首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Four steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, and the right ruminal vein were used to study the absorption and metabolism of VFA from bicarbonate buffers incubated in the temporarily emptied and washed reticulorumen. Portal and hepatic vein blood flows were determined by infusion of p-aminohippurate into the mesenteric vein, and portal VFA fluxes were calibrated by infusion of isovalerate into the ruminal vein. The steers were subjected to four experimental treatments in a Latin square design with four periods within 1 d. The treatments were Control (bicarbonate buffer) and VFA buffers containing 4, 12, or 36 mmol butyrate/kg of buffer, respectively. The acetate content of the buffers was decreased with increasing butyrate to balance the acidity. The butyrate absorption from the rumen was 39, 111, and 300 +/- 4 mmol/h for the three VFA buffers, respectively. The ruminal absorption rates of propionate (260 +/- 12 mmol/h), isobutyrate (11.4 +/- 0.7 mmol/h), and valerate (17.3 +/- 0.7 mmol/h) were not affected by VFA buffers. The portal recovery of butyrate and valerate absorbed from the rumen increased (P < 0.01) with increasing butyrate absorption and reached 52 to 54 +/- 4% with the greatest butyrate absorption. The liver responded to the increased butyrate absorption with a decreasing fractional extraction of propionate and butyrate, and with the greatest butyrate absorption, the splanchnic flux was 22 +/- 1% and 18 +/- 1% of the absorbed propionate and butyrate, respectively. The increased propionate and butyrate release to peripheral tissues was followed by increased (P < 0.05) arterial concentrations of propionate (0.08 +/- 0.01 mmol/kg) and butyrate (0.07 +/- 0.01 mmol/kg). Arterial insulin concentration increased (P = 0.01) with incubation of VFA buffers compared with Control and was numerically greatest with the greatest level of butyrate absorption. We conclude that the capacity to metabolize butyrate by the ruminal epithelium and liver is limited. If butyrate absorption exceeds the metabolic capacity, it affects rumen epithelial and hepatic nutrient metabolism and affects the nutrient supply of peripheral tissues.  相似文献   

2.
Four steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, and the right ruminal vein were used to study VFA absorption from bicarbonate buffers incubated in the washed reticulorumen, and metabolism by splanchnic tissues. Portal and hepatic vein blood flows were determined by infusion of p-aminohippurate into the mesenteric vein. The steers were subjected to four experimental treatments in a Latin square design. The treatments were Control (ruminal bicarbonate buffer with [mmol/kg]: acetate = 72; propionate = 30; isobutyrate = 2.1; butyrate = 12; valerate = 1.2; caproate = 0; and heptanoate = 0); Val (same as control except for valerate = 8 mmol/kg); Cap (same as control except for caproate = 3.5 mmol/kg); and Hep (same as control except for heptanoate = 3 mmol/kg). All buffers were incubated for 90 min in the rumen, and ruminal VFA absorption rates were maintained by continuous intraruminal infusion of VFA. The arterial concentrations of valerate and heptanoate showed a small increase (< or = 1 micromol/L; P < 0.05) with inclusion of the respective acid in the ruminal buffer, but no change (P = 0.57) in arterial concentration of caproate was detected. Valerate increased (P < 0.05) the net portal flux of butyrate and valerate, as well as the net splanchnic flux of propionate, butyrate, and valerate. With Cap and Hep, the net portal flux of caproate and heptanoate accounted for 54 and 45% of ruminal disappearance rates, respectively, indicating that these acids were extensively metabolized by the ruminal epithelium. Caproate was ketogenic both in the ruminal epithelium and in the liver, and Cap increased (P < 0.05) the arterial concentration, ruminal vein minus arterial concentration difference, net hepatic flux, and net splanchnic flux of 3-hydroxybutyrate. The net hepatic flux of glucose decreased (P = 0.02) with Cap and Hep compared with Control and Val; however, no effect (P = 0.14) on the net splanchnic flux of glucose could be detected. We conclude that the strong biological activity of valerate, caproate, and heptanoate warrant increased emphasis on monitoring their ruminal presence and their potential systemic effects on ruminant metabolism.  相似文献   

