首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
BACKGROUND: Extensive adoption of transgenic Bt corn in recent years for stalk borer control has increased risk of resistance evolution in the target pest populations. A Bt‐resistant strain of the sugarcane borer, Diatraea saccharalis, was approximately 100‐fold more tolerant to Cry1Ab toxin than the susceptible counterpart. To gain a better understanding of the molecular mechanisms of Bt resistance, the Cry1Ab‐susceptible (Cry1Ab‐SS) and Cry1Ab‐resistant (Cry1Ab‐RR) strains of D. saccharalis were subjected to a microarray analysis. RESULTS: Results showed that the expression levels of many genes were significantly different between the Cry1Ab‐RR and Cry1Ab‐SS strains. Microarray analysis of 7145 cDNAs revealed 384 differentially expressed genes. A total of 273 genes were significantly upregulated 2–51.6‐fold, and 111 genes were significantly downregulated 2–22.6‐fold in the Cry1Ab‐RR strain. The upregulation of three potential resistance‐related genes, coding for a glutathione S‐transferase (GST), a chymotrypsin‐like protease (CHY) and a lipase (LP), was confirmed using real‐time PCR, indicating a reproducibility of the microarray data. Ontology analysis revealed that more than twice the number of metabolic‐related genes were upregulated compared with downregulated genes with the same biological function. Up to 35.2% of the upregulated genes in the resistant strain were associated with catalytic activity, while only 9.5% of the downregulated genes were related to the same catalytic molecular function. CONCLUSION: The large portion of metabolic‐ or catalytic‐related genes with significant upregulations indicated a potential large increase in metabolic or catalytic activities in the Cry1Ab‐RR strain. This cDNA microarray gene expression data could be used to characterize and identify new genes that may be associated with Bt resistance in D. saccharalis. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
BACKGROUND: In the mid‐southern region of the United States, sugarcane borer, Diatraea saccharalis (F.), is a major target pest of transgenic maize expressing Bacillus thuringiensis (Bt) proteins. Novel transgenic maize technologies containing two or more pyramided Bt genes for controlling lepidopteran pests have recently become commercially available. Insect resistance management (IRM) is an important issue in the sustainable use of Bt crop technologies. The objective of this study was to determine the frequency of resistance alleles in field populations of D. saccharalis to the new pyramided Bt maize technologies. RESULTS: A total of 382 F2 family lines derived from 735 feral larvae/pupae of D. saccharalis collected from six locations in Louisiana and Mississippi during 2008 and 2009 were screened for resistance to three new Bt maize technologies: MON 89034, Genuity? VT Triple Pro? and SmartStax?. None of the 382 F2 isoline families survived on the Bt maize leaf tissue for ≥ 12 days in the F2 screen. The joint frequency for two‐ or three‐gene resistance models with 95% probability in these populations was estimated to be < 0.0063 to MON 89034 and < 0.003 to VT Triple Pro? and SmartStax?. CONCLUSION: These results suggest that the resistance allele frequency in D. saccharalis to the three pyramided Bt maize technologies is low in the mid‐southern region of the United States, which should meet the rare resistance assumption of the currently used IRM strategy for Bt maize. Copyright © 2011 Society of Chemical Industry  相似文献   

3.

BACKGROUND

Transgenic maize (Zea mays L.) event TC1507 (Herculex® I insect protection), expressing Cry1F δ‐endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized.

RESULTS

During 2012–2015, high‐survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F‐resistant population with a Cry1F‐susceptible population were evaluated to calculate effective dominance (DML) based on mortality levels observed at 100 µg/ml Cry1F. Two additional dominance levels (DLC and DEC) were calculated using lethal (LC50) or effective concentration (EC50) derived from concentration–response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (DML = 0.005) or incompletely recessive (DLC < 0.26 and DEC < 0.19).

CONCLUSION

This study is the first documented confirmation and characterization of S. frugiperda Cry1F field‐evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.

BACKGROUND

Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion.

RESULTS

From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time.

