首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
The possibility of using construction and demolition (C&;D) waste wood as a bulking material in biosolids composting was investigated. Potential contaminants in C&;D waste wood include arsenic (As), chromium (Cr), and copper (Cu) from treated wood, and lead (Pb) from paints. Untreated and treated woodchips from C&;D wood were mixed with biosolids, composted using an aerated static pile process, and cured. There were no significant differences between untreated and treated woodchips with respect to composting process, time to stability, or product quality. Composting parameters monitored included moisture content, pH, electrical conductivity, organic matter degradation, fecal coliform levels, and stability by respirometry. Finished compost quality was evaluated in terms of potential toxic elements (PTE) levels. PTE values in treated woodchips (26 ± 35, 29 ± 41, 56 ± 46, and 5 ± 5 µg·g?1 for As, Cr, Cu, and Pb, respectively) were higher and more variable than those in the untreated woodchips (3 ± 3, 17 ± 8, 13 ± 2, and 0.5 ± 0.0 µg·g?1). However, both untreated and treated wood compost products met Canadian Council of Ministers of the Environment Category B values for PTE. In addition, and only molybdenum (Mo) and Cu exceeded Category A thresholds. Biosolids were the most significant contributor of Mo, while Cu contributions came from both biosolids and wood chips; some samples of pressure-treated wood showed concentrations of Cu in the range of 765 to 8,455 µg·g?1. The results of this study suggest that treated wood from C&;D recycling facilities will not significantly degrade the quality of biosolids compost products.  相似文献   

2.
Use of composts as soil amendments to enhance crop growth requires a knowledge of rates and amounts of nutrients released. A greenhouse study was conducted using ryegrass (Lolium perenne L.) as a test plant to evaluate this release from composts. The experimental design consisted of four blocked replicates in a complete factorial with two types of compost (wastewater treatment plant biosolids and cow manure), four application rates (1, 2, 5 and 10 percent of weight of sand), and three fertilizer treatments (0, 100 mg N/kg mixture, and 100 mg P/kg mixture). Rye-grass top growth was harvested after 21 days. The regrowth was harvested three additional times. Roots were recovered after the fourth harvest. Total N uptake was significantly and positively affected by the total amount of N supplied by the compost or compost plus N fertilizer (r2 values ranged from 0.992 to 0.999). Initial N uptake depended on the mineral N concentration in the compost and was higher from biosolids than from cow manure compost. Biosolids compost contained 10 times more mineral N and this N was primarily taken up in the first two harvests. Cow manure compost, however, provided N gradually over the entire 84 day test. In addition to N, both composts also supplied P, K, and other major and minor nutrients essential for plant growth.  相似文献   

3.
Oxygen uptake of biosolids compost was measured during both laboratory and full-scale studies. Aerobic respirometry of solid samples of compost provided a precise measure of microbial activity. There was a noticeable decreasing trend in oxygen consumption over 25 days of composting, thereby indicating increasing stability. Moisture content also was found to affect the compost stability. During 48-hour respirometer tests, the compost sample did not dry to the point where respiration was inhibited. Measurement of volatile solids reduction alone during biosolids composting with large quantities of sawdust revealed little about stability.  相似文献   

4.
以猪粪及其堆肥为供试样品,在水浸提比(W/V)1:10、1:20、1:30、1:40、1:50、1:60的条件下,采用浸提液室内培养法,研究不同水浸提比对黄瓜、樱桃萝卜及大白菜种子发芽特性指标(相对发芽率、相对根长、发芽指数)的影响。结果表明,黄瓜种子的相对发芽率在不同水浸提比下均大于80%;其他种子发芽特性指标随水含量的增多,均经历了明显的增大趋势。同一种子,相对根长受水浸提比的影响比相对发芽率显著,发芽指数与相对根长随水浸提比的变化规律一致。新鲜猪粪经堆肥处理对种子的植物毒性减轻,大白菜种子对猪粪及其堆肥的植物毒性较黄瓜种子与樱桃萝卜种子敏感。  相似文献   

