首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
易秋香 《中国棉花》2019,46(8):13-18
探讨遥感植被指数随作物生育进程的变化规律,对于作物面积信息提取、遥感估产时相选择以及作物长势监测等具有重要意义。Sentinel-2卫星数据具高时空分辨率以及其特有的红边参数波段,可为作物生育期监测提供理想数据源。本研究获取了研究区棉花实测冠层光谱以及连续2年Sentinel-2卫星数据,通过对比Sentinel-2卫星多光谱反射率与实测冠层光谱反射率差异,以及单波段反射率和3类植被指数随棉花生育进程的变化规律, 初步分析Sentinel-2卫星多光谱数据用于棉花生育期监测的特点。结果表明,Sentinel-2卫星多光谱反射率与实测冠层光谱反射率变化趋势一致, 在可见光波段吻合较好,在近红外波段Sentinel-2卫星光谱反射率略高于冠层; 基于Sentinel-2卫星的红边参数波段反射率,随棉花生育进程呈现从苗期到开花盛期逐渐增大而后逐渐减小的变化规律;增强植被指数EVI(Enhanced vegetation index)、归一化植被指数NDVI(Normalized difference vegetation index)以及土壤调节植被指数SAVI(Soil adjusted vegetation index)的归一化值具有相似的变化趋势,其中基于实测冠层光谱和Sentinel-2卫星光谱的EVI指数归一化值变化最为一致和稳定,具体表现为在6月中下旬(棉花从现蕾期向开花期过渡的阶段),从负值逐渐增大至正值,直到开花盛期(7月20日左右)达到最大正值,而后进入吐絮初期开始减小,至吐絮后期变为负值。  相似文献   

2.
为对比分析Prosail模型和Landsat 8数据在植被含水量反演中的效果,以冠层等效水厚度为植被含水量指标,首先基于地面实测植被参数和Landsat 8波谱响应函数,得到基于Prosail模型的宽波段反射率,并基于模拟宽波段数据和TM8卫星数据构建归一化植被指数(NDVI)、增强型植被指数(EVI)及两种归一化差值水分指数(NDWI),评价每种指数与小麦冠层含水量的相关性,再基于模拟植被数据、TM8植被数据和小麦冠层含水量,开展植被水分含量的建模和验证分析。结果表明,基于Prosail模型模拟得到的NDWI5和基于Landsat 8构建的NDWI5在小麦冠层含水量反演中的精度均优于NDVI、EVI和NDWI7,且二者的反演精度较为一致,可为地面实测数据过少的区域植被冠层含水量遥感反演提供一种新的思路。  相似文献   

3.
为了比较不同机器学习算法在干旱半干旱区春小麦叶片水分含量(leaf water content,LWC)遥感监测中的应用效果及筛选最佳波段组合,在田间尺度上,以春小麦冠层高光谱数据为基础,采用两波段组合形式,计算15种光谱参数(比值植被指数RVI、归一化植被指数NDVI、差值植被指数DVI和12种水分植被指数),通过对抽穗期叶片含水量与光谱参数拟合效果进行对比与分析,分别构建了基于机器学习[人工神经网络(artificial neural network,ANN)、K近邻(K-nearest neighbors,KNN)和支持向量回归(support vector regression,SVR)]和光谱参数的春小麦LWC反演模型,并对模型精度进行验证,以确定有效波段组合。结果表明,小麦抽穗期LWC与冠层高光谱反射率(R784~950)、12种水分植被指数均显著相关(P<0.01);波段组合形式有效地优化了两波段指数的波段组合,在800~1 000 nm区间光谱参数(RVI1046,1057、NDVI1272,1279、DVI1272,1279)的波段组合计算明显提升了其对LWC的敏感性;在不同的机器学习算法中,基于两波段组合光谱参数的KNN算法所见模型对LWC的预测效果(r=0.64,RMSE=2.35,RPD=2.01)优于ANN、SVR两种算法。这说明两波段光谱指数和KNN算法在春小麦叶片水分含量的高光谱遥感估算中具有一定的优势。  相似文献   