CONCLUSION

Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
为明确转cry1Ab基因玉米植株残体中Cry1Ab杀虫蛋白在不同条件下的降解动态,选取转cry1Ab基因玉米MON810和Bt11,采用ELISA方法测定4种条件下秸秆中Cry1Ab杀虫蛋白的残留量。结果表明,在不同条件、不同取样时间,2种玉米秸秆中Cry1Ab杀虫蛋白的残留量差异显著;整株秸秆中的Cry1Ab杀虫蛋白降解速度比粉碎后的慢;秸秆粉碎埋入土壤后播种冬小麦,玉米秸秆中Cry1Ab杀虫蛋白降解速度最快,且可完全降解;在不同条件下,MON810玉米秸秆中Cry1Ab杀虫蛋白的降解速度比Bt11玉米慢,MON810和Bt11玉米秸秆中Cry1Ab杀虫蛋白的DT50分别为10.2~207.8、13.6~124.0 d,DT90分别为185.1~368.3、45.2~224.0 d。研究表明,在不同条件下MON810和Bt11玉米秸秆中Cry1Ab杀虫蛋白的降解速度不同,依次为秸秆粉碎后埋在土壤后种植冬小麦秸秆粉碎埋在玉米田土壤中秸秆粉碎后放在地表整株秸秆放在地表。  相似文献   

6.
BACKGROUND: Genetically modified MON 87701 × MON 89788 soybean (Glycine max), which expresses the Cry1Ac and EPSP‐synthase proteins, has been registered for commercial use in Brazil. To develop an Insect Resistance Management (IRM) program for this event, laboratory and field studies were conducted to assess the high‐dose concept and level of control it provides against Anticarsia gemmatalis and Pseudoplusia includens. RESULTS: The purified Cry1Ac protein was more active against A. gemmatalis [LC50 (FL 95%) = 0.23 (0.15–0.34) µg Cry1Ac mL?1 diet] than P. includens [LC50 (FL 95%) = 3.72 (2.65–4.86) µg Cry1Ac mL?1 diet]. In bioassays with freeze‐dried MON 87701 × MON 89788 soybean tissue diluted 25 times in an artificial diet, there was 100% mortality of A. gemmatalis and up to 95.79% mortality for P. includens. In leaf‐disc bioassays and under conditions of high artificial infestation in the greenhouse and natural infestation in the field, MON 87701 × MON 89788 soybean showed a high level of efficacy against both target pests. CONCLUSIONS: The MON 87701 × MON 89788 soybean provides a high level of control against A. gemmatalis and P. includes, but a high‐dose event only to A. gemmatalis. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
为明确室内筛选的红铃虫Pectinophora gossypiella抗性品系AQ-R对Cry1Ac的抗性机制,采用室内生物测定法明确该品系对Cry1Ac和Cry2Ab的敏感性,通过遗传杂交和基因克隆分析抗性基因的显隐性及突变位点,并进行细胞学试验分析突变蛋白的亚细胞定位。结果显示:红铃虫AQ-R抗性品系对Cry1Ac的抗性倍数为181.67倍,对Cry2Ab没有交互抗性;该品系携带了一种新型的隐性钙粘蛋白抗性等位基因PgCad1,其编码蛋白的钙粘蛋白重复区、前蛋白区和近膜区共发生了17个氨基酸替换。表达野生型PgCad1-s基因的Hi5细胞对Cry1Ac敏感,且钙粘蛋白定位于细胞膜;而表达抗性PgCad1-r基因的Hi5细胞则对Cry1Ac不敏感,且钙粘蛋白错误定位到内质网。表明钙粘蛋白氨基酸点突变能导致其定位错误,从而促成红铃虫AQ-R品系对Cry1Ac产生抗性。  相似文献   