5.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

6.
In comparison to traditional windrow composting, in-vessel composting techniques often represent more effective waste management options due to the reduced production of bioaerosols and leachate and the potential for better process control. Chemical processes occurring during the cocomposting of three common wastes (green waste, biosolids and paper processing waste) were studied using the forced aeration, static pile, in-vessel EcoPOD® composting system. Since no turning of the compost occurs within the static piles, spatial differences in the vessel were also monitored. These measurements revealed significant spatial gradients in temperature; however, this did not result in spatial differences in nutrients within the composting vessel. Significant differences in soluble N production were observed during the composting process following the series: green plus paper waste < green waste < green waste plus biosolids. After the active compost phase was over, and the compost was removed from the vessel and matured outside, we demonstrated that covering the compost was essential to preserve compost quality. Our study clearly shows that cocomposting of common waste feedstocks can be used to successfully manipulate the chemistry of the final compost making it suitable for multiple end uses. In addition, our study demonstrated that careful management of the compost maturing phase is also required to maximise quality and minimize pollution.  相似文献   

7.
添加木炭改善猪粪稻壳好氧堆肥工艺及质量   总被引:14,自引:3,他引:11  
为促进农业废弃物的资源化利用,试验以猪粪和稻壳为原料,用化学分析和仪器分析相结合的方法,研究了添加不同质量分数(0、2.5%、5.0%、7.5% 和10.0%)的木炭对60 d猪粪好氧堆肥过程的影响。结果表明:在堆肥有机质的降解过程中,含-OH、-CH3和-CH2基团的化合物的质量分数逐渐减少,含-C=O、C-O-C、-COO基团和含芳香环类物质的质量分数逐渐增加。添加木炭能促使堆肥物料的降解,随着木炭添加量的增加,在60 d的堆肥过程中,各处理有机碳的质量分数分别降低了12.23%、13.77%、14.88%、15.36%和15.86%,碳氮比分别下降了47.80%、54.98%、56.97%、60.03%和65.73%。与对照相比,添加木炭可延长堆肥高温期的停留时间3~ 5 d,增加堆肥物料的持水能力并降低堆肥产品的电导率;同时,添加木炭还能减少堆肥初期氨气的挥发,提高铵态氮的质量分数,促使堆肥后期硝态氮的转化。堆肥结束时,添加木炭可使硝态氮的质量分数提高55.86%~89.32%,总氮的质量分数提高20.55%~53.07%,雪里蕻种子发芽率提高17.6%~41.2%,萌发指数达1.02~1.44。研究表明,添加木炭能促进堆肥有机物料的降解,加快堆肥腐熟脱毒,增加堆肥产品总氮的质量分数,提高产品质量。木炭作为一种潜在的猪粪堆肥添加剂,在促进农业废弃物资源化利用方面具有广阔的应用前景。  相似文献   

8.
The use of biosolids compost, in the formulation of media used in the commercial production of container grown nursery crops, has been slow in the Northeast region of the United States. When biosolids compost is used in growing media, it is limited to small percentages. Regulations in Connecticut restrict the use of most biosolids compost to growing media for containerized ornamental plants and landfill cover. Information on the benefits of using biosolids compost, to grow a wide range of plant species in containers, could increase usage by nurseries. Seven species of flowering annuals, nine species of herbaceous perennials and eight species of woody ornamentals were grown in media containing 0, 25, 50, and 100 percent (by volume) biosolids compost, in combination with a mixture of bark, peat and sand. Biosolids compost came from the Metropolitan District Corporation (MDC) facility in Hartford, Connecticut. It was a mixture of wood chips and digested biosolids (3:1 by volume). Optimal plant growth generally occurred in media containing 50 and 100 percent compost. Plants growing in media high in compost were often somewhat stunted and chlorotic for several weeks after planting probably due to higher levels of salinity and ammonium nitrogen in their media. However, by the middle of the growing season these plants had recovered and at season's end, they were often superior to plants grown in media with less compost. Increasing proportions of compost generally increased the amounts of plant nutrients and heavy metals in media while decreasing air filled pore space. All heavy metal concentrations were below levels of concern.  相似文献   

