首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contamination of food and water by microorganisms from animal manure has become an important issue in public health. Escherichia coli O157:H7 is one of several emerging pathogens of concern. In this research, we studied how the self-heating, thermophilic phase of composting influenced laboratory-grown vs. bovine-derived E. coli O157:H7 mortality, specifically the relationship between temperature, time at temperature, and pathogen survival. Composting experiments were conducted in laboratory-scale bioreactors operated in three temperature ranges: 40°C to 50°C, 50°C to 60°C, and greater than 60°C. We measured the effects of temperature and composting time on E. coli O157:H7 mortality. Laboratory-grown E. coli O157:H7, inoculated into the initial compost material, were not detected after approximately 300 degree days of heating. In several experiments where compost temperatures did not rise above 50°C, an initial decline of E. coli O157:H7 with subsequent regrowth was observed. E. coli O157:H7 in compost materials from infected cattle were not detected after approximately 180 degree days of heating. Numbers of total coliform bacteria declined with temperature similarly to those of E. coli O157: H7. The results of this research provide information for reducing or eliminating E. coli O157:H7 in animal wastes.  相似文献   

2.
Manures lose N through volatilization almost immediately after deposit. Attempts to control losses include the addition of a C source to stimulate nitrogen immobilization. Composting is a treatment process that recommends the addition of carbonaceous materials to achieve a C:N ratio of 30:1 to stimulate degradation and immobilize nitrogen. Dairies near cities may be able to reduce N loss from manures by composting with urban carbonaceous residues such as municipal solid waste (MSW) or MSW compost that, by themselves, have little agronomic value. Studies were conducted using a self-heating laboratory composter where dairy solids were mixed with MSW compost to determine the reduction of N loss during composting. One-to-one mixtures (v/v) of dairy manure solids and MSW compost were composted and NH3 volatilization, CO2 evolution and temperatures were compared to composting of manure alone. Addition of MSW compost resulted in increased CO2 evolution and reduced N loss. Nitrogen loss from composting dairy manure alone was four to ten times greater than that from composting dairy manure mixed with MSW compost. Adjustment of the C:N ratio to 25 by adding MSW compost to manure appeared to be the major factor in reducing N losses.  相似文献   

3.
Compost water extracts (compost teas) are gaining popularity among organic growers, largely because of their disease suppressive activity when applied to foliage or soil. Production methods often include addition of supplemental constituents, particularly molasses, to stimulate plant-beneficial microbial populations. We have found that molasses amendments also favor regrowth of human pathogenic bacteria, raising public health concerns about potential contamination of treated crops, particularly produce intended for fresh consumption. Using disease outbreak strains marked with green fluorescent protein (GFP) and spontaneous antibiotic-resistance, we found that regrowth of Salmonella enterica serovar Thompson and Escherichia coli O157:H7 was positively correlated with molasses concentration. For Salmonella, regrowth was also dependent on the type of starter compost material used. Salmonella populations increased from 1 at time 0 to over 1000 CFU ml?1 in dairy manure compost tea with 1% molasses, and from 1 at time 0 to over 350,000 CFU ml?1 in chicken manure compost tea by 72 h. E. coli populations increased from 1 at time 0 to approximately 1000 CFU ml?1 in both types of tea by 72 h. Pathogen regrowth did not occur when molasses was eliminated or kept to 0.2%.  相似文献   

4.
Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.  相似文献   

5.
Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich manure with compost bed densities of 1100, 700 and 560 kg m?3. Temperature profiles over the reactor height were monitored online and ammonia emissions were measured periodically. The composition of the compost bed over the reactor height was determined at the end of the composting process. The composting process strongly depends on the density of the compost bed. At a density of 1100 kg.m?3, the porosity of the bed is too low to initiate natural convection, and aerobic degradation fails and anaerobic conditions may lead to emissions of methane and odorous compounds. At a density of 560 kg.m?3, the porosity of the bed is high and the high rate of natural convection will keep the temperature low thereby preventing the removal of pathogens and weeds. Best results were observed at a density of 700 kg.m?3 for which aerobic degradation and drying were adequate and temperatures were high enough to kill pathogens and weeds. On basis of the Ergun equation, which describes the airflow in porous media with internal heat generation, this corresponds to a compost bed permeability of 7×10?8 m2. It was also shown that it is possible to compost animal manures with a low C/N ratio without significant emissions of ammonia. This can be established by trapping the initial ammonia emissions in a straw filter, which is placed on top of the compost bed. Ammonia absorbed in the straw filter and in the compost bed were removed by nitrification and denitrification. The passively aerated composting system results in a compost bed which is highly heterogeneous with respect to temperature, oxygen level and its composition. It is proposed that in this way a highly diverse microbial community in the compost bed is established which can perform various microbial conversions. The extensive composting system is most promising for on-farm production of an organic fertilizer from straw-rich manure, since the costs of the process and the level of ammonia emissions were low.  相似文献   

