首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
选取稻草、油菜秸秆和食用菌渣作为猪粪堆肥的有机辅料,研究三种堆肥体系中氨气挥发释放规律及其影响因素。结果表明,经过65 d的堆腐,稻草-猪粪、油菜秸秆-猪粪和菌渣-猪粪堆肥氨气挥发量分别为5.084、6.483和3.013 g/kg,是对照(纯猪粪)处理(7.836g/kg)的64.88%、82.74%和38.45%。从氨气的释放量和释放速率看,菌渣是一种较好的有机辅料。从氨气释放的时间变化特征看,稻草对猪粪堆肥氨气排放高峰期影响最为明显,主要表现为氨气前期猛烈释放且持续时间短,是猪粪快速腐熟技术优选的高效有机辅料。堆腐完成后,三种有机辅料均能减少水溶性NH4+-N的累积,增加水溶性NO3--N的含量,引起pH和EC值下降,提高堆肥全氮含量,促进堆肥有机物和粗纤维的降解,且以稻草和菌渣处理效果最为显著。  相似文献   

2.
Four studies explored the feasibility of year-round composting of lamb and mature sheep mortalities within the arid climate of the Canadian prairies. In all studies, a ratio of 2:1:1 (manure : mortalities : chopped straw) was maintained, although depth of the mortality layer within the bin, number of layers of mortalities per bin, age of animal (lamb or mature sheep) and time of year (summer or winter) were varied. Composting neonatal lambs in the spring/summer was successful whether a single layer (n=15 lambs, weight 99.7 kg) or two, separated layers of mortalities (n=41 lambs, weight 198 kg) were added to a 2.4 m3 open bin. Residual bone, wool and soft tissues were negligible after the lamb compost had completed one heating cycle. In contrast, composting mature sheep in the fall/winter was more difficult due to: (1) over wet manure (31% dry matter) resulting in continuous anaerobic decomposition of carcasses; (2) fat/grease accumulation when composting a layer of carcasses 71 cm in depth (weight of sheep 1020 kg). For mature sheep mortalities, 2 heating cycles were required to eliminate soft tissues and wool. As compost in all studies heated in excess of 60°C in the primary and/or secondary bin, bacterial isolates taken after the compost completed the secondary heating cycle were all innocuous species. Provided that compost is protected from excessive moisture and compost is aerated by turning into a secondary bin, a 2:1:1 (manure:mortalities:straw) ratio allowed for year-round composting of lamb and mature sheep mortalities.  相似文献   

3.
In-house composting involves treating manure where it accumulates on the floor of high-rise, caged layer facilities. This process produces a partially composted material and can aid in house fly (Musca domestica L.) control by generating temperatures in the thermophilic range (≥43°C). Two trials were conducted to determine the effect of material volume and the use of previously composted material (starter) or wheat (Triticum aestivum L.) straw as bulking agents on compost temperatures and material properties. In Trial 1, starter combined with wheat straw or wheat straw alone were added to separate quadrants in a layer building, formed into windrows, and turned biweekly. Temperatures were consistently higher with the starter treatment, but both treatments followed a distinct pattern where temperatures peaked on the day of turning and declined rapidly thereafter. The starter treatment had higher initial volume (0.19 m3 m?1 row) than straw alone (0.13 m3 m?1 row), and maintained proportionately higher volumes throughout the trial. Volume in both treatments increased linearly with time and was correlated with peak compost temperature on the day of turning. Regression analysis indicated that a critical volume of 0.18 m3 m?1 row was required to consistently achieve compost temperatures ≥43°C. In a second trial, starter alone was compared to wheat straw at two rates. Volumes for all treatments initially ranged from 0.20 to 0.28 m3 m?1 row and increased linearly throughout the trial. Temperatures consistently exceeded 43°C on the day of turning. Analysis of the materials from both trials indicated that starter or straw had little effect on %moisture, %carbon, %nitrogen, or carbon:nitrogen ratio of composting materials beyond the first week after windrow establishment. These results indicate that material volume is more important than the use of starter or straw materials as bulking agents to achieve in-house composting temperatures ≥ 43°C.  相似文献   

