首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to evaluate a variety of stability and maturity indices for yard trimmings compost produced in the Puget Sound region of western Washington State. Compost samples were collected periodically during a 133-d composting cycle at a commercial composting facility, showing that indices of compost respiration rate were sensitive indicators of compost quality. All respiration rate indices identified a period of high respiration rates during active composting (first 27 d), and a period of relatively stable respiration rates during the latter part of curing (70 to 133 d). Chemical tests of compost solids showed less promise as maturity indicators, but provided valuable information on final compost quality. Mature yard trimmings compost had a C:N of 12, an NH4-N to NO3-N ratio of less than 4, a cation exchange capacity (CEC) of 400 cmol per kg of compost-C, and a pH between 6.5 and Seed germination tests and sensory tests (color and odor) were of limited value in assessing compost maturity. Fully-cured compost produced with forced aeration had a Solvita CO2 test value of 6 to 7 and a respiration rate via the alkaline trap method of 2 mg CO2-C g compost-C?1 d?1. It reheated less than 2°C in an insulated Dewar flask in a 7 d incubation. Further evaluation and calibration of respiration test protocols for compost quality assurance testing programs are recommended.  相似文献   

2.
秸秆对猪粪静态兼性堆肥无害化和腐熟度的影响   总被引:2,自引:2,他引:0  
为促进猪粪静态兼性堆肥产品无害化和腐熟,通过添加玉米秸秆调控堆体物理结构特性和碳氮比,采用传统自然发酵方式进行为期90d的静态兼性堆肥试验,分别设置纯猪粪处理(P)和秸秆调控处理(PC)研究静态兼性堆肥过程腐熟度指标、粪大肠菌群以及微生物群落结构演变特征。结果表明,秸秆调控增加了堆体孔隙率(提高19.41%),促进氧气向堆体内部扩散,增强了好氧微生物对有机质的降解,降低NH4+-N,可溶性有机氮(dissolved total nitrogen, DTN)等植物毒性物质含量,提升了堆肥腐熟度,两组处理堆肥产品种子发芽指数分别为40.84%(P)和114.60%(PC)。静态兼性堆肥经过30~40 d自然发酵后,粪大肠菌群数量达到卫生安全标准,堆体温度、NH4+-N和有机酸含量均会影响粪大肠杆菌的活性。堆体中微生物以厚壁菌门、放线菌门、变形菌门等与木质纤维素降解相关的菌门为优势菌门,堆体自上而下由好氧菌属演替为厌氧菌属,并形成好氧、兼性、厌氧的微生物分层。秸秆调控增加了堆体的好氧区域,促进和提高了猪粪...  相似文献   

3.
Cocomposting of poultry litter with municipal solid waste compost (MSW) was evaluated as a means to stabilize nitrogen and phosphorus in poultry litter and to produce a stable organic soil amendment. Four passively aerated compost piles were established by mixing fixed weight ratios of MSW and composted poultry litter (21:1, 6:1, 3:1, 1:1); moisture was adjusted to 50 percent by weight at pile establishment. These ratios represented a range of initial C:N (26-12) and C:P (150-50) ratios. Composting process parameters monitored over eight months included temperature, oxygen and moisture contents, pH, electrical conductivity, C:N:P ratios, microbial respiration and diversity. Initial feedstock ratios had no significant effect on temperature in the thermophilic phase of composting. After one year of composting, microbial respiration in 21:1 and 6:1 mixtures was high relative to 3:1 and 1:1 mixtures suggesting slow maturation in piles with high MSW content. Salmonella sp. and coliform organisms were detectable for up to 47 days. Results suggest that MSW has potential as a carbon feedstock for poultry litter composting when used in moderate amounts.  相似文献   