3.
An experiment was performed using lambs fitted with chronic indwelling catheters in appropriate blood vessels for portal-drained visceral (PDV) flux measurements. The objective of the experiment was to evaluate PDV nutrient flux in alfalfa-fed and intragastrically infused lambs and to evaluate the effects of amount of energy and N infused on PDV nutrient metabolism. Lambs were fed alfalfa or infused with 1.64 and 10.9; 1.82 and 12.3; or 2.37 and 15.0 Mcal GE and g N/d, respectively. Arterial concentrations and PDV fluxes of glucose, L-lactate, acetate and portal blood flow were not different (P greater than .10) between alfalfa-fed and infused lambs. Net flux of alpha-amino N, ammonia N and branched-chain VFA were lower (P less than .05) and net flux of propionate, butyrate and total VFA were higher for intragastric infusion vs alfalfa. No consistent differences in PDV fluxes were noted among the three levels of energy and N infused, although the energy and N levels tested were near maintenance requirements. Nitrogen retention increased as level of energy and N infusion increased. Approximately 47, 70 and 22% of ruminally infused acetate, propionate and butyrate, respectively, were found on a net basis in portal blood as VFA. Measurements of net nutrient utilization by the PDV that eliminate the influence of ruminal fermentation are possible. How the changes in PDV tissues due to intragastric infusion influence these estimates is unknown.  相似文献   

4.
To investigate the impact of rumen microbial sequestration of VFA carbon on estimates of acetate availability based on intraruminal infusion of [2-(13)C] acetate, three nonlactating or low-yielding dairy cows were continuously intraruminally infused with [2-(13)C]acetate for 26 h. The 13C content of ruminal VFA, duodenal carbon, and fatty acids (FA) and AA isolated from liquid-associated ruminal microbes and duodenal DM was measured by an isotope ratio mass spectrometer interfaced to an elemental analyzer or a gas-liquid chromatograph. The ruminal gross production of acetate was 38 +/- 4 mol/d and could account for about 38% of the DE intake. Of the intraruminally infused 13C in [2-(13)C]acetate, 7.6 +/- 0.9% was recovered at the duodenum. The 13C content of ruminal propionate, butyrate, and valerate increased (P < 0.05) with intraruminal infusion of [2-(13)C]acetate. It was estimated that about 28% of the 13C intraruminally infused in [2-(13)C]acetate could be accounted for by duodenal 13C flow and absorption of non-acetate VFA. A number of FA isolated from liquid-associated ruminal microbes (C6, C12, C14, anteiso C15, and iso C15) were enriched with 13C (P < 0.05) at a level comparable to the enrichment of ruminal butyrate. Any absorption of these FA from the rumen would further contribute to non-acetate 13C uptake. A maximum of 72% of the ruminal gross production of acetate represented acetate absorption from the rumen in the present study. Consequently, previously used models using intraruminal isotope dilution techniques seem not to be appropriate for measuring acetate availability in ruminants. The number of metabolites exchanging carbon with acetate was found to be so high that assessments of the entire range of inter conversions seem to be practically impossible. Portal absorption studies are discussed as an alternative method of estimating VFA availability to the metabolism in ruminants.  相似文献   

5.
The present experiment was conducted to study the impact of portal-drained visceral (PDV) metabolism of arterial 3-OH-butyrate on estimates of the portal recovery of intraruminally infused butyrate. Three multicatheterized and rumen-fistulated Leicester ewes were subjected to three intraruminal infusion protocols in a Latin square design: control (C; water), butyrate (B; 20 mmol x h(-1)), and butyrate (20 mmol x h(-1)) + propionate (40 mmol x h(-1)) (BP). During the experiments, the sheep were infused with 1,2,3,4-13C4-D-3-OH-butyrate in a mesenteric vein. Portal recoveries of intraruminally infused butyrate and propionate were obtained by comparing Treatments B and BP, respectively, with Treatment C. The portal net appearance of butyrate and the portal net appearance of butyrate + 3-OH-butyrate accounted for 20 +/- 2% and 48 +/- 14% of intraruminally infused butyrate, respectively. Metabolism by the PDV tissues accounted for 32 to 44% of the whole-body irreversible loss rate of 3-OH-butyrate (12.0 to 24.7 +/- 0.5 mmol x h(-1)). The portal net appearance of butyrate plus the unidirectional PDV output of 3-OH-butyrate accounted for 62 +/- 5% of the intraruminally infused butyrate, and this estimate was comparable to the portal recovery of intraruminally infused propionate (62 +/- 7%). The results from the present study show that the extent of epithelial butyrate oxidation is overestimated and the portal recovery of butyrate carbon underestimated if only portal net appearance rates of butyrate and 3-OH-butyrate are considered.  相似文献   