6.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

7.
《Applied soil ecology》2011,47(3):398-404
The inactivation of Escherichia coli O157:H7 (CCUG 44857) and Salmonella enterica serovar Typhimurium was investigated in two agricultural soils (sandy loam and silty clay) amended with poultry manure, cattle manure slurry or human urine. The study was performed in soil lysimeters placed outdoors, and was repeated over two consecutive years. The amendments, inoculated with E. coli O157:H7 and Salmonella Typhimurium, were mixed with soil on the top of the lysimeters. Samples were collected from the top 5-cm layer of each lysimeter at regular intervals, and the inactivation was monitored over 6 months, by the plate spread method and by enrichment. The inactivation was modelled by fitting a non-linear model to the data, and pathogen reduction times were calculated (90 and 99% reduction). The results showed that the inactivation of E. coli O157:H7 and Salmonella Typhimurium varied depending on the manure type used and its carbon content. The longest inactivation time occurred in samples amended with poultry manure, in which both E. coli O157:H7 and Salmonella Typhimurium were detected up to day 90 with the spread plate method. The most rapid inactivation for both pathogens occurred in soil amended with urine. However, low amounts of culturable E. coli O157:H7 and Salmonella Typhimurium were detected by enrichment throughout the study period (180 days), regardless of manure type.  相似文献   

8.
Although most potential human pathogens (PHPs) can be inactivated during composting, the risk that such substrates represent for human health remains largely unknown due to the shortage of information on presence and abundance of PHPs in finished composts. This study focused on the assessment of Salmonella spp., Listeria monocytogenes, Shiga toxin-producing Escherichia coli (STEC), and the opportunistic fungal pathogen Aspergillus fumigatus in different compost commodities. A total of fifteen European composts, made from different waste types and processes, were evaluated for the occurrence of the selected PHPs using molecular and traditional techniques. The analyses were extended to five biochar because of their growing application in agriculture, horticulture, floriculture, and private gardening.

Enteric bacteria were detected by molecular methods in eight out of fifteen composts; however, viable propagules were confirmed for L. monocytogenes only in two composts, and for STEC in three more composts. No bacterial pathogens were found in biochar. Living A. fumigatus was present in eleven composts and two biochars. None of the eighteen isolates contained single nucleotide polymorphisms (SNPs) relevant for resistance to azole fungicides. The role of compost and biochar as a source of PHPs in the environment and the risk for human health is discussed.  相似文献   


9.
碳氮比对鸡粪堆肥腐熟度和臭气排放的影响   总被引:4,自引:2,他引:2  
为确定鸡粪堆肥最优碳氮比(C/N比),该研究以新鲜鸡粪为堆肥原料,添加玉米秸秆调节初始C/N比为14、18和22进行好氧堆肥,研究不同C/N比对鸡粪堆肥腐熟度和臭气排放(NH3和H2S)的影响。结果表明:C/N比为14的处理堆肥产品未腐熟,C/N比为18和22的处理均达到腐熟。C/N比为18的处理NH3累积排放量和总氮(TN)损失率最高;C/N比为18~22时,C/N比越高,NH3累积排放量和TN损失率越低。C/N比为14的处理H2S累积排放量和总硫(TS)损失率最高;C/N比为18和22的两个处理,H2S累积排放量显著降低,且无显著差异。此外,C/N比为18处理的微生物群落多样性在整个堆肥过程中显著高于C/N比为14和22处理。堆肥的理化指标、臭气排放与微生物群落之间的相关性分析表明,高温、高pH和缺氧环境会增加Firmicutes丰度,进而促进NH3和H2S的排放,相反地,低温、低pH和氧气充足的环境更有利于Actinobacteria增殖,有利于减少NH3和H2S的排放。综合考虑堆肥产品腐熟度和臭气减排效果,建议低C/N比鸡粪堆肥的初始C/N比为18~22。当秸秆资源不足时,建议初始C/N比为18;秸秆资源充足时,建议初始C/N比为22。  相似文献   