4.
Total phosphorus, water-soluble phosphorus and total nitrogen concentrations in cocomposted yard trimmings and broiler litter were quantified in a 2 m wide × 1 m deep × 55 m long channel composter using batch mixing. The batch mixing occurred by using a rotor tiller type turner mounted on rails for the length of the composting channel. Phosphorus and nitrogen concentrations of the compost were measured as they varied with treatment and time during a 63 day compost process followed by a 30 day curing time. The treatments contained a single mix of 50% yard trimmings, 50% poultry litter, by volume, using four aeration and turning treatments. The first treatment was a control, which received no turning or aeration unless the moisture content dropped to 40% and additional water was added to bring the mix up to 50-55% moisture, mix consolidation was required, or mixing to obtain accurate samples and moisture contents, as necessary. Both treatments two and three were aerated by negative pressure ventilation. Treatment two was turned only when the moisture content dropped to 40% and additional water was added to bring the mix up to 50-55% moisture while treatment three was turned every two weeks or sooner if the moisture content approached 40% and additional water was added to bring the mix moisture up to 50-55%. Treatment four was not provided aeration but was turned, on a daily basis and additional water added as necessary, when the moisture content dropped to 40%, to bring the mix moisture up to 50-55%. Total phosphorus increased during the compost process while water-soluble phosphorus decreased during the 63-day active composting cycle from a high of slightly more than 1600 mg P/kg to a low of slightly less than 100 mg P/kg. Once the blowers were turned off and the mixes were no longer turned, soluble phosphorus concentrations were similar for all four treatments. However, after the 93 day cycle was complete, treatment one had almost twice the water-soluble phosphorus concentration as found in treatments two, three, and four. Total nitrogen increased during the final 30 days of the process for all four treatments. The increase was between 0.1 and 10 percent. No logical cause and effect has been established and this difference is believed to be random.  相似文献   

5.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

6.
Soil management practices that contribute to increased soil productivity and longterm sustainable agricultural production have been neglected over the last four decades. The need to increase soil productivity led to the evaluation of a system of disposing of large quantities of organic by-products and poultry litter on agricultural land. Our objectives were to evaluate the effects of applying noncomposted municipal solid waste (MSW), amended with either poultry litter (PL) or NH4NO3 to adjust C:N ratios in the soil surface in either the spring or fall. Changes in soil chemical properties, bacteria population shifts, changes in species richness and evenness of indigenous soil bacteria, and response by cotton (Gossypium hirsutum L.) were evaluated. Soil P, K, Ca, and Mg were increased in the surface 0–15 cm by a factor of three or four times by application of organic by-products. After two annual applications, soil Cu increased slightly, Zn doubled, Co and Cr decreased, while Pb increased by a factor of two. Soil organic matter content increased on average by 89 percent for treatments containing newsprint, yard trimmings, and cotton gin trash. Newsprint plus NH4NO3 resulted in a shift to more Gram positive bacteria, while newsprint plus poultry litter resulted in a shift to more Gram negative bacteria. Both N sources resulted in a reduction in Bacillus sp. Shifts in the bacterial populations and changes in species richness (number of species detected) and evenness (relative abundance of each species) were induced by organic by-product additions. These shifts appear to be the result of increased substrate for C mineralization rather than any properties of biological control. Shifts in the microbial community structure towards Gram negative organisms may benefit plant growth and may be useful as an indicator of soil quality.  相似文献   

7.
This research determined whether addition of β-cyclodextrin (β-CD; 0, 0.15, or 0.25%) improved the two-stage composting of green waste (GW). The following parameters were measured during composting or in the final product: moisture content; volume; biochemical and chemical oxygen demand; humic substances; C/Nsolid and C/Nsoluble; microbial numbers (culturable bacteria, actinomycetes, and fungi); enzyme activities (pectinase and xylanase); microbial biomass carbon and nitrogen; degradation of organic components; contents of phosphorus (available and total), potassium, sodium, calcium, and magnesium; and toxicity to germinating seeds. The two-stage composting of GW was optimal with the addition of 0.15% β-CD. A mature and stable compost was obtained in only 28?days with the optimized two-stage composting rather than in the 90–270?days typically required for traditional composting.  相似文献   

8.
The effects of seven manufactured commercially available activators were evaluated for their efficiency in the composting of yard trimmings (grass clippings/wood chip mixture). Two naturally available additives, and a control (absence of activator) were also evaluated. Four measures of composting efficiency were used to compare the overall decomposition response for each activator: weight loss, volume reduction, volatile solids decrease, and oxygen uptake rate. Four experimental blocks were set up in the field, and two experimental blocks were set up in the laboratory. The physical/chemical characteristics of the compost material were monitored as a function of time for each additive. Interrelationships between measures of composting efficiency were also evaluated. Results showed that grass clippings can be composted as efficiently with naturally available materials such as topsoil or mature compost, as with commercially available compost activators, or an unactivated control. The cost of commercially available activators was $1.37 to $9.36 per cubic yard of compostable grass clippings. Naturally available materials such as topsoil and mature compost are available in needed quantities at no cost to backyard composters.  相似文献   