6.
The net portal appearance of volatile fatty acids (VFA) was investigated in four ruminally fistulated and multicatheterized sheep. During the experiments, the sheep were fed once every hour for 14 h and intraruminally infused with mixtures of VFA for the 12 h commencing 2 h after the initiation of the hourly feeding protocol. Paired arterial and portal blood samples were obtained hourly during the last 6 h of the experiments. In the control treatment (1), only water was infused intraruminally. In Treatments 2 through 4, the intraruminal infusion rates of propionate (40 mmol/h), isobutyrate (5 mmol/h), and valerate (5 mmol/h) were unchanged. In Treatments 2, 3, and 4, the acetate infusion rate was 100, 60, and 20 mmol/h, respectively, and the butyrate infusion rate was 10, 30, and 50 mmol/h, respectively. Thus, the infusion rate of VFA carbon was constant across Treatments 2 through 4. Portal recovery estimated from the increased net portal appearance in Treatments 2 through 4 compared to the control treatment was 85% for propionate and 60% for isobutyrate, and these recoveries were unaffected by treatment. The portal recovery of butyrate increased (from 21 to 32%) with increasing infusion rate of butyrate and decreasing infusion rate of acetate, as did the portal recovery of valerate (from 14 to 31%). The portal recovery of acetate was 55%, when measured as net portal appearance. Thus, it seems that the capacity for beta-oxidation in ruminal epithelium is limited, which would explain the increasing portal recovery of butyrate and valerate with increasing infusion rate of butyrate, when infusion rate of VFA carbon is unchanged.  相似文献   

7.
We assessed the effects of nutrient supply and dietary bulk, both increasing with hay intake, on O2 uptake and nutrient net fluxes across the portal-(PDV) and mesenteric- (MDV) drained viscera, and the rumen in adult ewes. Four ewes, fitted with a ruminal cannula, with catheters in the mesenteric artery, the portal, mesenteric and right ruminal veins, and with a blood flow probe around the right ruminal artery, were used in a 4 x 4 Latin square design. Treatments consisted of 500 g DM/d hay (LL, low bulk and low nutrient supply), 500 g DM/d hay + infused nutrients (LH, low bulk and high nutrient supply), 750 g DM/d hay + infused nutrients (MH, medium bulk and high nutrient supply), and 1,000 g DM/d hay (HH, high bulk and high nutrient supply). Infused nutrients consisted of volatile fatty acids (VFA) and casein dissolved in salts and infused continuously in the rumen to provide the same amount of metabolizable energy (7.6 MJ/d) and digestible protein (63 g/d) for LH, MH, and HH. Both increases in bulk and nutrient supply increased O2 uptake in the MDV and PDV. Dietary bulk stimulated mainly blood flow, whereas nutrient supply stimulated mainly O2 extraction rate. The O2 uptake by the rumen was not significantly affected by hay intake, although blood flow increased due to nutrient supply. Increase in hay intake had no effects on portal net release of lactate and net uptake of glucose but increased VFA, 3-D-hydroxybutyrate, ammonia, and amino acids (AA) net release and urea net uptake across PDV. The increase in portal nutrient net fluxes with hay intake was entirely related to the increase of nutrient supply for VFA, 3-D-hydroxybutyrate, ammonia, and urea, irrespective of the amount of casein infused for AA. Dietary bulk had no effect on total energy net release in the portal vein. We conclude that despite the increase in portal O2 uptake, increasing dietary bulk had no significant impact on portal recovery of energy. In ruminal tissues, which were the main site of energy absorption, O2 uptake appeared low and was not sensitive to dietary manipulation. In contrast, in mesenteric tissues, which contribute poorly to energy absorption with forage diets, O2 uptake appeared high and very sensitive to dietary manipulation.  相似文献   