4.
为探讨利用三波段植被指数(three-band index, 3BI)对春小麦叶片水分含量(leaf water content, LWC)估算的可行性,在田间尺度上,利用ASD-FieldSpec-3光谱仪测定春小麦抽穗期冠层光谱反射率,采用任意波段组合方法,分别建立两波段植被指数(two-band index, 2BI)包括比值植被指数(RVI)、归一化植被指数(NDVI)、差值植被指数(DVI)及3BI,并对单波段反射率、两波段植被指数和三波段植被指数与春小麦抽穗期LWC之间进行相关性分析,筛选稳定的光谱参数,基于人工神经网络(artificial neural network, ANN)、K近邻(K-nearest neighbors, KNN)和支持向量回归(support vector regression, SVR)等3种机器学习算法,建立有效波段组合运算的抽穗期春小麦LWC估算模型,并利用独立样本对模型精度进行检验和评价。结果表明,单波段反射率、2BI和3BI与春小麦抽穗期LWC之间的相关性均达极显著水平(P<0.01),而相关系数差异较大,绝对值分别为0.23、0.62、0.94,说明组合波段展现了光谱隐含信息,避免有效光谱信息的丢失;估算模型中,春小麦抽穗期以KNN算法和最佳3BI组合变量(3BI-5(1075, 1095, 1085)、3BI-6(1100, 400, 1097))构建的模型拟合度最高(r2=0.83),均方根误差最小(RMSE=2.14%),相对偏差百分比超出了2.0以上(RPD=2.31),说明该模型具有一定的预测能力。由此可见,通过任意波段组合,可明显提高3BI与春小麦LWC的关联度,且基于K近邻算法构建的模型具有较好的稳定性和估算能力。  相似文献   

5.
冬小麦叶面积指数的品种差异性与高光谱估算研究   总被引:2,自引:0,他引:2  
为给小麦叶面积指数(LAI)的高光谱估算提供技术支持,基于2年大田试验,以4个河南主推品种为材料,对小麦LAI和冠层光谱变化特点、估算模型及其品种间的差异等进行了系统分析。结果表明,在生育期内不同冬小麦品种冠层光谱反射率的变化与LAI变化有差异;在相同LAI下,不同冬小麦品种的光谱曲线存在差异。利用400~900 nm范围内冠层光谱反射率的任意两波段组合的比值光谱指数(RSI)、归一化差值光谱指数(NDSI)和差值光谱指数(DSI)所建立的单品种模型以及不同品种综合模型的决定系数(r)均达到0.84以上,单品种模型的r和调整r分别较综合模型高出3.1%~4.8%和2.0%~4.2%。利用独立于建模样本以外的数据对上述模型进行检验,单品种模型预测的r较综合模型提高了0.6%~11.0%,而均方根误差降低了10.0%~37.0%。因此,在利用高光谱遥感技术估算冬小麦LAI时,可以通过建立单品种模型来提高估算精度。  相似文献   

6.
为实现基于可见光透射微分光谱的小麦植株含水量监测,通过三年田间试验,测定自拔节期以后小麦关键生育时期冠层透射光谱和植株含水量,确立了透射光谱微分参数与植株含水量间定量关系。结果表明,与小麦冠层原始透光率相比,一阶微分光谱能够很好地减轻生育时期的影响。将不同生育时期数据综合,不同波段的透射率与植株含水量相关性均较差,而微分光谱在439、735、823及950 nm处与植株含水量相关性较好(|r| 0.57),以735 nm处相关性最高。基于蓝光、黄光和红光波段筛选了21个光谱特征参数,其中红边振幅(Dr)、红蓝振幅归一化指数(Dr-Db)/(Dr+Db)、红边面积(SDr)、右峰面积(RSDR)、双峰面积比(RIDA)及双峰面积归一化指数(NDDA)6个光谱特征参数与植株含水量间相关性较好(r0.70)。在以上优选的光谱参数中,红边双峰面积比值(RIDA)及归一化指数(NDDA)与植株含水量的回归关系表现最好,拟合精度r~2大于0.69,均方根误差RMSE低于4.87,模型具有很好的稳定性,可以实时精确估测小麦植株含水量。这表明利用冠层透射微分光谱可对小麦植株含水量进行精确监测,对指导作物精确灌溉管理具有较大的应用潜力。  相似文献   