9.
As interest in food waste composting grows, so does the need for proven composting methods. Stability testing has been proposed as a compost quality assurance tool. We conducted this study to: (i) to evaluate the efficacy of simple outdoor composting methods in producing a compost with a low, stable decomposition rate, and (ii) to determine the reliability of simple, 4-h compost stability evaluation methods. Composting was conducted outdoors in winter and spring in Eugene, Oregon without moisture addition. Mixed food waste was combined with screened dairy solids and ground yard trimmings. Sawdust was used to cover windrows for the first 27 d of composting. Compost windrow temperatures remained above 55°C for 30+ d. Carbon dioxide evolved with several 4-h test methods was strongly correlated (r2 > 0.7) with CO2 evolved using a 48-h test. A limited-turn windrow (LTW) composting system produced compost with slightly greater stability than a passively aerated windrow (PAW) composting system. Food waste compost samples had a low CO2 evolution rate after 71 to 99 d using either composting system. Compost CO2 evolution rate at 25°C decreased with composting time, reaching approximately 1 to 4 mg CO2-C g compost C?1 d?1 for the PAW method and 0.5 to 2 mg CO2-C g compost C?1 d?1 for the LTW method. Putrescible organic matter in food waste was effectively decomposed in outdoor windrows using composting methods that did not employ forced aeration, self-propelled windrow turners, or manufactured composting vessels. Several 4-h stability tests showed promise for implementation as quality assurance tools.  相似文献   

10.
Because of proposed bans on the landfilling and incineration of leaves, grass and brush, large-scale composting is fast becoming the primary disposal option for yard trimmings in many states. Few systematic studies have been done to compare the effects of turning regime, feedstock mix ratio, or windrow vs. pile configuration on composting and the characteristics of finished compost. In this study, various ratios of leaves, grass and brush were mixed and composted in two series of windrows; and one set of static piles. One windrow series (#1) was turned seven times every four weeks, while the other windrow series (#2), and the piles, were turned once every four weeks. The effects of the different treatments were examined by measuring compost temperature, oxygen concentration, pH, organic matter and moisture content, volatile fatty acid content, bulk density, stability, humification and seed germination indices, total and available nutrient levels, and particle size distribution. Results showed that turning frequency had little impact on oxygen concentrations, VFA content and temperatures during the composting of yard trimmings in windrows, however, in piles temperatures were substantially higher and oxygen concentrations fluctuated greatly. The composts from all the treatments were stable, (oxygen uptake rates < 0.1 mg O2/g OM/hr) after 60 days of composting regardless of the turning frequency, mix ratio or configuration. The bulk density inereased much more rapidly in frequently turned windrows than in the other treatments and particle sizes were smaller in these windrows. In most respects however, the final composts (day 136) were remarkably similar and none inhibited Cress seed germination or root elongation. The pH of all the composts, and the soluble salts and nitrate levels in composts made with high levels of grass, exceeded guidelines for greenhouse growth media.  相似文献   

11.
This paper discusses compost production yields as a percent of raw product mix using poultry litter, poultry processing plant dissolved air flotation skimmings, sawdust, wood chips and ground yard debris. Three different mixes were used and identified as Mixes 1, 2 and 3. Mixes 1 and 2 were produced using windrows and a windrow turner and Mix 3 was made using a covered in-channel compost turner. Mixes 1 and 2 were poultry litter compost with a screened mass yield of 80 and 77 percent, respectively. Mix 3 was a dissolved air flotation compost with a screened mass yield of 40 percent. Results from plant experiments show poultry litter compost can be used successfully in potting mixes for poinsettia and chrysanthemum production. A compost produced from dissolved air flotation skimmings, a poultry processing waste, can be used in field corn production but had little influence in the production of soybeans.  相似文献   

12.
Summary Physical, chemical, and population changes among microorganisms in a eucalyptus bark mix were examined during composting. The microbial succession was studied in detail by dilution plating. The CO2 evolution corresponded to high microbial numbers. The pH increased rapidly, from 4 to 7.5, before stabilizing at approximately 6.5. Composting increased the availability of most nutrients. Initially, bacteria and filamentous fungi appeared to be the main decomposing organisms. With time, however, yeasts and actinomycetes increased in numbers. The numbers of spore-forming bacteria (Bacillus spp.) and pseudomonads also increased with time. The compost was initially phytotoxic, but ceased to be so within 76 days.  相似文献   