8.
Before and after infusion of propionate and butyrate the concentrations of volatile fatty acids (VFA) in the blood of heifers were determined by gas chromatography, in order to indicate activity and regulation of the carbohydrate metabolism. 14 heifers were loaded after food deprivation with intravenous infusions of propionate and butyrate. Concentrations of acetate, propionate, isobutyrate, butyrate, and valerate were measured in blood samples which were taken later on. The methods used for clearance and extraction as well as for gas chromatographic analysis are described. Retention times and blood concentrations are given for each VFA. Concentrations prior to infusion were for: acetate 10.14 +/- 2.51 microliters/ml; propionate 0.42 +/- 0.35 microliters/ml; iso-butyrate 3.72 +/- 1.37 microliters/ml; butyrate 3.44 +/- 0.68 microliters/ml blood plasma. The concentrations of the infused VFA showed a 100 (butyrate) to 1000 (propionate) fold increase followed by a subsequent decrease to the initial values. These investigations on the profile of VFA elucidated criteria of the energy metabolism.  相似文献   

9.
Six Holstein steers (mean +/- SE BW = 344 +/- 10 kg) fitted with hepatic, portal, and mesenteric vein and mesenteric artery catheters and a ruminal cannula were used in a 6 x 6 Latin square design to evaluate the effects of increasing ruminal butyrate on net portal-drained visceral and hepatic nutrient flux. Steers were fed a 40% brome hay, 60% concentrate diet in 12 portions daily at 1.25 x NEm. Water (control) or butyrate at 50, 100, 150, 200, or 250 mmol/h was supplied continuously via the ruminal cannula. Simultaneous arterial, portal, and hepatic blood samples were taken at hourly intervals from 15 to 20 h of ruminal infusion. Portal and hepatic blood flow was determined by continuous infusion of P-aminohippurate, and net nutrient flux was calculated as the difference between venous and arterial concentrations times blood flow. Ruminal and arterial concentrations and total splanchnic flux of butyrate increased (P less than .01) with increased butyrate infusion. Arterial concentrations of acetate (P less than .10), alpha-amino-N (P less than .05), and glucose (P less than .01) decreased with increased butyrate, whereas arterial beta-hydroxybutyrate (P less than .01) and acetoacetate (P less than .05) increased. Increased butyrate produced an increased portal-drained visceral flux of acetoacetate and an increased net hepatic flux of beta-hydroxybutyrate. Urea N and glucose net portal and hepatic fluxes were not affected by ruminal butyrate. Alpha-amino-N uptake by the liver decreased with increased butyrate (P less than .10). Simple linear regression (r2 = .985) indicated that 25.8% of ruminally infused butyrate appeared in portal blood as butyrate. Only 14% could be accounted for as net portal-drained visceral flux of acetoacetate plus beta-hydroxybutyrate.  相似文献   

10.
To investigate the metabolism of 1,2-propanediol (PPD) in lactating cows independently of normal rumen microbial metabolism, three ruminally cannulated lactating Holstein cows were subjected to three experimental infusion protocols under washed reticulo-ruminal conditions in a Latin square design. Reticulo-ruminal absorption rates were maintained for 420 min by continuous intraruminal infusion of VFA and PPD. With the control treatment, 1,246 +/- 39 mmol/ h of acetate and 213 +/- 5 mmol/h of butyrate were absorbed from the reticulorumen. With the propionate treatment, 1,148 +/- 39 mmo/h of acetate, 730 +/- 23 mmol/h of propionate and 196 +/- 5 mmol/h of butyrate were absorbed from the reticulorumen. With PPD treatment, 1,264 +/- 39 mmol/h of acetate, 220 +/- 5 mmol/h of butyrate and 721 +/- 17 mmol/h of PPD were absorbed from the reticulorumen. Glucose irreversible loss rate (ILR), as well as the relative enrichment of plasma lactate and alanine, were determined by primed continuous infusion of [U-13C]glucose in a jugular vein. Treatments did not affect (P > 0.10) the plasma concentrations of glucose (4.2 +/- 0.1 mmoVL), alanine (0.14 +/- 0.01 mmol/L), or insulin (80 +/- 25 pmol/L). The plasma concentration of lactate was higher (P < 0.05) with both propionate (0.84 +/- 5 mmol/L) and PPD treatment (0.81 +/- 5 mmol/ L) compared with the control treatment (0.29 +/- 0.5 mmol/L). The plasma concentration of pyruvate was higher (P < 0.05) with the propionate treatment (0.09 +/- 0.01 mmol/L) compared with the control treatment (0.03 +/- 0.01 mmol/L). The plasma concentration of 3-hydroxybutyrate was lower (P < 0.05) with the propionate treatment (0.15 +/- 0.03 mmol/L) compared with the control treatment (0.40 +/- 0.03). With the PPD treatment, the plasma concentrations of pyruvate and 3-hydroxybutyrate were in between the other treatments and tended (P < 0.10) to be different from both. The plasma concentration of PPD increased throughout the infusion period with the PPD treatment and reached a concentration of 4.9 +/- 0.6 mmol/L at 420 min. The ILR of glucose was not affected (P > 0.10) by treatments (441 +/- 35 mmol/h). The relative 13C enrichment of plasma lactate compared with that of glucose decreased (P < 0.05) with the PPD treatment compared with the control treatment (44 to 21 +/- 3%). It was concluded that PPD has a low rate of metabolism in cows without a normal functioning rumen, although about 10% of the absorbed PPD was metabolized into lactate.  相似文献   