10.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

11.
  【目的】  研究嗜热复合菌对畜禽粪污堆肥理化特性和腐熟度的影响,探讨嗜热菌影响堆肥过程的微生物机制。  【方法】  堆料由75%羊粪和25%养鸡发酵床垫料构成,初始原料C/N为28,堆料量1.2 t,高度70~90 cm,开放条垛式堆沤。处理组为堆肥添加0.1%嗜热菌B. fordii FJAT-51578和U. thermosphaericus FJAT-51579等比混合的发酵液,对照组为添加1%市售枯草芽孢杆菌堆肥菌剂(Bacillus subtilis)。堆肥时间为2021年9月18日—10月14日,每两天检测1次温度。堆肥前15天,每两天进行一次翻抛,后期每5天进行一次翻抛,保持堆肥含水量50%~60%,直至高温期结束。在堆肥开始后第1、9和26天取堆肥样品,分析氮磷含量、硝化指数和种子发芽指数。结合扩增子测序,分析堆肥细菌群落结构变化,并揭示其主要环境影响因子。采用PICRUSt分析堆肥有效氮和有效磷代谢的微生物机制。  【结果】  嗜热复合菌添加促进堆肥硝化指数的降低和种子发芽指数的升高,促进堆肥腐熟;堆肥产物碱解氮和有效磷的含量分别比市售菌剂组高11.8%和7.7%。同时,嗜热复合菌的添加改变了细菌群落的分布,降低了堆肥细菌的多样性和丰富度,提高了糖单胞菌、链霉菌和嗜热葡萄孢菌等降解菌的丰度。RDA分析表明,pH和C/N是影响堆肥微生物群落多样性的主要因素,碱解氮与芽孢杆菌和糖单胞菌属丰度正相关,有效磷与嗜热裂孢菌、直丝菌属和马杜拉放线菌属丰度正相关。氮、磷代谢相关京都基因和基因组百科全书同源基因(KO)的PICRUSt分析显示,微生物氮磷循环相关KO的丰度随着堆肥进程均有所增加。添加嗜热菌剂提高了氨化、铵同化、硝酸盐同化、同化/异化硝酸盐还原等氮循环相关KO,及无机磷溶解、酸性磷酸酶和碱性磷酸酶等磷循环相关KO。  【结论】  在畜禽粪污堆肥中添加嗜热复合菌剂加快并延长了高温期,降低了C/N,提高了堆肥中碱解氮和有效磷含量,其中C/N、硝化指数和GI指数等指标在堆肥中期达腐熟程度标准,促进堆肥腐熟。堆肥中添加嗜热复合菌剂增加了细菌氮磷代谢相关KO的表达,提高了腐熟中期堆肥中嗜热菌的丰度和种类,碱解氮与芽孢杆菌和糖单胞菌属丰度呈正相关,有效磷与嗜热裂孢菌、直丝菌属和马杜拉放线菌属丰度正相关。因此,添加嗜热复合菌促进了堆肥有效氮磷的含量。  相似文献   

12.
Composting of Miscanthus straw was compared in two different, insulated systems, one constructed from four open boxes and one of four closed reactor vessels. Composting of Miscanthus supplemented with either ammonium sulfate, urea, liquid pig manure or brown sap from grass was studied. Hygienization of composts was evaluated by integrations of heat developments. Mixtures of Miscanthus and ammonium sulfate or liquid pig manure lead to high heat development in beginning of composting period while composting of mixtures of Miscanthus and brown sap or urea progressed later in composting period. The period of high microbial activity during composting may therefore be extended using mixtures of manure and brown sap or ammonium sulfate and urea as nitrogen source.  相似文献   