9.
The quality of compost made from the organic fraction of municipal organic waste (MOW), in terms of organic matter and nutrient concentrations, is inferior to that of compost from other feedstocks. The aim of this work was to improve the quality of MOW compost by means of cocomposting with biosolids (at ratios of 1:1, 2:1, and 3:1 MOW/biosolids) and vermicomposting. Vermicomposting (ground beds with worms) treatments were prepared from traditional pile material after 40 composting days; ground beds without worms were also included. Several parameters, including pH, electrical conductivity, carbon dioxide production, organic matter, total nitrogen, water-soluble carbon, nitrate, ammonium, and extractable phosphorus, were measured throughout the process. Organic matter in the products at 120 days ranged between 39 and 45%, whereas total nitrogen was between 1.7 and 2%. Considering these parameters, the quality of MOW and biosolids cocompost was better than that of MOW composted alone in a previous study (18% organic matter and 0.7% total nitrogen concentration). Extractable phosphorus was also greatly increased from 128 mg/kg in MOW compost to 542–722 mg/kg in the cocompost. Of the three MOW/biosolids ratios employed, only the 2:1 and 3:1 mixtures were adequate for composting and produced similar product qualities. However, the 2:1 mixture required more turnings and exhibited higher N losses. The improvement of quality by vermicomposting was limited. Compared to traditional piles, it did not affect concentrations of organic matter or total nitrogen. The direct action of worms, measured by comparing ground beds with and without worms, increased nitrate concentrations for mixtures 2:1 and 3:1 and extractable phosphorus concentrations for mixture 3:1.  相似文献   

10.
Manufactured soil for landscaping purposes was produced by composting for 6 weeks (1) municipal green waste alone, (2) green waste amended with 25% v/v poultry manure, or (3) green waste immersed in, and then removed from, a mixture of liquid grease trap waste/septage. Composting temperatures increased most rapidly and reached highest values (78oC) in the grease trap/septage-amended green waste. In comparison with green waste alone, addition of poultry manure prolonged the period of elevated temperatures and increased the maximum temperature attained from 52oC to 61oC. Following composting, each of the materials was split into (1) 100% compost, (2) 80% compost plus 20% v/v soil, and (3) 70% compost plus 20% soil plus 10% coal fly ash. Addition of poultry manure or grease trap/septage to green waste prior to composting increased bulk density and reduced total porosity of the composted product. Addition of soil, or soil and ash, to composts increased bulk density, reduced total porosity, decreased percentage macropores, and increased percentage mesopores and available water-holding capacity. Bicarbonate-extractable P, exchangeable NH4+ and NO3, electrical conductivity (EC), soluble C, soluble C as a percentage of organic C, basal respiration, and metabolic quotient were all markedly greater in the grease trap/septage-amended than poultry manure-amended or green waste alone treatments. Values for extractable P and EC were considered large enough to be damaging to plant growth and germination index (GI) of watercress was less than 60% for all grease trap/septage composts. Extractable P and EC were also high, and GI was <100%, in the green waste alone and poultry manure-amended green waste alone treatments. Addition of soil or soil and ash to these composts resulted in GI values >100%.  相似文献   

11.
Quantity and quality of readily degradable carbon influences the composting process especially for compost mixture high in lignocellulotic material. Effects of carbon source on stability and maturity of compost from in-vessel systems are poorly understood. Research was conducted to investigate the effects of carbon composition of feedstock on the evolution of stability indices and reliability of maturity tests for accelerated vessel composting systems. Rice straw, sugarcane bagasse, and coffee hulls were composted in a modified rotary in-vessel composter amended with either cattle or sheep manure. Distinct evolution patterns were observed across carbon sources for temperature, with the sugarcane compost never attaining thermophilic temperatures. Time to peak temperature and return to ambient were significantly different between the rice and coffee compost. Comparatively, organic matter degradation followed a similar pattern for all carbon sources, although rice straw showed the faster degradative rate and coffee hulls the greatest overall loss. Both pH and electrical conductivity were inappropriate stability indices across carbon sources, while the NH4+/NO3? ratio was lower than the threshold from week 1. The Solvita® maturity test was the best suited quality indicator and was related to compost respiration. The rice compost at week 12 was the only mature compost with an index value of 7. However, the coffee compost was in the curing stage with a value of 6. In vitro phytotoxicity assays on hot pepper contrasted the Sovita® interpretation for rice compost, which showed the lowest germination index. All compost had a stimulatory effect on cucumber seeds. In vivo seeding assays corroborated in vitro results with rice compost showing the greatest negative effect, augmented at 100% compost inclusion. Carbon source significantly influenced compost stability and maturity indices, which suggests that greater attention should be directed to quality indices in relation to feedstock composition.  相似文献   