11.
本试验旨在探讨高精料日粮下添加阿卡波糖对奶牛瘤胃和后肠发酵的影响。试验选用3头干奶期荷斯坦奶牛,采用3×3拉丁方试验设计,阿卡波糖添加剂量为0,0.5和1.0 g/d,试验分3期进行,每期21 d。结果表明,与对照组比较,添加阿卡波糖显著降低了奶牛瘤胃液中丙酸浓度(P<0.05),提高了乙丙比(P<0.05),但对瘤胃pH值、乳酸、乙酸、异丁酸、丁酸、异戊酸、戊酸、总挥发性脂肪酸和氨氮浓度无显著影响(P>0.05);与对照组比较,添加阿卡波糖显著降低了粪便pH值和氨氮浓度(P<0.05),提高了乳酸、丁酸和异戊酸浓度(P<0.05),但对乙酸、丙酸、异丁酸、戊酸、总挥发性脂肪酸和乙丙比无显著影响(P>0.05)。结果说明,高精料日粮下长期添加阿卡波糖虽可影响瘤胃液中个别挥发性脂肪酸的浓度,但对瘤胃整体发酵和瘤胃pH值无显著影响,此外,添加阿卡波糖可增加后肠发酵,并可能对后肠健康带来潜在危害。  相似文献   

12.
Three sheep fitted with a ruminal cannula and an abomasal catheter were used to study water kinetics and absorption of VFA infused continuously into the rumen. The effects of changing VFA concentrations in the rumen by shifting VFA infusion rates were investigated in an experiment with a 3 x 3 Latin square design. On experimental days, the animals received the basal infusion rate of VFA (271 mmol/h) during the first 2 h. Each animal then received VFA at a different rate (135, 394, or 511 mmol/h) for the next 7.5 h. Using soluble markers (polyethylene glycol and Cr-EDTA), ruminal volume, liquid outflow, apparent water absorption, and VFA absorption rates were estimated. There were no significant effects of VFA infusion rate on ruminal volume and water kinetics. As the VFA infusion rate was increased, VFA concentration and osmolality in the rumen were increased and pH was decreased. There was a biphasic response of liquid outflow to changes in the total VFA concentration in the rumen, as both variables increased together up to a total VFA concentration of 80.1 mM, whereas, beyond that concentration, liquid outflow remained stable at an average rate of 407 mL/h. There were significant linear (P = 0.003) and quadratic (P = 0.001) effects of VFA infusion rate on the VFA absorption rate, confirming that VFA absorption in the rumen is mainly a concentration-dependent process. The proportion of total VFA supplied that was absorbed in the rumen was 0.845 (0.822, 0.877, and 0.910 for acetate, propionate, and butyrate, respectively). The molar proportions of acetate, propionate, and butyrate absorbed were affected by the level of VFA infusion in the rumen, indicating that this level affected to a different extent the absorption of the different acids.  相似文献   

13.
The effects of vitamin E on pH value, total protozoa counts, volatile fatty acid (VFA), ammonia nitrogen and lactate levels were examined using an in vitro ruminal incubation system. The ruminal fluid (100 ml) of the first and second group was supplemented with 0.4 mg or 0.8 mg of vitamin E, respectively. Samples were taken immediately before and following 3, 6, 12 and 24 h of incubation at 39 degrees C and analysed for the total protozoa counts, the pH and the levels of ammonia nitrogen, lactate and VFA. Levels of propionate at 24 h and ammonia nitrogen at 12 and 24 h were significantly higher in the second group than in the control. In contrast, the levels of butyrate at 6, 12 and 24 h and lactate at 6, 12 and 24 h were lower in the second group than in the control. Propionate at 24 h, acetate levels at 6, 12 and 24 hand ammonia nitrogen levels at 6, 12 and 24 h and total rumen protozoa counts at 6, 12 and 24 h were significantly higher in the second group as compared with control. In contrary, butyrate levels at 6, 12 and 24 h, lactate levels at 6, 12 and 24 h were lower in second group than in control. There was no statistically significant difference among the groups in the pH values. In conclusion, the addition of vitamin E to in vitro ruminal fluid was found to increase the concentrations of acetate and propionate, total counts of protozoa, levels of ammonia nitrogen, but to decrease the butyrate and lactate levels of the ruminal aliquots in in vitro ruminal fermentation.  相似文献   

