to test the use of easily biodegradable chelating agents in the assisted phytoextraction process and to evaluate their effect on soil and Mirabilis jalapa plant associated bacteria. Two easily biodegradable chelating agents were used (EDDS and MGDA) in two different dosages (4 and 8 mmol/kg of soil). Metal concentration in soil solution, in leaves and in leachate were determined during the phytoextraction process, while at the end of the experiment metal concentration was evaluated separately in roots, stalk and leaves. In untreated reactors Zn and Pb were accumulated in the roots, but only Zn was translocated to the shoots. Both chelating agents demonstrated to be very effective in Pb and Zn mobilization in soil solution. After chelate treatment, accumulation and translocation of the two metals was different: unaffected with regard to Zn and enhanced with regard to Pb. The chelating agents seem to have a positive influence on bacterial communities of bulk soil and rhizosphere by mitigating the selective pressure caused by Pb and Zn, whereas the endophytes are less affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号