12.
风干预处理对堆肥腐熟度及臭气排放量的影响   总被引:2,自引:1,他引:1  
该研究以风干猪粪堆肥为处理,以新鲜猪粪堆肥为对照,在秸秆调理相同C/N基础上,对两个处理腐熟度和臭气排放进行比较分析。从温度、p H值、电导率和发芽率来看,利用新鲜猪粪和风干猪粪堆肥所得的产品均能达到腐熟和无害化标准;在硫化氢、羰基硫、二硫化碳、甲硫醚、乙硫醚、二甲二硫、甲硫醇和乙硫醇几种含硫臭气中,甲硫醚和二甲二硫占96%以上;风干猪粪堆肥比新鲜猪粪堆肥少排放71.09%的氨气,66.11%的甲硫醚和9.66%的二甲二硫。在不考虑风干环节存在的问题条件下,与新鲜猪粪堆肥相比,风干猪粪堆肥堆肥时间短,在堆肥品质提高的基础上,堆肥产品产量增加60%。通过降低水分和体积风干猪粪运输成本降低1/3,且对环境影响小,是远距离资源化处理畜禽粪便的较好途径。  相似文献   

13.
稻壳-鸡粪好氧高温堆肥体系中磷石膏消纳能力的研究   总被引:2,自引:1,他引:1  
为探究堆肥体系中磷石膏的消纳能力,增加磷石膏资源化利用强度,该研究以稻壳作为主要原料,以鸡粪为辅料,添加基于堆肥有机物料(干质量)的0、10%、20%、30%和40%磷石膏(CK、P10、P20、P30和P40)作为堆肥调理剂,研究其对高温堆肥过程中堆肥的物理、化学、生物指标以及堆肥腐熟后堆料品质性状的影响,从肥料化的角度,探究稻壳-鸡粪堆肥体系中磷石膏的消纳能力。结果表明,相比于CK而言,磷石膏添加量在10%~30%明显促进了堆料温度的快速上升和高温时间,增加堆肥的发酵强度。当磷石膏的添加量超过20%以后,随着磷石膏添加量的增加,堆肥持续高温期的时间有明显减少。添加40%磷石膏处理稀释效应太明显,堆肥结束以后,堆肥的总有机碳的绝对含量较低,导致堆肥产物的有机质含量(34.3%)不达标。添加磷石膏可以提高堆体的种子发芽指数,到堆肥结束时,CK、P10、P20、P30和P40的种子发芽指数分别为65.43%、86.54%、97.52%、81.35%和71.40%。但P40处理到堆肥结束时,水溶性铵态氮含量还高达528.2 mg/kg。与CK处理相比,P10、P20和P30处理的养分含量增加显著,且均符合NY525-2012标准要求。各处理重金属含量均未超过NY525-2012标准的要求,但磷石膏的添加仍有增加堆肥重金属的风险。综合添加磷石膏对堆肥腐熟度的影响和堆肥品质的影响来看,在稻壳为主要原料的堆肥体系中,添加有机物料干质量的30%的磷石膏,是本堆肥体系磷石膏最大的消纳量。  相似文献   