8.
BACKGROUND: Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1‐expressing maize (MON88017) when feeding on above‐ground tissue. RESULTS: In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near‐isoline. Male, but not female, survival was reduced in the Bt‐leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt‐silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt‐maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. CONCLUSIONS: Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
BACKGROUND: The pink bollworm is one of the most destructive pests of cotton. Transgenic cotton producing Bt toxin Cry1Ac or a combination of Cry1Ac and Cry2Ab2 has been used effectively against this pest. However, some other insects have evolved resistance to Bt toxins in the field. During the 2007–2008 and 2008–2009 seasons, pink bollworm populations in India were surveyed to evaluate their responses to Cry1Ac and seed powder containing Cry1Ac and Cry2Ab2. RESULTS: The results provide evidence that resistance to Cry1Ac had evolved by 2008 in a population sampled from non‐Bt cotton in the Amreli district of Gujarat in western India. The median lethal concentration of Cry1Ac for five‐day‐old larvae (LC50) was significantly higher for insects derived in 2008 from Amreli than for any of the other field populations tested from four locations in India. For Cry1Ac, the mean LC50 for the strain derived from Amreli in 2008 was 44 times higher than for the most susceptible population. However, for seed powder of Bollgard II containing primarily Cry2Ab2, the 2008 Amreli population was only slightly less susceptible than the most susceptible population. CONCLUSIONS: The data reported here constitute the first evidence of field‐evolved resistance of pink bollworm to Cry1Ac. This initial evidence spurred more extensive evaluations during the 2009–2010 growing season, which confirmed field‐evolved resistance to Cry1Ac in Amreli. The lack of cross‐resistance to Cry2Ab2 suggests that plants producing this toxin are likely to be more effective against resistant populations than plants producing only Cry1Ac. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
使用苏云金芽胞杆菌库斯塔克亚种(Btk)可湿性粉剂对小菜蛾进行继代汰选获得F80代和F100代抗性品系。通过分别测定Cry1Ab、Cry1Ac、Cry1Ah和Cry1Ca四种杀虫晶体蛋白对小菜蛾Btk抗性品系F80代和F100代的室内毒力,明确了小菜蛾Btk抗性品系对四种Bt杀虫晶体蛋白抗性发展规律。研究结果表明,汰选至F80代时,Cry1Ca对小菜蛾的毒力最高,LC50约12.1 mg/L,其次为Cry1Ac,LC50约47.7 mg/L;而汰选至F100代时,仍以Cry1Ca对小菜蛾的毒力最高,LC50约21.4 mg/L,其次为Cry1Ab,LC50约72.2 mg/L。与相对敏感品系相比,小菜蛾抗性品系对Cry1Ac的抗性发展较快(抗性倍数高达67.3~106.8倍),对Cry1Ab的次之(抗性倍数高达60.0~66.1倍),而对Cry1Ca和Cry1Ah的抗性发展较慢(抗性倍数分别为3.4~6.0倍和1.6~2.5倍)。以上结果说明,在主效杀虫基因为Cry1Ac的Btk药剂选择压力下,小菜蛾对四种Bt杀虫晶体蛋白的抗性发展速度差异较大,且Cry1Ac和Cry1Ab存在交互抗性风险。  相似文献   

11.
入侵云南草地贪夜蛾种群对5种常用Bt蛋白的敏感性评价   总被引:2,自引:0,他引:2  
草地贪夜蛾Spodoptera frugiperda(J. E. Smith)是原分布于美洲大陆热带和亚热带地区的一种重要玉米害虫。在当地,种植抗虫转基因玉米是防控草地贪夜蛾危害的主要手段。该虫于2019年1月入侵我国云南省,为明确入侵我国云南的草地贪夜蛾种群对常用Bt蛋白的敏感性水平,本文通过饲料表面涂抹法测定了瑞丽草地贪夜蛾幼虫对Cry1Ab、Cry1Ac、Cry1F、Cry2Ab以及Vip3A等5种Bt蛋白的敏感性。结果表明:几种常用Bt蛋白对瑞丽草地贪夜蛾致死作用顺序为Vip3A>Cry1Ab>Cry1F>Cry2Ab>Cry1Ac,对草地贪夜蛾抑制生长发育的顺序为Cry1Ab>Cry1F>Vip3A>Cry1Ac>Cry2Ab。此外,与美国相对敏感种群比较,云南瑞丽草地贪夜蛾种群对Cry1Ab、Cry1Ac、Cry1F、Cry2Ab和Vip3A的敏感性指标在0.28~3.76之间,表明该入侵种群对此5种Bt蛋白均未产生抗性。此研究可为将来建立以转Bt基因玉米作为防控草地贪夜蛾的技术体系提供依据。  相似文献   

12.

BACKGROUND

The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F‐RDT] and Resistance Intensity Rapid Diagnostic Test [I‐RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C.

RESULTS

All populations under study were resistant to the pyrethroids: bifenthrin (99%), d‐(cistrans)‐phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F‐RDT, and showed moderate to high‐intensity resistance at 10× the diagnostic dose (DD) in I‐RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high‐intensity phenothrin resistance at 1× to 10× DD.