4.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

5.
沸石作为添加剂对鸡粪高温堆肥氨挥发的影响   总被引:17,自引:4,他引:13  
为分析沸石作为添加剂对畜禽粪便高温堆肥氨挥发的影响,以鸡粪和玉米秸秆为试验材料进行野外好氧堆制试验,监测堆肥过程中氨挥发及其影响因素的动态变化。结果表明:一定比例的沸石添加剂在堆肥起始2周内对抑制堆体氨挥发效果明显,氨挥发速率显著低于对照,堆肥至第12天,添加沸石处理累积氨挥发与对照相比减少44.2%;堆肥7周内,添加沸石处理累积减少氨挥发损失达26.9%;沸石添加剂主要通过吸附高温堆肥过程中过量的铵态氮达到减少氨挥发的效果;从温度、电导率等指标来看,沸石添加剂促进了高温发酵过程的进行,一定程度上有利于提高堆肥品质。  相似文献   

6.
As interest in food waste composting grows, so does the need for proven composting methods. Stability testing has been proposed as a compost quality assurance tool. We conducted this study to: (i) to evaluate the efficacy of simple outdoor composting methods in producing a compost with a low, stable decomposition rate, and (ii) to determine the reliability of simple, 4-h compost stability evaluation methods. Composting was conducted outdoors in winter and spring in Eugene, Oregon without moisture addition. Mixed food waste was combined with screened dairy solids and ground yard trimmings. Sawdust was used to cover windrows for the first 27 d of composting. Compost windrow temperatures remained above 55°C for 30+ d. Carbon dioxide evolved with several 4-h test methods was strongly correlated (r2 > 0.7) with CO2 evolved using a 48-h test. A limited-turn windrow (LTW) composting system produced compost with slightly greater stability than a passively aerated windrow (PAW) composting system. Food waste compost samples had a low CO2 evolution rate after 71 to 99 d using either composting system. Compost CO2 evolution rate at 25°C decreased with composting time, reaching approximately 1 to 4 mg CO2-C g compost C?1 d?1 for the PAW method and 0.5 to 2 mg CO2-C g compost C?1 d?1 for the LTW method. Putrescible organic matter in food waste was effectively decomposed in outdoor windrows using composting methods that did not employ forced aeration, self-propelled windrow turners, or manufactured composting vessels. Several 4-h stability tests showed promise for implementation as quality assurance tools.  相似文献   

7.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   

8.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

9.
不同覆盖措施对鸡粪堆肥氨挥发的影响   总被引:7,自引:1,他引:7  
采用箱式抽气法对不同鸡粪堆肥体系中氨气挥发释放速率及其影响因素进行了研究.结果表明,鸡粪堆肥的氨挥发强度在堆置后20d内最大.氨挥发速率最高达到0.28 g/(kg·h),覆盖粘土能有效抑制堆体的氨挥发.覆盖处理中铵态氮有累积的现象,铵态氮浓度最高达到6.68 g/kg,导致其pH值和电导率显著高于不覆盖处理.从全氮含量的变化来看,覆盖秸秆和篷布处理的氮素损失率分别为21-79%和19.78%,是对照处理的73.71%和66.91%,表现出良好的保氮效果.  相似文献   

10.
The goal of this experiment was to investigate the effect of aeration quantity (0, 11, 33, 55, and 77 L·min?1) on the growth of aerated compost extracts from a pig manure–straw compost. When the aeration quantity was 11 L·min?1, lettuce root growth enhancement of normalized compost extracts was at a maximum. As the aeration quantity increased, the total water-soluble organic carbon (TWSOC), total nitrogen (TN), total phosphorus (TP), humic carbon (humic C) content, and humification degree of compost extracts improved gradually. No differences in functional group structure were found among the aerated compost extracts. The positive root growth could be attributed to physicochemical and spectral characteristics, such as TN content, humic substances content, humification, aromaticity, and the low content of carboxyl groups. In conclusion, the aeration quantity of 11 L·min?1 was suitable for the production of aerated compost extracts, which obtained much greater promotion growth.  相似文献   