13.
Cocomposting of poultry litter with municipal solid waste compost (MSW) was evaluated as a means to stabilize nitrogen and phosphorus in poultry litter and to produce a stable organic soil amendment. Four passively aerated compost piles were established by mixing fixed weight ratios of MSW and composted poultry litter (21:1, 6:1, 3:1, 1:1); moisture was adjusted to 50 percent by weight at pile establishment. These ratios represented a range of initial C:N (26-12) and C:P (150-50) ratios. Composting process parameters monitored over eight months included temperature, oxygen and moisture contents, pH, electrical conductivity, C:N:P ratios, microbial respiration and diversity. Initial feedstock ratios had no significant effect on temperature in the thermophilic phase of composting. After one year of composting, microbial respiration in 21:1 and 6:1 mixtures was high relative to 3:1 and 1:1 mixtures suggesting slow maturation in piles with high MSW content. Salmonella sp. and coliform organisms were detectable for up to 47 days. Results suggest that MSW has potential as a carbon feedstock for poultry litter composting when used in moderate amounts.  相似文献   

14.
The occurrence of bovine spongiform encephalopathy (BSE) in Canada has resulted in the implementation of regulations to remove specified risk material (SRM) from the food chain. SRM includes the distal ileum of all cattle, and the skull, brain, trigeminal ganglia, eyes, palatine tonsils, and spinal cord and dorsal root ganglia of cattle ≥30 months of age. Composting may be a viable alternative to rendering for SRM disposal. In our study, two bulking agents, barley straw and wood shavings, were composted with beef manure along with SRM in passively aerated, laboratory-scale composters. Both composts heated rapidly, exceeding 55°C after 3 days with oxygen declining in the early composting stage with wood-shaving compost, but returning to near-original levels after 5 days. During composting the two matrices differed (P <0.05) only in water content, TC and bulk density. In the final compost, water content, TC and C/N ratio were higher (P < 0.05), while EC was lower (P < 0.05) in the wood shavings as compared to the straw compost. Approximately 50% of SRM was decomposed after 15 days of composting, with 30% of SRM being decomposed within the first 5 days. Phospholipid fatty acid (PLFA) profiles were used to characterize the microbial communities and showed that Gram positive bacteria were predominant in compost at day 5, a point that coincided with a rapid increase in temperature. Gram negative bacteria and anaerobes declined at day 5 but populations recovered by day 15. Fungi appeared to be suppressed as temperatures exceeded 55°C and did not appear to recover over the remainder of the composting period, with the exception of the straw compost at day 15. On day 5, Actinomycetes increased in the straw compost, but declined in the wood shavings compost, with this group increasing in both types of compost at day 15. Although temporal changes were evident, compost matrices or depth within the composter did not obviously influence microbial communities. Decomposition of SRM also did not differ between compost matrices or with depth in the composters. These results suggest that SRM decompose rapidly during composting and that both mesophilic and thermophilic microbial communities play a role in its decomposition.  相似文献   

15.
秸秆对猪粪静态兼性堆肥无害化和腐熟度的影响   总被引:2,自引:2,他引:0  
为促进猪粪静态兼性堆肥产品无害化和腐熟,通过添加玉米秸秆调控堆体物理结构特性和碳氮比,采用传统自然发酵方式进行为期90d的静态兼性堆肥试验,分别设置纯猪粪处理(P)和秸秆调控处理(PC)研究静态兼性堆肥过程腐熟度指标、粪大肠菌群以及微生物群落结构演变特征。结果表明,秸秆调控增加了堆体孔隙率(提高19.41%),促进氧气向堆体内部扩散,增强了好氧微生物对有机质的降解,降低NH4+-N,可溶性有机氮(dissolved total nitrogen, DTN)等植物毒性物质含量,提升了堆肥腐熟度,两组处理堆肥产品种子发芽指数分别为40.84%(P)和114.60%(PC)。静态兼性堆肥经过30~40 d自然发酵后,粪大肠菌群数量达到卫生安全标准,堆体温度、NH4+-N和有机酸含量均会影响粪大肠杆菌的活性。堆体中微生物以厚壁菌门、放线菌门、变形菌门等与木质纤维素降解相关的菌门为优势菌门,堆体自上而下由好氧菌属演替为厌氧菌属,并形成好氧、兼性、厌氧的微生物分层。秸秆调控增加了堆体的好氧区域,促进和提高了猪粪...  相似文献   