14.
Response to monensin in cattle during subacute acidosis   总被引:1,自引:0,他引:1  
A steer metabolism study was conducted to measure changes in ruminal and blood components in response to monensin level following an abrupt switch from forage to a concentrate diet. Six ruminal-cannulated crossbred steers (373 kg) were fed either 0, 150 or 300 mg monensin per head daily in a replicated 3 X 3 Latin-square design. In all treatments, ruminal pH declined to a low of 5.4 to 5.6 12 h post-feeding, suggesting steers experienced subacute acidosis. Also in the first 12 h post-feeding, all treatments exhibited nearly a twofold increase in total ruminal volatile fatty acid (VFA) concentrations, while peak ruminal lactate concentrations ranged from .86 to 1.50 mM. During the entire 48-h period, there were no significant treatment differences in blood pH, HCO3- or ruminal lactate, although there was a trend of higher ruminal and blood lactate associated with increased level of monensin supplementation. Feeding higher levels of monensin resulted in higher pH and propionate with lower acetate and butyrate concentrations. Increasing the level of monensin fed resulted in reduced (P less than .01) total ruminal VFA concentrations. Ruminal pH was more highly correlated to total ruminal VFA concentrations (r = -.69, P less than .01) than lactate concentrations (r = -.14, P less than .10). Results from this study indicate the significance of total ruminal organic acid concentration rather than ruminal lactate concentration during subacute acidosis. Monensin maintained a higher ruminal pH by reducing concentrations of VFA.  相似文献   

15.
Splanchnic metabolism of energy-yielding nutrients and their uptake by the hind limb were studied in finishing lambs receiving ryegrass harvested at grazing stage (ear at 10 cm) with or without barley supplementation. Six ruminally cannulated and multicatherized lambs (40.2 +/- 1.5 kg) were fed with frozen ryegrass (RG) at 690 kJ of metabolizable energy intake (MEI) x d(-1) x BW(-0.75) successively with and without barley supplementation (RG + B), according to a triplicated Latin square design. Barley supplementation represented 21% of DM intake and increased the MEI by 32% (P < 0.002). In ruminal fluid, barley supplementation increased the acetate and butyrate concentrations by 21.2 and 49.6%, respectively (P < 0.04), without modifying those of propionate. Thus, molar proportions of acetate and butyrate were not modified, and those of propionate tended (P < 0.06) to decrease from 26 to 23%. As a result, the net portal appearance of propionate was not modified. Net portal appearance of butyrate and beta-hydroxybutyrate increased (P < 0.03), and that of acetate was not modified. Consequently, hepatic uptake of butyrate increased and probably spared acetate from hepatic metabolism. The hepatic fractional extraction of propionate decreased (P < 0.03), whereas the net flux of lactate switched from a net release to a net uptake, suggesting an alteration in the contribution of gluconeogenic substrates to glucose synthesis without modification in net hepatic glucose release. As a consequence, barley supplementation increased net splanchnic release of acetate (P < 0.02), propionate (P < 0.001), and beta-hydroxybutyrate (P < 0.01) by 60, 157, and 78%, respectively. In addition, the net splanchnic release of insulin increased (P < 0.03) because of a decrease (P < 0.02) in its hepatic extraction. Despite those changes, the net uptake of nutrients by the hind limb was not modified and even decreased in the case of glucose (P < 0.02), suggesting a stimulation of lipogenesis in adipose tissues. Results from the present study suggested that supplementation of a ryegrass-based diet would likely have little effect on the orientation of muscle energy metabolism and on meat quality because the net uptake of nutrients by the hind limb was unchanged.  相似文献   