CONCLUSIONS

This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F‐RDT and I‐RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry
  相似文献   

13.
BACKGROUND: Busseola fusca is a major pest of maize in Africa but unfortunately is difficult to control using chemical insecticides. Insect‐resistant transgenic crops may provide an alternative viable strategy to control this pest. RESULTS: Recombinant Cry1Ab (1%) reduced larval weight by 60% over the trial period, while larval weight in the control group increased by 25%; no effects on mortality were observed. Insect survival, developmental rate and pupal and adult weight were significantly reduced (P < 0.05) on maize expressing Cry1Ab (MON810) compared with the non‐transformed parental line. These differences were more pronounced with second‐instar larvae than with third‐instar larvae. Leaf area consumed by Bacillus thuringiensis (Bt)‐fed larvae was significantly lower (0.5 cm2 larva?1 day?1) compared with the area consumed by control‐fed insects (3.3 cm2 larva?1 day?1). EM studies revealed that consumption of Bt maize deleteriously affected gut integrity. Effects were observed in columnar cells of the midgut epithelium, with the cytoplasm becoming highly vacuolated; the microvilli were disorganised, the mitochondria were abnormal and there was an increase in the number of lysosomal bodies. The rough endoplasmic reticulum had also become dilated. CONCLUSION: This study confirms the potential for Bt maize, when used as part of an IPM programme, for control of B. fusca. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Rice is the major food resource for nearly half of the global population; however, insect infestation could severely affect the production of this staple food. To improve rice insect resistance and reduce the levels of Bt toxin released into the environment, the Cry1Ab gene was conjugated to the rice rbcS promoter to express Bt toxin in specific tissues of transgenic plants. RESULTS: Eight marker‐free, T2 lines were separated from the T0 cotransformants. Using RT‐PCR, high levels of Cry1Ab expression were detected in the leaf but not in the seed. The Cry1Ab protein level ranged from 1.66 to 3.31 µg g?1 in the leaves of four transgenic lines, but was barely detectable in their seeds by ELISA. Bioassays showed that the mortality rate of silkworm larvae feeding on mulberry leaves dipped in transgenic rice flour and pollen was less than that of the positive control (KMD), and that their average weight was higher than that of KMD, suggesting that the Cry1Ab protein was not expressed in the seed and pollen. CONCLUSION: The transgene conferred a high level of resistance to insects and biosafety to the rice plants, which could be directly used in rice breeding. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
为评估草地贪夜蛾Spodoptera frugiperda对国产Bt玉米的抗性风险,基于抗性风险分析模型对草地贪夜蛾在3种Bt玉米和2种庇护所条件下的抗性时间进行预测分析。结果显示,无论是采用种子混合庇护所还是结构化庇护所,草地贪夜蛾对Cry1Ab+Vip3Aa-玉米的抗性时间均远长于对Vip3Aa-玉米和Cry1Ab-玉米的抗性时间。在Bt与非Bt植株之间存在异花授粉和幼虫转移的条件下,采用种子混合庇护所的抗性时间较采用结构化庇护所的抗性时间大大缩短。以采用Cry1Ab+Vip3Aa-玉米和比例为0.20的庇护所为例,当异花授粉Bt显性度为0.5、幼虫转移概率为0.95时,采用结构化庇护所的抗性时间超过200代,而采用种子混合庇护所的抗性时间只有59代。结果表明,草地贪夜蛾对Cry1Ab-玉米的抗性风险远大于对Cry1Ab+Vip3Aa-玉米的抗性风险,而种子混合庇护所条件下的抗性风险远大于结构化庇护所条件下的抗性风险。  相似文献   

16.
为更好地了解苏云金芽胞杆菌Bacillus thuringiensis毒素蛋白对二点委夜蛾Athetis lepigone的毒力以及作用机理,通过饲喂含有Cry1Ac、Cry1Ab、Cry2Ab和Vip3Aa四种不同Bt毒素蛋白饲料,测定Bt毒素蛋白对二点委夜蛾幼虫的毒力,并观察取食4种毒素蛋白后幼虫中肠组织的病理学变化。结果显示,二点委夜蛾幼虫取食毒素蛋白后72 h,Cry1Ab和Cry1Ac毒素蛋白对二点委夜蛾幼虫的杀虫活性较高,校正死亡率为84.7%和76.4%;Vip3Aa和Cry2Ab毒素蛋白的毒力较弱。二点委夜蛾幼虫取食4种Bt毒素蛋白后,中肠柱状细胞微绒毛脱落,杂乱地分散在肠腔内,杯状细胞变形和腔内微绒毛脱落,线粒体和内质网等变形破裂,细胞核的核膜消失、核质凝聚和形状发生变化,经Cry1Ab和Cry1Ac毒素蛋白处理后中肠细胞的病变症状和速度明显高于Cry2Ab和Vip3Aa毒素蛋白处理。表明Cry1Ab和Cry1Ac毒素蛋白对二点委夜蛾幼虫杀虫活性较高,显著高于Cry2Ab和Vip3Aa毒素蛋白,且对其中肠细胞的破坏作用也较强。  相似文献   