16.
This study investigated the cocomposting of pine bark with goat manure or sewage sludge, with or without inoculated effective microorganisms (EM). Composting was done for 90 days and parameters monitored over this period included temperature, pH, electrical conductivity (EC), C/N ratio, inorganic N, as well as tannin content. Changes in temperature, pH and EC during composting were consistent with those generally observed with other composting systems. The parameters were influenced by the feedstock materials used but were not affected by inoculation with effective microorganisms. The highest temperature measured from pine bark-goat manure composts was 60°C but much lower maximum temperatures of 40°C and 30°C were observed for pine bark sewage sludge and pine bark alone composts, respectively. The C/N ratios of the composts decreased with composting time. Ammonium levels decreased while nitrate levels increased with composting time. Tannin levels generally decreased with composting time but the extent of decrease depended on the contents of the composting mixtures. The trends observed showed that temperature, pH, EC, C/N ratio, tannin levels, and inorganic NH4-N and NO3-N were reliable parameters for monitoring the co-composting of pine bark with goat manure or sewage sludge. The pine bark-goat manure compost had more desirable nutritional properties than the pine bark and pine bark-sewage sludge composts. It had high CEC, near neutral pH, low C/N ratio, and high amounts of inorganic N and bases (K, Ca, and Mg) while pine bark compost had the least amounts of nutrients, was acidic, and had high C/N ratio and low CEC. The final tannin content of the pine bark-goat manure compost was below the 20 g/kg upper threshold level for horticultural potting media, implying that its use as a growing medium would not cause toxicity to plants.  相似文献   

17.
Field and pot trials were established to assess potential benefits and adverse effects of amending a sandy loam soil, under grazed ryegrass-clover pasture, with compost manufactured from wastewater biosolids, wood waste and green waste. Compost was applied to the field trial site annually for 4 years and the pot trials used soil from the field trial site each year after compost application. The pot trials demonstrated that yield of silver beet (Beta vulgaris L.) increased with increasing compost application rate and that plant metal uptake was (except for Zn) unrelated or inversely related to soil metal concentrations. In samples from the field trial, soil total C, N, P and Olsen P increased markedly with increasing compost application rate. Cation exchange capacity, exchangeable cations and total-extractable and EDTA-extractable metals (Cd, Cr, Cu, Ni, Pb and Zn) were also elevated, total Cu to the limit allowable in biosolids-amended soil. Soil basal respiration, microbial biomass C and anaerobically mineralisable N were significantly increased in the amended plots. Anaerobically mineralisable N was highly correlated with respiration (r =0.98, n =24) and only weakly related to microbial biomass C, probably indicating that a high proportion of the N mineralised was from the compost organic matter. Sulphatase and phosphatase activities increased, but not significantly, and there were no measurable effects on rhizobial numbers or on sensitive microbial biosensors (Rhizotox C and lux-marked Escherichia coli). Biosolids compost application enhanced soil fertility, productivity and microbial biomass and activity, with no apparent adverse effects attributable to heavy metals.  相似文献   

18.
Effects of composting manure on viability of Giardia cysts (GC) and Cryptosporidium cysts (CO) were determined in a two-year study with manure from feedlot cattle bedded on barley straw or woodchips. Each year, manure was deposited in 8 m × 2.5 m × 2 m windrows (one per bedding type) on a sheltered concrete pad. On day 0, porous bags containing 100 g of feces from confirmed Giardia- and Cryptosporidium-positive cattle (9 bags per retrieval day in Year 1; 3 per day in Year 2) were implanted in the windrows. Replicate bags were placed on the concrete pads as uncomposted controls. Windrow temperature and water content were measured and compost was turned mechanically twice each week. Fecal bags were retrieved and subsampled for enumerations of total and viable cysts and cysts after 1, 2, 3, 7, 10, 17, 24 and 31 days in 1998 and after 1, 2, 3, 7, 9, 16, 23, 30, 42, 56, 70 and 98 days in 1999. Windrow temperatures (TEMP) exceeded 55°C during the fourth week of composting, and remained above 50°C for 4 wk thereafter in 1999. Bedding material did not affect overall mean temperature in either year, but TEMP was higher with straw than with woodchip from day 10 to day 17 in 1998 (P < 0.05) and on day 16 and day 42 in 1999 (P < 0.10). In 1998, moisture content decreased from 62.2 to 43.2% during composting of woodchip manure and from 67.3 to 39.3% during composting of straw manure. In 1999, moisture content decreased from 61.0 to 31.8% for woodchip and from 64.5 to 28.6% for straw compost. Percentage of viable CO declined gradually over the 31 days in 1998. The following year revealed a rapid decline in viability of GC and CO once compost temperature exceeded 55°C and viabilities of GC and CO were reduced to zero after 42 days (straw compost) and after 56 days (woodchip compost). Exposure of CO and GC to temperatures > 55°C for a period of 15 days appears to be an effective method of inactivating Giardia cysts and Cryptosporidium cysts in feedlot manure.  相似文献   