14.
In this study, medlar pruning waste (MPW) was composted with and without cattle manure (CM). Two piles were prepared: one contained only MPW (pile 1) and one contained MPW augmented with CM (pile 2). Both piles were composted in an enclosed composting vessel with passive aeration and aeration by turning. During the composting process, temperature, pH, electrical conductivity (EC), organic matter (OM), OM losses, total organic carbon (Corg), total nitrogen (NT), Corg/NT ratio, and germination index (GI) were measured. Pile 2 produced a faster increase of the temperature and had a longer thermophilic phase than pile 1. However, the rate of OM degradation was faster in pile 1 than in the pile containing CM (pile 2). The addition of CM also resulted in an increased pH and salt content. In both piles, C/N ratio decreased throughout the process, presumably as a result of the faster organic carbon degradation compared to N mineralization. However, only pile 2 had a final C/N ratio <20, the limit accepted for compost by the Spanish legislation on fertilizer. Also, both composts had GI > 50 percent, indicating an absence of phytotoxicity.  相似文献   

15.
The general use of manure compost is limited by its residualtoxicity, and hence a study was performed to evaluate the use ofweathered coal fly ash (lagoon ash) to alleviate the toxicity ofmanure compost. Mature and immature manure compost were amendedwith lagoon ash at 0, 5, 10 and 20% (w/w dry weight basis), andtheir phyto-toxicity was evaluated by germination and root lengthgrowth of lettuce seed. The immature manure compost hadsignificantly higher contents of NH4-N, PO4-P, andacid- and water-extractable Cu and Zn contents than those of mature manure compost. Ash amendment caused asignificant increase in electrical conductivity (EC), but adecrease in NH4-N, PO4-P, and DTPA-, CaCl2- andwater-extractable Cd, Cu, Pb and Zn contents of both manurecompost. Addition of lagoon ash at a rate of 5% for immaturemanure compost and 10% for mature manure compost resulted in ahigher seed germination rate and root length growth. Thegermination index demonstrated significant negative correlationswith EC, NH4-N and DTPA extractable Cd, Cu, Pb and Zncontents. The present study supports the use of lagoon ash foramending manure compost to reduce the availability of traceelements and NH4-N.  相似文献   

16.
发酵床养殖技术也被称为原位堆肥技术,是一种值得推荐的控制畜场粪便排放与污染的生态养殖模式。本研究检测了发酵床的水分、温度和pH值变化以及在连续饲养两批猪后垫料中碳、氮和磷的组成与含量变化情况及其对植物毒性的强弱。结果表明,发酵床使用期间水分为58%-61%,垫料内部温度维持在40-55℃;在连续饲养两批猪后,垫料的pH值升高至8.16,氮、磷含量显著提高,铵态氮、亚硝态氮和硝态氮浓度显著升高,C/N比由养猪前的84∶1下降至31∶1,N/P比由2.8∶1下降至1.26∶1;垫料中的总铜浓度由7mg·kg^-1升高至89mg·kg^-1。以白菜种子作发芽试验考察废弃垫料的植物毒性,其相对发芽率为86.67%,相对根长为132.95%,发芽指数(Germination Index,GI)为115.23%,说明饲养了两批肥猪的发酵床垫料无植物毒性作用,对根的生长有促进作用,可作为有机肥还田。  相似文献   

17.
Disturbed soils might be improved by increasing organic matter content. The objective of this study was to determine if a large application of drying-bed biosolids would improve soil productivity and promote bermudagrass (Cynodon dactylon) and establishment on the Trinity clay soil. Anaerobically digested, air-dried biosolids were applied to Trinity clay (very-fine, montmorillonitic, thermic, typic, pelludert) at rates of 0, 112, 560, and 1120 Mg ha?1. The biosolids were incorporated into the top 15 cm of the soil and bermudagrass sprigs were planted. Biosolids significantly reduced soil bulk density and soil resistance to penetration when measured during the second and third years after the application. Biosolids increased soil concentrations of organic carbon, nutrients (nitrogen, phosphorus, copper, zinc, iron) and heavy metals (cadmium, chromium, nickel, lead). Bermudagrass biomass production and nutrient uptake were increased due to biosolids, but heavy metals were not significantly transferred from soil to above-ground plant tissue.  相似文献   