13.
Alternate technologies of compost manufactured from poultry litter (manure) were studied as a means of producing a value-added product for the landscape and nursery industry. Static pile and turned windrow technologies were investigated on a commercial scale with the composting of nearly 300 tons of material. The major difference between the technologies is the amount of energy and labor required. Static pile systems require less energy but more time than windrow turned systems. There was no process advantage found for passively aerated static piles over static piles but costs of passive aeration for pipes and labor were higher than for static piles. Machine turned windrows completed active temperature production within 100 days while portions of both the static and passively aerated piles continued to actively compost past 300 days. Process operational costs and compost quality were similar among the compost methods studied. Production operational cost is driven by the cost of compost ingredients and accounted for 60 to 70% of the cost in the pilot study. Ingredients were poultry litter, wood chips and sawdust. Screened compost was produced at an operational cost of $30 while unscreened compost could be produced for $20 per ton of compost. A production scheme where poultry litter is static pile composted on farms for later transport to regional processing centers appears feasible. This two-part composting procedure will eliminate the transport of raw litter and improve poultry biosecurity. Most likely, a private compost business would provide the expertise, on-farm compost procedures and operate the regional facility.  相似文献   

14.
Composting inside high-rise, caged layer facilities can produce atmospheric ammonia (NH3) concentrations exceeding standards for human and poultry health. Control measures that reduce NH3 volatilization are necessary for in-house composting to be sustainable. Due to differences specific to in-house composting — low carbon to nitrogen ratios of composting material, continuous manure addition, and frequent turning — it is not known whether NH3 control measures used previously for poultry manure will work. The objectives of this study were to evaluate various amendment and process controls on NH3 produced during simulated in-house composting in the lab, and to evaluate select chemical control measures during composting inside a high-rise layer facility. Ten amendments (aluminum sulfate; chloride salts of aluminum, calcium, magnesium, and potassium; gypsum; sodium bisulfate; zeolite (clinoptilolite); straw; and cellulose) and four process controls (moisture; temperature; turning frequency; and particle size) were evaluated in lab incubations in 1 L vessels wherein samples of poultry manure compost were incubated to simulate composting. Vials of boric acid solution were used to capture NH3 evolved during incubations. With the exception of zeolite and cellulose, all amendments reduced NH3 capture. Low moisture and temperature also reduced NH3 capture, although managing temperature and moisture to achieve low NHg would adversely impact microbial activity and other desired benefits of composting. When evaluated inhouse, aluminum sulfate, calcium chloride and magnesium chloride did not reduce NH evolution from compost measured on three different dates with a gas sensor. Spatial variability along treated segments of windrow apparently masked amendment effects. At the end of a six-week composting cycle, total nitrogen content was higher in compost treated with aluminum sulfate than control or chloride salt treatments. Aluminum sulfate and process controls such as moisture content, carbon source and particle size have potential to reduce NH3 loss from poultry manure composted inside high-rise layer structures. In-house compost management to reduce NH3 volatilization must consider the cost of amendments, effectiveness, and impacts on the composting process.  相似文献   

15.
The capability to determine nitrogen availability of composts is necessary to ensure that such materials will provide sufficient fertilization to the growing crop and cause minimal environmental degradation. A greenhouse study using tall fescue as a bioindicator was used to evaluate nitrogen availability of two biosolids composts, two mixed yard waste-poultry manure composts, and one commercially-processed poultry litter. Five inorganic nitrogen (as NH4NO3-N) treatments applied at 0, 22.5, 45, 67.7, and 90 mg N/kg soil were employed to establish an N calibration curve. Yield, fescue biomass total nitrogen (as total Kjeldahl N (TKN)), and soil TKN and KCl extractable NO3?-N and NH4+-N concentrations of the organically amended treatments were compared to the inorganically fertilized treatments to determine amendment N mineralization rates and N fertilizer equivalent values (NFEV). Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (5%) amended pots. The NFEV of these amendments were 49% and 10%, respectively. Wolf Creek biosolids compost and Huck's Hen Blend yard waste compost immobilized N (?5% and 0.18%, respectively), and had percent NFEV of ?0.66% and 0.19%, respectively. Rivanna biosolids compost immobilized N (?15%), but the NFEV was 30% due to the relatively high inorganic N content in the amendment. Nitrogen mineralization and NFEV were generally greater in amendments with greater total N concentrations and lower C:N values. The total N concentration and C:N values were less reliable variables in predicting N mineralization and percent NFEV when a significant portion of the total N was in the inorganic form. Nitrogen equivalency value and N mineralization for each amendment increased with time of sampling, indicating the potential for early season N insufficiency to plants fertilized with compost due to lack of synchrony between N mineralization and plant N needs.  相似文献   