17.
A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac.  相似文献   

18.
BACKGROUND: A dichloromethane‐methanol extract of the seeds of Piper tuberculatum Jacq. (Piperaceae) and two isobutyl amides, 4,5‐dihydropiperlonguminine (1) and pellitorine (2), which were isolated by chromatographic methods, were assayed for their lethality against the sugarcane borer Diatraea saccharalis F. (Lepidoptera: Pyralidae). RESULTS: Bioassays were carried out with fourth‐instar caterpillars through topical application of test solutions to the dorsal surface of the prothorax, and dose–response correlations were determined. Significant insect mortalities were observed 24, 48 and 72 h after treatment at concentrations of ≥ 100 µg insect?1. The LD50 and LD90 values for compound 1 were 92.83 and 176.50 µg insect?1, and for compound 2 they were 91.19 and 184.56 µg insect?1. CONCLUSION: According to the LD50 and LD90 for compounds 1 and 2, it can be inferred that the values reflect an acute lethal response to both compounds, based on interaction(s) of the toxicants with a primary target or series of targets. Thus, the amides were demonstrated to have potential value in the control of the sugarcane borer. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
为评价我国自主研发的转基因玉米表达的Cry1Ab、PAT和EPSPS蛋白对日本通草蛉Chrysoperla nipponensis幼虫生长发育的安全风险,通过将外源蛋白混入日本通草蛉人工饲料中的方法,以加入砷酸二氢钾(KH_2AsO_4)的饲料为阳性对照,研究了日本通草蛉幼虫取食后的生长发育状况。结果表明:日本通草蛉取食含Cry1Ab和EPSPS蛋白饲料的幼虫发育历期、茧期、结茧率、羽化率及成虫体重等生物学参数与取食正常饲料处理相比均没有显著差异;而取食含PAT蛋白饲料的幼虫发育历期和结茧率分别为10.7 d和96.6%,与取食正常饲料的对照11.1 d和89.9%差异显著,即饲料中添加PAT蛋白显著提高了幼虫的存活率和发育速率;取食含KH_2AsO_4饲料的日本通草蛉幼虫不能存活到茧期,说明KH_2AsO_4具有显著的杀虫活性。ELISA检测结果表明,取食了分别添加有3种外源蛋白饲料的日本通草蛉幼虫体内可以检测到相应的Cry1Ab、EPSPS和PAT蛋白,含量分别为2 758.8~5 210.7、35 018.0~54 426.6、16.8~149.8 ng/g。表明转基因玉米所表达的Cry1Ab、EPSPS和PAT蛋白对日本通草蛉幼虫没有显著的不利影响。  相似文献   

20.
BACKGROUND: Transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt) were first commercialised in 1996. The risk that pests have the potential to evolve resistance to Bt toxins is one of the most serious challenges to this technology. Gene stacking, pyramiding two Bt genes into one variety, is considered to be an effective insect resistance management (IRM) strategy. In this study, insect‐resistant rice expressing two Bt genes was developed by sexual crossing, and then characterised. RESULTS: Homozygous rice lines of two pyramided Bt genes were obtained in the F3 generation. Quantification of Bt toxin showed that protein concentrations of Cry1Ab, Cry1Ac and Cry2A in the two‐gene lines were comparable with their single‐gene parents, while the expression of cry1C gene decreased after gene stacking. Four two‐gene lines showed higher activity to striped stem borer (Chilo suppressalis Walker) than parental lines in the laboratory bioassay. All pyramided lines and their hybrids exhibited excellent efficacy against stemborers and leaffolders in field evaluation, while most pyramided lines had no significant differences from original variety in yield under spraying of insecticide. CONCLUSION: These results demonstrate that the two‐gene lines have commercial potential and could serve as a valuable IRM strategy. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号