19.
Growth of a nonpathogenic E. coli strain (K12- MG1655, ATCC 700926) in aerated and nonaerated compost teas containing molasses, kelp and carrot juice was examined. Teas were prepared using four different compost types that had undetectable levels of indigenous E. coli. Three of the composts were produced by turn pile windrow composting method using dairy, swine and horse manure as feedstock, while the fourth, a vermicompost, was produced by feeding separated dairy solids to worms Eisenia feotida. Molasses and kelp enhanced the growth of E. coli in inoculated teas and the E. coli density was positively correlated with nutrient concentrations ranging from 0.1 to 8.0 g/L. Irrespective of the presence of molasses and kelp, E. coli was not detected in noninoculated teas. Even though E. coli is a facultative anaerobe, its growth was significantly higher in nonaerated teas than in aerated teas. Without aeration, dissolved oxygen in teas declined rapidly and fell below 0.1 mg/L within 20 h, whereas continuous aeration at 0.8 L/min maintained an aerobic condition (> 5 mg/L dissolved oxygen) in teas during the 48 h brewing period. The pH values of nonaerated teas were significantly lower than those of aerated teas and were always slightly acidic. E. coli growth in different compost types was significantly different. The density of E. coli was lowest in teas made with vermicompost and highest in teas made with swine manure compost. E. coli proliferations in both aerated and nonaerated swine manure compost teas were inhibited by carrot juice. Carrot juice lowered dissolved oxygen in aerated teas. The total bacterial densities in noninoculated compost teas were not reduced by carrot juice.  相似文献   

20.
During disease outbreaks, composting has been used to safely dispose of carcasses and infectious solid manure. However, optimized methods have not been established to use liquid manure (> 80% water content, WC) from dairies as the substrate for mortality composting. In April of 2007, a 3×2 factorial study was conducted in wooden compost bins (240 × 240 × 140 cm) lined with 0.5 mm plastic to a height of 50 cm. Three levels (LO, 95 kg; MED, 236 kg; HI, 606 kg wet wt.) of liquid manure (91% WC) were applied to barley straw containing a single calf mortality (avg. wt 130 kg). Compost temperature and carcass degradation were evaluated in each bin over 52 d. As an indication of compost efficiency, viability of 4 types of weed seeds (wild buckwheat, Polygonium convolvulus L, BW; dandelion, Taraxacum officinale, DL; stinkweed, Thlaspi arvense L., SW; and wild oat, Avena fatua, WO) was determined from seeds retained at the laboratory (Control) or from those placed in sealed nylon bags (50 μm pore size) embedded at 3 locations in each bin. Initial C: N ratios ranged from 58:1 (HI) to 68:1 (LO), while initial WC was 64, 52 and 42% for the HI, MED and LO treatments, respectively. Rate of compost heating and peak temperature (58.6 vs. 46.5°C) was increased (P < 0.05) for HI as compared to LO. Rate of temperature decline was lower (P < 0.05) and calf decomposition was visibly superior for HI as compared to LO. Viability of WO was eliminated by all compost treatments, but that of BW increased (P < 0.05) in MED and LO as compared to Control. Although HI did not eliminate BW viability, this treatment showed the the most promise for incorporating liquid manure as a substrate in contained mortality compost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号