7.
为探讨利用近地高光谱和TM遥感影像数据评估作物冠层水分状况的可行性,以北京顺义通州为研究区域,以冬小麦为研究对象,首先基于Landsat TM5的光谱响应函数,利用地面实测的冬小麦全生育期冠层高光谱窄波段反射率数据来模拟TM5卫星宽波段反射率,然后利用模拟的TM5数据的NIR波段(第4波段)和2个SWIR波段(第5和7波段)反射率分别构建水分指数(WI)和归一化差异水分指数(NDWI),并利用地面实测数据建立冠层叶片含水量(LWC)和等效水厚度(EWT)的遥感估算模型,最后选取最优的水分估算模型,利用TM5卫星遥感影像数据对研究区域小麦冠层水分含量进行反演与应用。结果表明,利用TM5数据中SWIR第5波段比第7波段构建的水分指数更有优势;WI对估算LWC的效果较好,而NDWI在EWT估算方面效果较好,应用TM5宽波段模拟数据模型验证的冬小麦冠层含水量的r2和RMSE分别为0.57和0.51、3.89%和0.024。同时从TM遥感影像的反演结果来看,开花期的冬小麦冠层水分高于拔节期。  相似文献   

8.
通过不同地力条件下的田间试验,利用光谱分析技术动态监测了变量施肥和传统施肥条件下小麦不同生育期的冠层光谱反射率的变化,并根据由冠层光谱反射率计算的植被指数分析了不同施肥条件对小麦长势、色素含量、水分含量和产量的影响。结果表明,变量施肥和传统施肥对小麦的增产效果基本相同,但变量施肥显著降低了肥料施用量,在三块不同地力的小区,变量施肥比传统施肥分别节约施肥量15.7%、68.0%和85.6%;施用拔节肥后,通过对植被指数(NDVI、OSAVI、WI、mSR705)的分析表明,变量施肥和传统施肥处理小麦的冠层结构、叶绿素含量和水分含量均优于对照,但两种不同施肥处理之间并没有明显差别。另外,对不同施肥处理后的小麦产量和不同植被指数的相关分析表明,在挑旗期和孕穗期,冠层光谱反射的植被指数与小麦产量呈显著正相关。因此,在显著节约肥料的情况下,变量施肥与传统施肥一样可以通过改善群体结构、冠层的叶绿素含量和水分含量促进小麦的生长,达到增产的效果,并且利用反射光谱技术可以快速、有效地对小麦长势和营养状况进行动态监测。  相似文献   

9.
不同生育时期冬小麦叶片相对含水量高光谱监测   总被引:2,自引:0,他引:2  
为实现冬小麦不同生育时期叶片水分含量的快速监测,以冬小麦冠层高光谱数据和红外热成像数据为基础,计算得到5种光谱参数,通过对不同生育时期叶片相对含水量与光谱参数拟合状况进行分析和筛选,分别构建了基于光谱参数的叶片相对含水量反演模型,并对模型进行检验。结果表明,不同生育时期叶片相对含水量与比值指数(RVI)、归一化差值植被指数(NDVI)、比值/归一化植被指数(R/ND)、优化土壤调整植被指数(OSAVI)、冠气温差(TDc-a)均呈极显著相关(P<0.01);拔节期、抽穗期、开花期、灌浆前期和灌浆后期叶片相对含水量分别与NDVI、OSAVI、R/ND、TDc-a和TDc-a拟合效果较好,决定系数分别为0.842、0.884、0.831、0.864和0.945;预测模型的均方根误差分别为0.019、0.016、0.027、0.032和0.024,相对误差分别为2.16%、1.80%、3.30%、3.81%和3.53%。因此,在拔节期、抽穗期、开花期、灌浆前期和灌浆后期,可以分别利用NDVI、OSAVI、R/ND、TDc-a和TDc-a估测冬小麦叶片相对含水量。  相似文献   