11.
牛粪堆肥方式对温室气体和氨气排放的影响   总被引:8,自引:1,他引:7  
为明确堆肥过程中温室气体和氨气排放规律以及产生的总温室效应,在云南省大理州开展堆肥试验,并以奶牛粪便为试验材料,研究了农民堆肥(FC)、覆盖堆肥(CC)、覆盖-翻堆堆肥(CTC)和覆盖通风-翻堆堆肥(CATC)4种堆肥方式对温室气体和氨气排放的影响。结果表明:覆盖通风-翻堆堆肥(CATC)可提高堆肥腐熟度,有效降低CH4和N_2O排放,但并没降低CO2和NH_3排放;与农民堆肥(FC)相比,覆盖堆肥(CC)的CH4排放量增加了48.7%,而N2_O和NH3排放量与农民堆肥(FC)基本一致;覆盖-翻堆堆肥(CTC)虽然提高了腐熟度,但CH_4、CO_2和NH_3排放量较大;堆肥结束时,4个处理的总温室效应分别为25.6、32.9、38.1及18.0 kg/t;温度与CH_4、CO_2、N_2O和NH_3排放速率均极显著相关,pH值显著影响N_2O和NH_3的排放。因此,覆盖通风-翻堆堆肥(CATC)不仅能够满足堆肥产品的腐熟度要求,而且能够减少总温室效应,再加上其操作简便,能够在生产中推广应用。  相似文献   

12.
The occurrence of bovine spongiform encephalopathy (BSE) in Canada has resulted in the implementation of regulations to remove specified risk material (SRM) from the food chain. SRM includes the distal ileum of all cattle, and the skull, brain, trigeminal ganglia, eyes, palatine tonsils, and spinal cord and dorsal root ganglia of cattle ≥30 months of age. Composting may be a viable alternative to rendering for SRM disposal. In our study, two bulking agents, barley straw and wood shavings, were composted with beef manure along with SRM in passively aerated, laboratory-scale composters. Both composts heated rapidly, exceeding 55°C after 3 days with oxygen declining in the early composting stage with wood-shaving compost, but returning to near-original levels after 5 days. During composting the two matrices differed (P <0.05) only in water content, TC and bulk density. In the final compost, water content, TC and C/N ratio were higher (P < 0.05), while EC was lower (P < 0.05) in the wood shavings as compared to the straw compost. Approximately 50% of SRM was decomposed after 15 days of composting, with 30% of SRM being decomposed within the first 5 days. Phospholipid fatty acid (PLFA) profiles were used to characterize the microbial communities and showed that Gram positive bacteria were predominant in compost at day 5, a point that coincided with a rapid increase in temperature. Gram negative bacteria and anaerobes declined at day 5 but populations recovered by day 15. Fungi appeared to be suppressed as temperatures exceeded 55°C and did not appear to recover over the remainder of the composting period, with the exception of the straw compost at day 15. On day 5, Actinomycetes increased in the straw compost, but declined in the wood shavings compost, with this group increasing in both types of compost at day 15. Although temporal changes were evident, compost matrices or depth within the composter did not obviously influence microbial communities. Decomposition of SRM also did not differ between compost matrices or with depth in the composters. These results suggest that SRM decompose rapidly during composting and that both mesophilic and thermophilic microbial communities play a role in its decomposition.  相似文献   

13.
Four bulking agents, pine shavings, mixed (long and chopped) grass hay, chopped grass hay and long (whole) wheat straw, were each mixed with pig slurry and tap water to obtain three moisture contents (MC) of 60, 65 and 70%. Quadruplets of each treatment were placed in laboratory composting vessels with a capacity of 105 l and a composting depth of 0·95 m. Using the air plenum at the bottom of each vessel, air was forced at apparent velocities of 0–0·002 m s−1 through each compost mass to measure the air static pressure drop across the compost mass as a function of apparent air velocity. Airflow resistance values were measured for compost depths ranging from 0·55 to 0·85 m. Following this test, all mixtures were aerated for 21 days of composting without overturning. The static pressure measurement procedure was then repeated on all quadruplet mixtures.The air static pressure drop was found with respect to a packed bed under laminar flow, defined using the particle size distribution, porosity, depth and airflow channel characteristics of the compost material. Although MC affected the value of the airflow channel characteristics of the compost material, both the hay and straw demonstrated similar values, while shavings demonstrated values more variable and wider values for MC between 60 and 70%.There was a significant increase in airflow resistance after 21 days of composting, which supports the need for compost overturning to reestablish the material's structure and to restore the airflow channels or pores.  相似文献   