16.
在 4头门静脉、肝静脉、颈静脉、肠系膜静脉和股动脉上安装血管导管的绵羊中研究了克伦特罗 (CL ,0 8mg/kgBW ,肠系膜静脉给药每天 2次 ,连续 5d)对其肝脏物质代谢的影响。结果表明 :CL可增加绵羊肝脏中的VFA流量 ,其中门静脉处乙酸、丙酸和丁酸的流量分别较对照期增加 19 4 9% (P <0 .0 1)、2 0 2 % (P >0 .0 5 )和4 5 5 % (P >0 .0 5 ) ,而肝静脉处VFA流量两期水平接近。CL也提高肝脏中葡萄糖的异生作用 ,在肝静脉处血中葡萄糖流量上升了 2 5 96 % (P <0 .0 1)。门静脉处血中葡萄糖循环水平也相应提高。此外在CL作用下肝静脉处胰岛素水平也较对照期有所下降。提示CL可增加进入绵羊肝脏中VFA的流量并促进肝脏对VFA的吸收和利用。通过降低胰岛素水平或对肝脏的直接作用CL还可增加绵羊血中葡萄糖的水平  相似文献   

17.
This experiment was conducted to determine the significance of the peptide amino acid (PAA) contribution to amino acid (AA) net flux in the portal vein and to evaluate the capacity for peptide absorption in the different segments of the gastrointestinal tract of ruminants. Four sheep (64+/-3 kg BW) were fitted with catheters and blood flow probes, allowing AA net flux measurements across the portal- (PDV) and mesenteric (MDV)-drained viscera and the rumen. Sheep were fed at maintenance a diet containing hay and extruded peas (70:30). Peptide absorption was investigated by a dose infusion of a mixture of peptides (casein hydrolysate, Pro-Phe, beta-Ala-His, Gly-Gly) into the rumen. Control and postinjection net fluxes of plasma free amino acids (FAA) and PAA were determined. The concentration of plasma PAA was determined by quantification of amino acids before and after acid hydrolysis of samples first submitted to chemical deproteinization and ultrafiltration (3-kDa cut-off filter). During the control period a significant net release (12 mmol/h) of PAA was observed across the PDV, which accounted for 35% of the sum of FAA and PAA net fluxes. This PDV flux of PAA mainly resulted from a MDV release of PAA (15 mmol/h). The net flux of total PAA across the ruminal wall was not significantly different from zero, but uptake of peptide Ile and release of peptide Gly were observed. The injection into the rumen of the peptide mixture increased the net release of peptide essential AA (EAA) across the MDV (P < .05) and the PDV (P < .10), and of peptide Pro and Phe across the non-MDV (P < .10). Peptide Ile uptake by the rumen tissues was decreased by the injection (P < .05). Significant increases in peptide Pro and Gly arterial concentrations were observed (P < .05). The 3-Ala-His and Gly-Gly arterial concentrations and net fluxes across the PDV were not affected by their injections into the rumen. This study showed that PAA may contribute significantly to AA flux across the PDV of sheep, and that part of this flux can probably be attributed to peptide absorption from the gut lumen. When high concentrations of peptides are generated in the rumen the possibility of peptide absorption before the jejunum has to be considered.  相似文献   