10.
利用无人机数字图像监测不同棉花品种叶面积指数   总被引:2,自引:0,他引:2  
叶面积指数是表征作物光合作用能力大小的重要参数。本文利用无人机数码相机获取9个棉花品种全生育期冠层数字图像,基于归一化绿-红差值指数Normalized green-red difference index,NGRDI、 可见光大气阻抗植被指数(Visible atmospherically  resistant  index,VARI)、过绿指数(Excess green index,ExG)、过绿减过红植被指数(Excess green minus excess red index,ExGR)和绿叶植被指数(Green leaf index,GLI)5种常用的可见光颜色指数,通过多阈值分割,提取小区中心部位植被覆盖指数,研究不同植被覆盖指数反映棉花叶面积指数的差异。通过设置相机不同曝光时间筛选出在自动曝光下表现较稳定的基于颜色指数的植被覆盖指数GLI、NGRDI与ExG。然后研究了棉花叶面积指数以及基于GLI、NGRDI与ExG的植被覆盖指数变化规律,以及两者的相关性。结果表明:叶面积指数随播种后时间的增加先增大后减小,花铃期叶面积指数达到峰值;基于 ExG、GLI、NGRDI 的3种植被覆盖指数在生育期内都呈现开口向下的二次曲线;叶面积指数与基于NGRDI、ExG的植被覆盖指数呈显著线性相关,尤其是在吐絮期前,决定系数(R2)分别为0.913、0.912,基于NGRDI的估测效果显著好于ExG。利用基于NGRDI的植被覆盖指数预测试验田叶面积指数并形成分布图。因此,利用无人机搭载普通数码相机获取棉田叶面积指数是可行的,该方法可为指导生产管理提供参考。  相似文献   

11.
为进一步深化作物长势遥感监测机理与方法,给大田管理及时提供信息与技术,结合2011-2013年定点观测试验,以HJ-1A/1B数据为遥感影像源,研究了返青期冬小麦主要生长指标、籽粒品质参数和产量间及其与遥感变量间的定量关系,分别构建及评价基于HJ-1A/1B影像遥感变量的返青期叶面积指数、生物量、SPAD值和叶片含氮量监测模型。结果表明,返青期,归一化植被指数(NDVI)、比值植被指数(RVI)、蓝光波段反射率(B1)和RVI可分别作为监测冬小麦叶面积指数、生物量、SPAD和叶片含氮量的敏感遥感变量,所构建的遥感监测模型可靠且精度较高,模型的决定系数(R2)分别为0.62、0.56、0.46和0.58,均方根误差(RMSE)分别为0.42、452.3 kg·hm-2、4.39和0.54%。同时,对冬小麦不同等级主要生长指标进行遥感监测并制图,量化表达了主要生长指标区域空间分布。  相似文献   