14.
Composting broiler litter (a mixture of manure, bedding material, and wasted feed) with commonly available high-C substrates may be a viable alternative to reduce current land disposal practices for litter. Broiler litter with wood shavings as a bedding material and broiler litter with peanut hulls as a bedding material were composted with wheat straw, peanut hulls, pine bark and paper mill sludge in 0.33 m3 batch reactors. Litters and C substrates were mixed to achieve C:N ratios of approximately 30:1. Dry weight, total N, total C, temperature, electrical conductivity and pH were determined at regular intervals. Maximum temperatures peaked near 70°C within 2.25 d after mixing peanut hulls with litter and within 2.58 d for pine bark and litter. Composts made from paper mill sludge approached 50°C within 3.71 d. Wheat straw composts never exceeded 40°C which could present potential health problems associated with pathogenic microorganisms. Mass loss and C:N ratio gradually declined and stabilized approximately 84 d after mixing. Mass loss averaged 73 percent for wheat straw compost, 33 percent for peanut hull composts, and 16 percent for the other mixes. Wheat straw compost C:N ratios stabilized near 14:1 and other mixes remained above 20:1, indicating N limited conditions for complete composting. Compost pH was 5.8 after 84 d from pine bark composted with wood shaving litter and was significantly lower than pH from paper mill sludge compost with an average pH of 6.9 but similar to all other compost mixes (pH 6.7). Electrical conductivity ranged from 0.35 S m?1 for paper mill sludge composted with wood shaving litter to 0.91 S m?1 from wheat straw composted with peanut hull litter. Composting temperature varied considerably among C sources and all required at least 72 d of curing to stabilize the C:N ratio. Composts made from wheat straw were most effective for waste reduction but temperatures were below the 50°C level generally considered necessary to kill pathogens.  相似文献   

15.
Woody peat was used as an additive to compost with pig manure in 1.2 m3 composting reactors under aerobic conditions for a 77?days period to estimate the effect on the compost maturity and gaseous emissions (NH3, N2O, and CH4). Pig manure was also composted with cornstalks (the traditional method) as a control treatment. The results showed that both cornstalks and woody peat composts reached the required maturity standard. Composting with woody peat as a bulking agent was found to reduced NH3 emissions by 36% than the cornstalks amended treatment. Although CH4 emission increased by adding woody peat, N2O emission was considerably reduced, resulting in a slight decrease in total greenhouse gas emissions. More importantly, woody peat could reduce the losses of total carbon and total nitrogen, improve the compost quality as fertilizer.  相似文献   

16.
Abstract

Long-term temporal changes in natural 15N abundance (δ15N value) in paddy soils from long-term field experiments with livestock manure and rice straw composts, and in the composts used for the experiments, were investigated. These field experiments using livestock manure and rice straw composts had been conducted since 1973 and 1968, respectively. In both experiments, control plots to which no compost had been applied were also maintained. The δ15N values of livestock manure compost reflected the composting method. Composting period had no significant effect on the δ15N value of rice straw compost. The δ15N values increased in soils to which livestock manure compost was successively applied, and tended to decrease in soils without compost. In soils to which rice straw compost was successively applied, the δ15N values of the soils remained constant. Conversely, δ15N values in soils without rice straw compost decreased. The downward trend in δ15N values observed in soils to which compost and chemical N fertilizer were not applied could be attributed to the natural input of N, which had a lower δ15N value than the soils. Thus, the transition of the δ15N values in soils observed in long-term paddy field experiments indicated that the δ15N values of paddy soils could be affected by natural N input in addition to extraneous N that was applied in the form of chemical N fertilizers and organic materials.  相似文献   