18.
针对奶牛养殖场粪便含水率高,堆肥处理成本高的特点,采用以干燥玉米秸秆为调理剂,在较高初始含水率条件下(70%~80%),进行了强制通风堆肥槽和翻转式堆肥仓的对比试验,并且探讨了晾晒脱水作为预处理对堆肥效果的影响。结果表明,各处理堆体升温迅速,且均在50℃以上维持8~12d,满足堆肥无害化的卫生标准(GB7959—1987)要求。至堆肥结束时,各处理含水率均降至40%以下,C/N均降至20以下,WSOC均低于16g·kg-1,NH4+-N含量均低于0.4g·kg-1;除采用堆肥槽在初始含水率为65%下堆肥NH4+-N/NO3--N〉3尚未腐熟完全外,其他处理NH4+-N/NO3--N均小于0.5,腐熟情况较好;所有处理的GI均大于50%,其中采用堆肥槽在较高初始含水率堆肥和晾晒预处理后堆肥GI已达80%,基本消除了植物毒性。采用较为开放的堆肥槽时,以玉米秸秆作调理剂,在较高的初始含水率条件下堆肥效果更好;以晾晒脱水作为预处理后堆肥,可减少所需调理剂的用量,节约了堆肥的成本。  相似文献   

19.
The aims of this study were to monitor the changes in physicochemical, including spectroscopic, and biological characteristics during composting of green tea waste–rice bran compost (GRC) and to define parameters suitable for evaluating the stability of GRC. Compost pile temperature reflected the initiation and stabilization of the composting process. The pH, electrical conductivity, NO3 -N content, and carbon-to-nitrogen ratio were measured as chemical properties of the compost. The color (CIELAB variables), humification index (the absorption ratio Q 4/6 = A 472 / A 664 of 0.5 M NaOH extracts), absorption at 665 nm of acetone extracts, and Fourier-transform infrared (FT-IR) spectra were measured to evaluate the organic matter transformation; germination of komatsuna or tomato seeds was measured to assess the potential phytotoxicity of composting materials during composting. No single parameter was capable of giving substantial information on the composting process, the nutrient balance, phytotoxicity, and organic matter decomposition. The FT-IR spectra at 3,300, 2,930, 2,852, and 1,065 cm−1 provided information on the molecular transformation of GRC during composting and they decreased over the composting. Most of the assayed parameters showed no further change after about 90 days of composting suggesting that GRC can be used for agricultural purposes after this period.  相似文献   

20.
碳氮比对鸡粪堆肥腐熟度和臭气排放的影响   总被引:4,自引:2,他引:2  
为确定鸡粪堆肥最优碳氮比(C/N比),该研究以新鲜鸡粪为堆肥原料,添加玉米秸秆调节初始C/N比为14、18和22进行好氧堆肥,研究不同C/N比对鸡粪堆肥腐熟度和臭气排放(NH3和H2S)的影响。结果表明:C/N比为14的处理堆肥产品未腐熟,C/N比为18和22的处理均达到腐熟。C/N比为18的处理NH3累积排放量和总氮(TN)损失率最高;C/N比为18~22时,C/N比越高,NH3累积排放量和TN损失率越低。C/N比为14的处理H2S累积排放量和总硫(TS)损失率最高;C/N比为18和22的两个处理,H2S累积排放量显著降低,且无显著差异。此外,C/N比为18处理的微生物群落多样性在整个堆肥过程中显著高于C/N比为14和22处理。堆肥的理化指标、臭气排放与微生物群落之间的相关性分析表明,高温、高pH和缺氧环境会增加Firmicutes丰度,进而促进NH3和H2S的排放,相反地,低温、低pH和氧气充足的环境更有利于Actinobacteria增殖,有利于减少NH3和H2S的排放。综合考虑堆肥产品腐熟度和臭气减排效果,建议低C/N比鸡粪堆肥的初始C/N比为18~22。当秸秆资源不足时,建议初始C/N比为18;秸秆资源充足时,建议初始C/N比为22。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号