12.
关中冬小麦叶片氮素含量高光谱遥感监测模型   总被引:2,自引:0,他引:2  
为给黄土高原大范围的冬小麦氮素营养遥感监测提供理论依据,通过田间试验,研究了冬小麦叶片氮素含量遥感监测的最佳生育时期、最敏感波段及其他最优光谱参量。结果表明,灌浆期是利用高光谱遥感监测冬小麦叶片氮素营养状况的最佳生育时期;在拔节、抽穗和灌浆期680nm波段光谱反射率R680均能较好地反映冬小麦叶片氮素含量,基于光谱位置以及叶面积指数的光谱参量也能较好地反映冬小麦叶片氮素含量。拔节期、抽穗期和灌浆期分别以680nm波段光谱反射率R680、绿峰反射率Rg和植被指数(SDr-SDb)/(SDr+SDb)对小麦叶片氮素含量的拟合效果最佳,其回归方程分别为Y=27.54-280.247 X+1456.245 X2、Y=8.632 X-0.24和Y=25.83 X1.012。  相似文献   

13.
为解决大田冬小麦叶片叶绿素含量估测模型精度低、通用性弱的问题,在获取冬小麦拔节期和抽穗期冠层红光波段反射率(BRred)和近红外波段反射率(BRnir)的基础上,计算归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、土壤调节植被指数(SAVI)、改进型比值植被指数(MSR)、重归一化植被指数(RDVI)、II型增强植被指数(EVI2)和非线性植被指数(NLI)等8个植被指数。经统计分析,选择与叶片叶绿素含量(SPAD值)相关性较好的5个遥感光谱指标(NDVI、MSR、NLI、BRred和RVI)作为输入变量,建立了冬小麦叶片叶绿素含量的BP神经网络估测模型(WWLCCBP),并对估测模型进行精度验证。结果表明,WWLCCBP估测模型在拔节期估测的决定系数(r2)为0.84,均方根误差(RMSE)为5.39,平均相对误差(ARE)为9.87%。抽穗期的估测效果与拔节期较为一致。将WWLCCBP和高分六号影像...  相似文献   

14.
为及时、准确地掌握小麦产量动态信息,基于无人机遥感平台,分别分析了小麦4项生理指标[地面实测叶面积指数、叶片含氮量、叶片含水量及叶片叶绿素相对含量(SPAD值)]及10项植被指数与产量的相关性,以筛选出与产量最为敏感的生理指标与植被指数,并比较了3种建模方法(一元回归UR、多元逐步回归SMLR和主成分回归PCAR)在小麦各生育时期估产的适用性,进而得到小麦最优估产模型。结果表明:(1)不同生育时期两类变量与产量的相关性变化特征一致,均表现为抽穗期>灌浆期>成熟期;不同生理指标、植被指数与产量的相关性在各生育时期均存在差异,生理指标表现为叶片含氮量>LAI>SPAD>叶片含水量;而植被指数在各时期表现不同;(2)以生理指标与植被指数为自变量,采用SMLR模型构建的抽穗期估产模型拟合精度最高,R、RMSE和nRMSE分别为0.828、362.53 kg·hm-2和12.35%;(3)小麦估产模型在各生育时期的预测精度表现为抽穗期>灌浆期>成熟期。  相似文献   

15.
利用微波遥感反演植被参数往往受到植被分布不均、稀疏植被覆盖、地表裸土等因素影响,导致微波遥感用于农业参数估计的效果不佳。为解决微波遥感反演地表植被参数的问题,本研究在原有的水云模型基础上引入植被覆盖度以及裸土对于雷达后向散射系数的直接作用信息,提出一种改进的水云模型,并充分考虑地表植被的覆盖分布情况,结合地面实测数据及RADARSAT-2雷达数据对改进模型进行验证,然后根据改进模型通过查找表法反演出植被含水量,最后利用叶面积指数与植被含水量的经验关系间接得到叶面积指数的估测值。结果表明,改进的水云模型对后向散射系数的模拟精度比原有的水云模型精度高,模拟的决定系数在HH和VV极化时分别为0.850和0.739,均方根误差分别为0.918dB和1.475dB。由此可见,改进的模型对研究区植被条件更为敏感,能够较好地分离出植被与土壤信息对雷达后向散射系数的影响,同时利用其反演得到的叶面积指数精度较高,决定系数达到0.841,均方根误差为0.233。  相似文献   