17.
The application of manure compost is an effective way to increase soybean [Glycine max (L.) Merr.] yield and nitrogen (N) fertility in drained paddy fields. We investigated changes in soil N mineralization during soybean cultivation using reaction kinetics analysis to determine the contribution of increased N mineralization after manure compost application (at a rate of 0 to 6?kg?m?2) on N accumulation and seed yield of soybean under drained paddy field conditions. The seed yield and N accumulation decreased markedly in the second and third year of the experiment, but soil N mineralization increased in both years. No decrease in soil N mineralization occurred even after two soybean crops. Soil N availability was not the main cause of decreased soybean yield in the second and third years. The differences in plant aboveground N content between plots with and without manure compost was similar to the increase in N mineralization caused by manure compost application in the second and third years. The application of 6?kg?m?2 of manure compost increased the amount of ureide-N and nitrate-N in soybean in the third year. Our results suggest that manure compost application increases soil N mineralization and soybean N2 fixation, resulting in increased N accumulation and seed yield. However, the soybean yield remained less than 300?g?m?2 in the second and third years (i.e., below the yield in the first year) at all levels of manure compost application due to the remarkable decrease of N accumulation in the second and the third crops.  相似文献   

18.
针对奶牛养殖场粪便含水率高,堆肥处理成本高的特点,采用以干燥玉米秸秆为调理剂,在较高初始含水率条件下(70%~80%),进行了强制通风堆肥槽和翻转式堆肥仓的对比试验,并且探讨了晾晒脱水作为预处理对堆肥效果的影响。结果表明,各处理堆体升温迅速,且均在50℃以上维持8~12d,满足堆肥无害化的卫生标准(GB7959—1987)要求。至堆肥结束时,各处理含水率均降至40%以下,C/N均降至20以下,WSOC均低于16g·kg-1,NH4+-N含量均低于0.4g·kg-1;除采用堆肥槽在初始含水率为65%下堆肥NH4+-N/NO3--N〉3尚未腐熟完全外,其他处理NH4+-N/NO3--N均小于0.5,腐熟情况较好;所有处理的GI均大于50%,其中采用堆肥槽在较高初始含水率堆肥和晾晒预处理后堆肥GI已达80%,基本消除了植物毒性。采用较为开放的堆肥槽时,以玉米秸秆作调理剂,在较高的初始含水率条件下堆肥效果更好;以晾晒脱水作为预处理后堆肥,可减少所需调理剂的用量,节约了堆肥的成本。  相似文献   

19.
Swine manure and wood shavings used as a drying bed were removed from a High-Rise? hog facility following two production cycles. The manure was composted in aerated pilot-scale vessels for four weeks or a mechanically turned windrow for ten weeks. Total dry matter losses during the pilot-scale studies were 30 and 32.5 % for continuously and intermittently aerated systems, respectively. Compost from both systems was stable with emission rates of 0.07-0.11 mgCO2 h?1 gvs?1. Moisture, O2, CO2 and NH3 use/losses during the process as well as chemical properties of the initial and composted manure are presented. Incorporation of the compost at a 5% amendment rate (v/v) into a standard pine bark container medium significantly (P = 0.05) increased growth of two woody plant species. Higher amendment rates were toxic to some plants due to high initial NH4+ concentrations in the medium. The compost significantly (P=0.05) increased growth and suppressed Pythium root rot of poinsettia when incorporated at 10% (v/v) into a standard sphagnum peat mix. The compost can be utilized as a value-added disease-suppressive product in the ornamentals industry.  相似文献   

20.
Abstract

The present study investigated the nitrogen balance in swine manure composting to evaluate the effect of nitrite (NO? 2) accumulation, which induces nitrogenous emissions, such as N2O, during compost maturation. During active composting, most N losses result from NH3 emission, which was 9.5% of the initial total nitrogen (TNinitial), after which, NO? 2 began to accumulate as only ammonia-oxidizing bacteria proliferated. After active composting, the addition of mature swine compost (MSC), including nitrite-oxidizing bacteria (NOB), could prevent NO? 2 accumulation and reduce N2O emission by 70% compared with the control in which NO? 2 accumulated as a result of delayed growth of indigenous NOB. Total N2O emissions in the control and in the treatment of MSC addition (MA) were 9.3% and 3.0% of TNinitial, respectively, whereas N losses as the sum total of NH3 and N2O over the whole period were 19.0% (control) and 12.8% (MA) of TNinitial, respectively. However, the difference in total N losses was markedly greater than that measured as NH3 and N2O, which were 27.8% (control) and 13.3% (MA) of TNinitial, respectively. These results demonstrated that the magnitude of nitrogen losses induced by NO? 2 accumulation is too large to ignore in the composting of swine manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号