18.
The objective of this study was to examine the effects of Aspergillus oryzae fermentation extract (Amaferm) on the in vitro ruminal fermentation of coastal bermudagrass, soluble starch and amino acids. Mixed ruminal microorganisms were incubated in anaerobic media for either 24 h (Amaferm alone, soluble starch, amino acids) or 48 h (bermudagrass). Amaferm was added to the incubation bottles (n = 4) at concentrations of 0, .4 or 1.0 g/liter. When mixed ruminal microorganisms were incubated with only Amaferm, the 1.0 g/liter concentration increased the production of hydrogen (H2; P less than .001), methane (CH4; P less than .01), acetate (P less than .05), butyrate (P less than .01), total VFA (P less than .05) and NH3 (P less than .05). Addition of both levels of Amaferm to soluble-starch fermentations tended to enhance the production of H2 (P less than .11), CH4 (P less than .15), acetate (P less than .29) and total VFA (P less than .19); propionate production was increased (P less than .10) by 1.0 g/liter Amaferm, resulting in a decrease (P less than .05) in the acetate:propionate ratio. Fermentation of amino acids plus 1.0 g/liter Amaferm enhanced the production of acetate (P less than .05), propionate (P less than .05), valerate (P less than .01) and total VFA (P less than .10) and decreased the acetate:propionate ratio (P less than .05). In addition, NH3 production tended (P less than .19) to increase with both levels of Amaferm. When bermudagrass was the substrate, few changes in fermentation products were observed with Amaferm treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
本试验旨在研究高谷物日粮对山羊瘤胃上皮形态结构及单羧酸转运蛋白(monocarboxylate transporter, MCT)和钠钾ATP酶mRNA表达的影响。将10头装有永久性瘤胃瘘管的健康阉割公山羊随机分为饲喂全粗料日粮的对照组(Hay,0%谷物,n=5)和饲喂高谷物日粮的处理组(HG,65%谷物,n=5),试验期为7周。试验开始后,于每周晨饲后的0、2、3、4、6、8和12 h连续采集瘤胃液监测瘤胃pH值的变化,收集其中第0、3、6和12 h的瘤胃液待测挥发性脂肪酸(volatile fatty acid, VFA)浓度。试验的第50天,屠宰采集瘤胃上皮用于形态学及基因定量分析。研究结果显示:与全粗料组山羊相比,高谷物组山羊瘤胃pH值、乙酸浓度及乙丙比都显著下降(P<0.001),而瘤胃丙酸浓度、丁酸浓度及其他VFA浓度都显著升高(P<0.001);高谷物日粮组的瘤胃乳头长度显著高于对照组(P=0.001),瘤胃乳头宽度显著低于对照组(P<0.001),但是两组间的瘤胃乳头表面积并无显著差异;透射电镜结果显示,长期饲喂高谷物日粮导致瘤胃上皮细胞线粒体发生降解;实时定量PCR结果表明,与对照组相比,高谷物日粮显著升高了MCT1(P<0.001)和钠钾ATP酶(P=0.001)的mRNA表达量,显著降低了MCT4的mRNA表达量(P=0.041),但对MCT2的表达没有显著影响(P=0.305);进一步分析这些基因的mRNA表达量与pH值和VFA浓度之间的相关性,结果显示,MCT1和钠钾ATP酶的mRNA表达量与瘤胃pH值和乙酸浓度呈显著负相关,与总VFA、丙酸、丁酸的含量呈显著正相关,而MCT4的mRNA表达量与pH值呈显著正相关,与总VFA、丙酸、丁酸的含量呈显著负相关。以上结果提示:高精料引起的瘤胃pH值下降和VFA的变化可能与瘤胃上皮MCT和钠钾ATP酶表达量的变化相关。研究结果对深入认识高谷物饲喂引发的瘤胃功能紊乱具有重要意义。  相似文献   

20.
Three sheep, each fitted with a ruminal cannula and duodenal re-entrant cannulae were given three isonitrogenous, isoenergetic diets in a Latin Square design. Each diet contained approximately 60% DM as barley grain and 40% of total N as either white fish meal, soya-bean meal or urea. These diets were fed continuously and supplied about 28 g N/day. Diets containing such large amounts of barley grain usually produce wide variations in the rumen volatile fatty acid (VFA) proportions and these have been correlated with various other digestive characteristics. Several ruminal and duodenal components were measured in this study and interrelationships between them sought. The molar proportions of VFA varied widely from 45-67% for acetate, 13-48% for propionate and 7-23% for butyrate. Rumen pH was positively correlated with acetate (P less than 0.01), but negatively so with propionate (P less than 0.01) and butyrate (P less than 0.1). The numbers of rumen ciliate protozoa also varied widely and were related to rumen pH (P less than 0.05) and VFA proportions; positively to acetate (P less than 0.001) and butyrate (P less than 0.01) but negatively to propionate (P less than 0.001). Duodenal N was always less than fed N. The mean composition of this duodenal N was 10.1% ammonia-N, 6.7% RNA-N, 79.0% amino acid-N and 7.3% was unaccounted for. Efficiencies of synthesis of microbial and bacterial crude protein (derived from 35S and 2,6-diaminopimelic acid data) ranged from 10.5 to 42.2 g microbial N per kg apparently digested organic matter (ADOM) and 5.0 to 27.9 g bacterial N per kg ADOM. Division of VFA patterns into either propionate or butyrate type fermentations suggested several further interrelationships. No relationship was established between these fermentation patterns and the extent or efficiency of microbial crude protein synthesis. Possible interrelationships between different digestive characteristics are discussed and a plea made for both more extensive and intensive experimentation before such designation of cause and effect can be assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号