16.
为了构建小麦黄花叶病的遥感监测技术,在小麦返青期、拔节前期和拔节后期测定了不同黄花叶病等级下的冠层反射率,并同步调查与病害等级相关的小麦株高、含水量、氮含量、色素含量等农学参数,筛选出适宜监测小麦黄花叶病的植被指数,并构建病害等级监测模型。结果表明,小麦黄花叶病的反射光谱敏感波段在返青期和拔节前期集中于560~720 nm范围,而拔节后期则集中于800~900 nm区域。随病害等级的增加,光谱反射率在可见光波段逐渐增加,而在近红外波段区域降低。植被指数与病害等级相关性在不同生育时期间存在显著差异,整体上以拔节前期最好,决定系数(r)为0.72~0.82,而拔节后期模型精度急剧下降(r=0.26~0.72)。在植被指数中,整体上以表征色素变化的mND705模型预测精度最好,r和RMSE分别为 0.59~0.68和0.79~0.98。采用偏最小二乘回归(PLSR)建立黄花叶病害分级模型,三个时期的模型精度均高于植被指数模型,且整体上以返青期和拔节期前期估算效果较好,模型验证r为0.93~0.97,RMSE为0.24~0.32。因此,利用PLSR模型可以准确评价返青至拔节期前期小麦黄花叶病害等级。  相似文献   

17.
为探讨遥感信息和作物生长模型在作物估产方面的优势互补特性,选取河北省藁城市冬小麦作为研究对象,采集多个关键生育时期的生理生化、农田环境、气象等数据,并获取准同步的环境减灾小卫星HJ-CCD影像数据,采用植被指数反演冬小麦叶面积指数(LAI),基于扩展傅里叶振幅灵敏度检验法(EFAST)对WOFOST作物模型的26个初始参数进行全局敏感性分析,筛选敏感性参数,调整WOFOST模型的核心参数,利用查找表优化算法构建基于WOFOST模型和遥感LAI数据同化的区域尺度冬小麦单产预测模型,并定量预测区域冬小麦单产水平。结果表明,增强型植被指数(EVI)是遥感反演LAI的最佳植被指数(开花期建模r=0.913,RMSE=0.410,灌浆期建模r=0.798,RMSE=0.470),预测能力最强(开花期r=0.858,RMSE=0.531,灌浆期r=0.861,RMSE=0.428);筛选出6个待优化参数,即TSUM1、SLATB1、SLATB2、SPAN、EFFTB3和TMPF4;产量预测精度r=0.914,RMSE=253.67 kg·hm-2,找到了待优化参数的最佳取值,最终完成了单产模拟。  相似文献   

18.
为了快速监测小麦叶片水分含量,以敏感波段组和植被指数组2种变量分别作为输入变量,以地面同步观测的冬小麦叶片含水量作为输出变量,分别采用偏最小二乘(partial least squares,PLS)、极限学习机(extreme learning machine,ELM)和粒子群算法(particle swarm optimization,PSO)优化极限学习机,建立冬小麦叶片含水量预测模型,并对其反演效果进行比较。结果表明,光谱反射率和植被指数与叶片含水量之间存在较为密切的相关性,依此确定的敏感光谱波段为红光、蓝光和近红外波段,敏感植被指数为绿度指数、过红指数、归一化绿红差值指数、三角形植被指数和过绿指数。从2种变量的建模效果看,基于植被指数组构建的模型的精度和稳定性均优于敏感波段组,其中基于植被指数组的PSO-ELM模型在6个叶片水分含量反演模型中表现最佳,其R2和RMSE分别为0.98和0.26%。利用最优模型反演得到研究区冬小麦叶片含水量的分布范围为45%~75%,平均为64.57%,反演结果与地面实测较相符,说明基于无人机光谱数据通过建立以植被指数为变量的PSO-ELM模型可实现对冬小麦叶片水分含量的精准预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号