16.
? The costs of building and operating open windrow municipal yard trimmings composting facilities of different sizes and levels of technical sophistication are analyzed. Per ton costs of composting are found to be competitive with the costs of operating a lined sanitary landfill. Unpaved, minimal tech facilities are considerably cheaper to build and operate than more sophisticated facilities; however, the low quality of the material produced by such facilities may significantly limit the amount of that product that can be marketed (or even given away). Economies of scale clearly favor more sophisticated systems at larger annual volumes. At lower annual volumes, composting systems featuring specialized equipment like compost turners and shredders are not likely to be cost effective.  相似文献   

17.
Enzymatic activity (EA) was explored as a possible tool for composting characterization. Three composts (yard wastes, cotton wastes and a mixture of the two) were sampled during different phases of the process and divided in two fractions. The first was immediately analysed for microbial biomass C (BC) and EAs (β-glucosidase, arylsulphatase, acid and alkaline phosphatase). The second fraction was air-dried prior to analysis for the same EAs and for organic C (CORG), total N (NTOT), dissolved organic C (DOC), extractable C (CE) and humic-like C (CH).BC decreased throughout the composting period (149 days), whereas EA in moist fractions stabilized between 50 (β-glucosidase, alkaline phosphatase) and 90 (arylsulphatase, acid phosphatase) days of composting.EA was always reduced by air‐drying (β-glucosidase: 40-80%; arylsulphatase: 10-50%; acid phosphatase: 10-70%; alkaline phosphatase: 50-90%), but this effect was less prominent as composting proceeded, especially for β-glucosidase and alkaline phosphatase.EA in air-dried samples displayed the same trend as in moist ones, except that there was a marked difference (47-66%) between initial and final activities of all four enzymes.EAs in air‐dried compost and content of humic-like substances showed a similar trend: a marked increase in the first 90 days of the process and no significant variations afterwards. This suggests that the formation of humic-enzymatic complexes has taken place and indicates that this process occurs almost totally during the first stage of composting.EA steadiness in air-dried samples occurred concurrently with the achievement of compost stability, as indicated by the conventional indexes (i.e. CH, CORG/NTOT). Therefore, the development of a stable enzyme activity in air-dried compost could represent a simple measure of compost stabilization in routine analysis of composting process.  相似文献   

18.
A full scale system for composting of fermented, odiferous yardwaste trimmings was developed that produced a stabilized compost, minimized odor generation and prevented leachate formation. Characteristics of the compost highly significantly correlated with composting time included availability of the plant nutrients K, P, Ca and Mg, electrical conductivity, total carbon to nitrogen ratio, cation exchange capacity, stability based on O2 respirometry, and finally, nitrate-nitrogen concentration. Radish was a good indicator of compost maturity. As the compost matured, suppressiveness to Pythium damping-off increased but it remained conducive to Rhizoctonia damping-off.  相似文献   

19.
Growth of Impatiens wallerana Hook.f (impatiens) and Antirrhinum majus L. (snapdragon) was evaluated in media containing 0, 30, 60, or 100 percent compost made from biosolids and yard trimmings. Shoot dry mass, size, and height of both impatiens and snapdragon linearly increased as the percentage of compost in the medium increased. Initial media soluble salt, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations also linearly increased as the percentage of compost in the medium increased. However, final shoot N, P, K, Ca, and Mg concentrations in both impatiens and snapdragon plants were not different among the media examined. Results suggest that impatiens and snapdragons can be successfully grown in 100 percent compost made from biosolids and yard trimmings.  相似文献   

20.
堆肥隧道式后发酵技术及效果   总被引:3,自引:1,他引:2  
该文采用发酵隧道对堆肥进行后发酵处理,并测定发酵过程中的温度、pH值、含氮量、微生物的变化,旨在为集约化生产双孢蘑菇培养料提供理论依据。该技术可以对堆肥进行10 h以上的巴氏灭菌(温度在57~62℃之间)处理和5 d的腐熟处理(温度在45~53℃之间)。处理后发酵堆肥中氮质量分数从1.58%增加至1.85%;pH值从8.7下降到7.5。嗜热细菌的菌落数从5.2×108 cfu/g上升到7.3×108 cfu/g(第3天),发酵结束时降低为2.88×108 cfu/g;放线菌和嗜热真菌菌落数发酵开始时分别为2.4×105 cfu/g 和3.2×104 cfu/g,发酵结束时分别为19.6×105 cfu/g和10.1×104 cfu/g。试验结果表明,经过隧道式后发酵的堆肥适合于双孢蘑菇生长需要,隧道式后发酵技术可以用于规模化生产优质双孢蘑菇培养料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号